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Abstract: Percolation theory permits to characterise (calculate) the effective properties of random inhomogeneous two-phase systems with compa-
rable concentration of both phases (near the percolation threshold) but with significant difference of their properties. This paper presents the critical
behaviour of various kinetic phenomena (conductivity, 1/f noise, weak and strong nonlinearity, third harmonic generation, and temperature depend-
ence of resistivity). These quantities can be described analytically using for example hierarchical model of percolation structure. The characteristic
critical indexes are dependent on conductivity and correlation length critical exponents. Possible application of percolative theoretical description for
systems with exponentially broad or disordered continuum spectrum of properties is presented, too. The nonelectrical effective properties could be
analysed by methods of percolation theory because of analogy between the quasistatic electrical and other physical fields.

Teorija perkolacije in njena uporaba v znanosti o materialih in
mikroelektroniki (Prvi del - Teorija)

Kijuéne besede: fizika, kemija, perkolacija, prag perkolacije, sistem perkolacije, teorija perkolacije, znanost o materialih, mikroelektronika, eksponenti
kriticni, prevodnost elektriéna efektivna, Sum 1/f, intenzivnost Suma efektivnega, nelinearnost Sibka, nelinearnost motna, susceptibilnost napetostna,
harmonske tretje, amplitude harmonskin tretjih normalizirane, odvisnost temperaturna upornosti elektricne, sistem podoben perkolacijskemu, spekter
upornosti elektrinih sirok eksponencialno, perkolacija neprekinjena, model sira Svicarskega

lzvle&ek: Teorija perkolacije dovoljuje izragun lastnosti nakljuénih dvofaznih sistemov s primerljivima koncentracijama obeh faz (blizu perkolacijskega
praga), pri Semer imata obe fazi vsaka zase razliéne lastnosti. V prispevku prikazujemo vedenje razliénih kinetiénih parametrov, kot so prevodnost,
1/f sum, nelinearnost, generacija tretje harmonske frekvence in temperaturna odvisnost uporosti. Omenjene koliéine lahko predstavimo v analiticni
obliki z uporabo hierarhiénega modela perkolacijske strukture, Predstavimo tudi mozno uporabo teorije perkolacije pri opisu sistemov s Sirokopasovnim
eksponentnim ali neurejenim kontinuiranim spektrom lastnosti. Neelektricne lastnosti lahko analiziramo s pomodcjo metod perkolacijske teorije zaradi
analogije med kvazistaticnim elektri¢nim poljem in drugimi fizikalnimi polji.

Introduction

The percolation problem was formulated for the first time
almost 45 years ago by Broadbent and Hammersley /1/.
Since thattime the idea and methods of percolation theory
were applied into many areas of physics, chemistry as
well as other basic and applied sciences. The original re-
sults based on percolation theory can be found in numer-
ous papers. Therefore preparation of a complete bibliog-
raphy devoted to this topics seems almost unrealisable.
However beginner in such area could find some interest-
ing books or review papers, for example /2-9/.

The so-called hierarchical model of percolation structure
(HMPS) appeared during recent years. This model per-
mits to describe analytically various properties of macro-
scopically disordered media near the percolation thresh-
old — for example resistivity (also Hall effect), 1/f noise,
electrical breakdown, nonlinear properties of composites
and many others. This review will be devoted to the above
mentioned phenomena. One should note that we will dis-
cuss experimental, analytical and numerical results re-
ceived very recently — it means that they were not sum-

marised in books and papers mentioned above.

1. Effective conductivity near p_

Experimental and numerical investigations have
shown, that effective conductivity ¢ is an analogous
of order parameter in theory of phase transitions where
temperature T is replaced by concentration of well-
conducting phase —~ p and critical temperature T_ is
replaced by percolation threshold - p_. Based on the
above analogy Efros and Shklovskii /10,11/ used scal-
ing formula for o,

o.(t,h) = o;h°F(z/h") (1.1)

where h=0,/0, - distance from percolation
threshold, o, << 04, 6, - local conductivity, and F(z) -
scaling function

' F(z— —o)oc 278

)

F(z—>o0)ecz

F(z — 0)c< 1 (1.2)
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where t and g — critical conductivity exponents and
only the basic (single) components of sequence de-
composition in relation to scaling are given in (1.2).

According to (1.1) and (1.2) there are three ranges of
universal behaviour of effective conductivity, where
separate equations describe an universal behaviour
of effective conductivity — above (p > p,), below (p <
p,) and in the vicinity (p =p_) of percolation threshold

T+ <A

.
G, =0,0,(Dy +D;h

o, =0, T (A, +AhT Y+ ) p>p,T>> A

e
O = 0,7 3By + B1h|r["(t+q> +..,P < Pe i >> A

(1.3)

As it is visible the above equations consist on only the
basic components but also smaller ones. A, B,and D,
indicate constants, which according to absolute value
are almost equal to 1. It is interesting to become fa-
miliar with conception of smearing region,

A =(c9c5)""*9 it is such |1, where good and bad
conductive phase possesses the same contribution into
the effective conductivity ~o,A' = 5,A™ (qualitative
behaviour of g, is shown in Fig. 1).

S — e

02
[e2} Pc
—_A_

Fig. 1. Normalised conductivity versus good
conductor concentration in two-phase

percolation system

Many various models, in general based on percola-
tion idea, have been used for explanation of o, shape.
In the first one (which by occasion is the simplest) it is

2

assumed that for p > p_case it is enough to consider
number of single connected bonds (SCB) at the cor-
relation length & (& =< ir{—v) /12,13/. This is so-called
“bridge” with resistance R, consisting of seriously con-
nected unit resistances from the first phase r,, where

r= (1/01)aod72, a,— minimal dimension in the sys-
tem (for example mean size of composite grains or
connection length in bond problem), d =2, 3 - Fig. 2
(left). For analogous model, but below the percolation
threshold (p <p_) /14/, it was assumed that number of
single disconnected bonds (SDCB) i.e. so-called
interlayer (with resistance R,) consisted of parallel
connected unit resistances r, made from the second
phase is the basic element — Fig. 2 (right).

Fig. 2. Graphical representation of bridge (p > p,)
and interlayer (p < p_) in hierarchical model
of percolation structure (HPMS)

The metallic bridge (R,) and dielectric interlayer (R,)
resistances are dependent on number of unit

resistances of metallic and dielectric phases

R1 = I’1Na1, Rz = er(XZ (1 4)

Based on theoretical and probability analyses it has
been assumed in many papers (for example in /10-
17/) that o4 =Cg =10, =L =1 However the critical
conductivity exponents t and g, calculated in this
model, have been almost equal to each other but their
values do not agree with results of numerical calcula-
tions. Moreover it is possible to find some cases where
such a simple model leads to contradictory results.
For example itis shown in /2/ that the correlation length
is increased faster than bridge length (a,N,) in 2D sys-
temwhena=1att— 0.

Much more reliable results could be obtained based
on so-called HMPS. Its idea has been presented in
118-20/. According to this approach the values of o,
and a, are calculated based on t and q values (these
quantities are considered as known) both below and
above percolation threshold. Itis assumed in this proc-
ess that conduction process takes part both in good
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as well as bad conducting phases — Fig. 3. When
6,/0,— 0 HPMS is transferred into the standard
model, discussed a little earlier.

Fig. 3. Second step in the hierarchy of HPMS
above (left) and below (right) percolation
threshold together with proper electrical
equivalent circuit (hatched area — good
conductor)

[t has been shown in /18-20/ that it is possible on the
basis of this hierarchical model to write down a self-
consistent equation. In the case of effective conduc-
tivity this equation in symbolic representation has the
following form — Fig. 4.

P>pP,
R, R,
— 13— = {1
l R, R, J
-------- 1
P<P.
R, R, R,
— 13— = [ ] 1 { i
R

Fig. 4. Analogues of Dyson equation above (top)
and below (bottom) percolation threshold

During closing to the percolation threshold ( |1 —0)
the bridge resistance R, is increased whereas interlayer
resistance R, is decreased. Both resistances are equal
in the smearing region but when Eq. (1.3a) or (1.3b)
are obligatory then R, << R,. It means that dielectric
interlayer gives small contribution into the effective
conductivity o, above p_ whereas the bridge - below

p.. Therefore it could seem that counting and regard-
ing of so small contributions, especially outside the
smearing region is needless because this does not
lead to important properties of percolation system.
However below the readers will find some examples
in which manner elements affecting o, only insignifi-
cantly can decide about other properties of percola-
tion systems.

2. 1/f noise

1/f noise is an universal phenomenon. It is character-
istic for many physical (but not only) processes. The
amplitude of that noise has especially large impor-
tance for composites /21,22/. The quantity of 1/f noise
is characterised usually by effective noise intensity

C,=0S (2.1)

where Q - volume of analysed pattern, S - relative
power spectral density

R2 R (2.2)

S, = {8ASA} ~ power spectral density, {...} — denotes
the Fourier transform of the time correlation function.

Based on the situation that time fluctuations of resist-
ance SR are spatially uncorrelated it is possible to
describe (present) the effective noise intensity in terms
of the Joule power dissipated in the inhomogeneous
media

where {...) denotes volume averages.

The beginning of 1/f noise investigations in percola-
tion systems is connected with scientific activity of -
Rammal /23/ (the reader interested in this topic can
find more detailed bibliography of papers dealt with
1/f noise in /24/). We can tell that for the case of finite
conductivity of both phases (h=0,/0y#0) C_near
percolation threshold can be written as

Co(1>0,1>>A)=Cp* +Coh%t™  (2.4a)
-k -k

Cellf << A)=Csh Hea +Cyh A*“) (2.4b)

Colr<Od>>A) = Col ™  +Cold™  (2.40)

3
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where C,and C, - noise intensities of first and second
phase and values of k and k’i.e. critical exponents of
1/f noise are given in Table 1.

Table 1. Numerical estimates of the noise critical
exponents K and K*(/23/ and references herein)

Critical index | Numerical simulations |Rigorous bounds

K 1.47+1.58 1.53+1.60

K 0.55+0.74 0.38+1.02

According to HMPS the critical exponents w and w’
can be expressed by kand K’ in a simple manner as

w=K+2(t+q), w=k+2(t+q)  (2.5)

For example, it is directly visible from (2.4) that above
the percolation threshold but in the smearing region
(It} < A) the second phase could give higher income
into the total 1/f noise of composite when C, is higher
than C, /18/.

3. Weak nonlinearity

The deviation from linear Ohm’s law is possible for
large current densities. In the case of so-called weak
nonlinearity (or weak cubic nonlinearity) the depend-
ence between current density and electric field is given
by the following formula

i = o(rE + x(r)E/E (3.1)

where ¥ - local nonlinear susceptibility. Of course (3.1)
presents polynomial description of the field where the
second constituent is significantly smaller than first
one. The effective properties are used for description
of weakly nonlinear system in the same manner as for
linear system, this is

) = 0 (E) + Y (|EDE) (3.2)

As has been shown in /25,26/ there is analogy be-
tween behaviour of effective noise intensity C, and
effective nonlinear susceptibility. Problem becomes
mathematically equivalent to the estimation of effec-
tive 1/f noise intensity, x¢ < Cecg for the system with
the local noise intensity  C(r) = x(r)/o2(r). Thus the
critical behaviour of _ is given immediately from the
equation describing the behaviours of the effective
noise intensity and the effective conductivity

%e(T1>0) = Co(1>0)02(T > 0) = 1,12 F + 9t 20K

%e(1<0)=Cy(1 < 0)o2(1<0) = leri—2q—k' N X1h4|11—w'-2q

4

Xe([]<A)=Co(ld < A)o(r < a)=

- X1h(2t—k)/(t+q) + X2h~(2q+k')/(t+q) (33)
The important question in analysis of nonlinear media
effective properties is connected with Eq. (3.2) appli-
cation range. Most often it is assumed /27-30/ that
formuia (3.2) is proper for

() << (), and {E) << (E), (3.4)

where so-called critical electric field (£)_ and critical
current density (j), are defined as the value of field or
current at which linear contribution (first constituent of
(3.2)) is equal to nonlinear one, i.e. (E)_ =0/,
(D, = Joo!%e . Moreover the local criterion of Eq.
(8.1) usability has been introduced in /31/. According
to this attempt not only average but also local fields

and currents (both in bridge and interlayer) should not
exceed proper critical values

Eioe <<E¢ =0 /Xi, Jioe <<le = VG?/Xi (3.5)

where /=1, 2 is related to first and second phase.

4. Third-harmonic generation

If a pure sinusoidal current- (with frequency ) flows
through the symmetrical nonlinear medium, then the
voltage that appears across the medium will contain
odd harmonics (with frequencies 3w, 5, ...). It has
been shown that their amplitude is especially large in
strongly nonlinear systems /32-36/. However the small
amount of nonlinearity also affects this phenomenon,
which appears for example due to local Joule heat-
ing. In this approach it is assumed that both compo-
nents of the composite have finite temperature coeffi-
cient of resistance. The dissipated power (Joule heat)
caused by current j=j,coswt modulates medium
conductivity with 2w frequency and phase shift. It is
well known that flow of pure sinusocidal current with
frequency  through the sample with resistance modu-

lated with 2w frequency results in odd harmonics

generation. The amplitude of third harmonic (E),

<E> = Pe <jO>COS wt+ <E>3m COS(3(l)t + d)) (41 )

can be expressed with the aid of 1/f noise amplitude C.,.

Normalised amplitude of third harmonic B,

2 ) (4.2)
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agrees with pgce(with accuracy to inessential numeri-
cal multipliers) when - in formula for C, - factor C,is
changed by temperature coefficient of resistivity of /-

th phase - {3,

Generalisation of expression for Bs, given in /32-35/
forthe case h=0,/0,%0 ispresented in/36/and
we obtain the following Equation

2 _x2(tra)
P || Pe a
[ P2 ) (4.3)

where the dependence from T in (4.3) is connected
with effective resistivity p, =1/0, which of course is
different for various regions.

5. Strong nonlinearity

Contrary to weak nonlinearity case the current-volt-
age characteristics of strongly nonlinear medium are
not linear even for very weak fields. The medium with
the following current-voltage relation

i=+ef'E (5.1)

has been analysed in /38,39/ where the behav-
iour of effective nonlinear susceptibility x, near
percolation threshold has been described for the
case of ideal insulator (y, = 0). The opposite case,
i.e. 1/y, = 0. The calculus of the x/x, ratio when
both phases exhibit identical nonlinearity relation
(the same parameter B) has been presented in
[40]. And the most general case (y =B, # B, = B)
has been analysed in /41/. When the current-volt-
age characteristics are described by the follow-
ing formulas

ay-1. o
E=p]" j=oyE[TE
. -1 LN
j=oofElE E=pzfi"]  (5.2)

then three field regions can be distinguished for ap-
propriate 3 and 7y (Fig. 5).

>

E, E

Fig. 5. Current-voltage characteristic of first (1) and
second (2) phase in strongly nonlinear
system

The percolation treatment is possible in region |
("strongly nonuniform” medium) where

where =g+t and

o v@ -1 g qevp-)
i (5.4)

The size of smearing region A in strongly nonlinear
system is field-dependent

1
_[ 02 B-1/y |@
o[ Zef |

Moreover, let's note that current-voltage character-
istic of system, composed of strongly nonlinear
phases, becomes linear for specified values of

andy ((Bt+q/y)/g=1).

(5.5)
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6. Temperature dependence of resistance

The temperature dependence of resistivity (resist-
ance), usually characterised by means of differential
temperature coefficient of resistivity (TCp) or resist-
ance (TCR), is one of the most important features of
composite materials or devices based on them.

The effective temperature %oefficient of resistivity
. . - Pe 3
(resistance), i.e. TCp, = p_ aT orTCR, =— e

e Re dT
( pe =10, ), for percolation system created by two-
phase medium with finite conductivity ratio
(h=py/p, #0 ) has been found in /42/. Similarly as
in the case of the other above-considered properties
the analytical formulas have been worked out for three

concentration subranges.

TCp, =TCpy +(py/po i "I TCpy,p > p,
(6.1)

1

TCp, = A-TCp, +B-TCp, —D(TCp, ~ TCp, (21 )
P2
l<a (6.2)

TCpy =TCpy +(py/ 02 1 9 TCpy,p < e
(6.3)

1 dp;
In the above equations we have TCp; = ——pT’ (i =1,

2) — temperature coefficient of resistivity oif i-th phase
and A, B, D - constants (equal to about 1).

7. Continuum problems

It has been assumed for all so-far analysed cases,
that the problem of current distribution in system can
be transferred to model, where the random resistance
distribution of first and second phase r, and r, is given
as

f(r) = pd(r 1)+ (1-p)3(r —12) (7.1)

(p — concentration of first phase,§(...) - Dirac function.

But the case, where distribution function can be
written as

f(r) = p(1-cx1/r, = 0 (7.2)

has been examined in /43/. It has been shown that
critical index stops to be universal (it is said it goes to
the second universality class)

6

t=tg+a/(1-a) (7.3)

where t — standard critical conductivity index above
percolation threshold.

The case when the spectrum of resistances is con-
tinuous and exponentially broad /44/

r=roe ™ L s>, (7.4)

where x € (0, 1) is a random variable with smooth
probability distribution D(x), is no less interesting. The
problem with a continuous spectrum of resistance dis-
tribution is not a straightforward -percolation problem
- it does not exhibit the percolation threshold at which
one of the two phases forms an infinite percolating
cluster because the phases themselves do not exist.
However, there is a method which simplifies the ex-
ponential distributed resistances problem to the stand-
ard two-phase percolation problem /45-47/ and makes
it possible to determine the principal system regular-
ity, this is to find a critical index of effective percola-
tion conductance. The general assumption of this
method is that all resistances with a random variable
between x and 1 are considered as one phase. In a
crude approximation the network effective conductiv-
ity is described by the largest resistance, at which this
phase becomes infinite. This is related to the percola-
tion threshold in a classical percolation, i.e. from

1

[Dx)dx =p,
% (7.5)

itis possible to calculate x, and next to find the largest
resistance, which defines (with accuracy to the
preexponential factor in ¢,) the resistance of the whole
system,

[ o rye e (7.6)

It is possible to consider the above problem analo-
gously but to start from the reverse side. Lets take a
system with an exponential broad spectrum of resist-
ance and keep in mind site of particular resistances in
the network. Then we replace them in the network by
“zero-resistivity” connection, and again put resistances
into their previous position in the network but accord-
ing to proper sequence starting from the smallest one.
This process is carried on till appearance the resist-
ance, which disconnect the current flow through the
“zero-resistivity” phase. We can tell that this critical
resistance specifies the resistance of such system (with
accuracy to preexponential factor). The details of such
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treatment are presented in /48-51/. It could seem that
applied critical resistance search methods give op-
posing results /50,561/. However this contradiction is
removed by assumption that the system is in smear-
ing region just as the critical resistance is included in
the network. Generalisation of two-phase percolation
model in smearing region /52/ for systems with
exponentially broad resistance spectrum lead to the
following expression for effective conductivity (for sim-
plicity it has been assumed, that D(x) = 1)

_ A -y
Te =2z (7.7)

where a, — minimal characteristic dimension in the
system (of order of lattice cell), A — variable with a
weak dependence on A (A e (InA)*“ @22l ) g~
dimensionality of the problem, and critical exponent y
is equal

0.4—0lp+2v(d-2)

y = (7.8)

In terms of widely accepted values of oy =¢g =1
and o, =¢g =1 Eq. (7.8) reduces to

y =v(d-2) (7.9)

The above result has been shown for the first
time in [48]. Choice ay=¢g =t-v(d-2) and
o, =¢g = q+ v(d—2) gives very similar numerical re-
sults; for more details please see /53,54/)

The model described in /51/, using network with ex-
ponential distribution of properties, permits to find the
behaviour of many other physical quantities. Moreo-
ver, even if for example resistance distribution is not
exponential but power one r= rox‘* and we have
somewhat different formula for effective conductivity

— Ay Y
Oe = 2o XA

(7.10)

The critical index y from Eq. (7.10) is still given by Eq.
(7.9).

There are no basic troubles in characterisation of more
complex guantities than effective conductivity using
percolationlike model. However itis necessary to make
supplementary assumption related to focal properties
of these quantities. For example, calculation of 1/f noise
in exponentially distributed systems demands gener-
alisation of Hooge hypothesis /21/, according to which
C = a/ o (0 - so-called Hooge parameter). It is logically
to assume, that for considered system with local con-
ductivity o(x)e< e ™

C(x) = a/ o(x), (7.11)
This is in agreement with empirical Hooge law — sys-
tem (device) with higher resistivity (more precisely
with lower concentration of charge carriers) is char-
acterised by larger noise intensity.

The effective noise intensity of system with an
exponentially wide spectrum of resistances obeys the
form

C, o MM e (7.12)
where exponent mis given as
m=y+2v (7.13)

As has been mentioned earlier the exponent y is re-
lated to the correlation length exponent v by Eg. (7.9).
Therefore

m = dv (7.14)

The above calculations have been generalised in
/24,54,55/ for situation when

C(x) = a/6%(x) (7.15)

(for © = 1 we have standard Hooge formula (7.11)).
Very interesting feature of the exponent m has been
observed for 0 < 0 < 2; mis independent on 8 param-
eter, this is

C, o= 5pe "eA™, my =vd (7.16)
Lets note that even if phenomenoclogical Hooge for-
mula is locally true, i.e. C(x)o”(x) = const, it is broken
for the whole system, thatis C o, # const.

Except of effective conductivity and noise intensity
investigations of temperature behaviour /42/ or third
harmonic generation /36/ also have been analysed in
systems with exponentially broad spectrum of
resistances. It has been shown that normalised am-
plitude of third harmonic B, for such systems is
related very simply to its effective conductivity p,

B3 = 05 (7.17)

The successive model with disordered continuum
spectrum of resistances has been presented for the
first time in /56,57/. This is so-called Swiss-cheese

7
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i.e. a disordered continuum system where spherical
holes are randomly placed in a uniform transport me-
dium. The distance between spherical voids is
unrestrictedly small. This means that so-called
microgeometry, in other words current distribution in
narrow necks between mentioned spherical holes be-
comes very important. Such a model has been ana-
lysed based on percolation approach and it has been
proved in already mentioned papers /56,57/ that criti-
cal conductivity exponents for Swiss-cheese model
and corresponding indices in a discrete lattice differ in
value and depend on microgeometry details (shape
of inclusions). For example, when p > p_and G, =0
then

t=t +y (7.18)

standard

where exponent y is dependent on kind of voids. For
random-void model and o, = O we have y= 0 in the
case of 2D system and y = ¥ for 3D medium.

Moreover there are yet other classes of continuum
model, namely potential model (space between voids
is not limited by spherical area but by hyperbolocidal
one /57/, blue-cheese model /58/ and so on. Micro-
structure in fact affects not only effective conductivity
but also other properties such as dielectric (e.g. in d=3
critical exponent of effective dielectric constant in
Swiss-cheese model differs in standard one by 5/2
/56/), electrical and mechanical destruction /58/ and
the like. It appears, that microgeometry influences be-
haviour of 1/f noise near percolation threshold /59/.
Last but not least matter of this paper is that we have
to be conscious of analogies between various physi-
cal fields (presented for example in /60/). Therefore
percolation theory and analysis can be applied not only
in calculation of electrical effective properties but also
electrostatic, magnetic, thermal, fluidic and mechani-
cal ones. Chosen examples of percolation or
percolationlike systems, which have been studied ex-
perimentally as well as some numerical simulations
performed with the aid of approaches given in this
paper will be presented and discussed in second part
of this article /61/.
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