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Statistical Disclosure Control using Random 

Rounding and Quadratic Programming 
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Abstract 

The most common method of providing data to the public is through 

statistical tables. The problem of protecting confidentiality in statistical 

tables containing sensitive information has been of great concern during the 

recent years. Rounding methods are perturbation techniques widely used by 

statistical agencies for protecting the confidential data. Random rounding is 

one of these methods. In this paper, using the technique of random rounding 

and quadratic programming, we introduce a new methodology for protecting 

the confidential information of tabular data with minimum loss of 

information. The tables obtained through the proposed method consist of 

unbiasedly rounded values, are additive and have specified level of 

confidentiality protection. Some numerical examples are also discussed to 

demonstrate the superiority of the proposed procedure over the existing 

procedures. 

1 Introduction 

Statistical offices collect information about society. The most common method of 

providing data to the public is through statistical tables. Statistical agencies 

throughout the world are practicing the methods of maintaining confidentiality of 

sensitive information. In some situations, it is required that the statistical offices 

do not disclose in any way the information provided by the individual respondent. 

The release of statistical data inevitably reveals some information about  individual 

data subject. 

When confidential information is revealed, disclosure occurs. Thus statistical 

offices need to protect the confidentiality of data it collects. Not all the data 

collected and published by the statistical offices are confidential. The statistical 

offices have to protect only confidential data. The cells in a table containing 

confidential data are termed as “Sensitive cells” and all other cells are termed as
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“non-sensitive cells”. Before publishing any information, statistical offices face 

two problems. The first problem is of identifying the sensitive cells in a table. 

Identification of sensitive cells is carried out through several rules such as 

threshold rule, linear sensitivity rule, p percent rule, p-q percent rule, etc. This 

problem has been discussed in details by Cox (1980, 1981), Willenborg and Waal 

(2000) and Merola (2003a). The second problem is of protecting the confidential 

information contained in sensitive cells, while minimizing the loss of information. 

This problem is generally termed as “Disclosure control”. The confidential 

information can be protected by the application of statistical disclosure limitation 

methods, which ensure that the risk of disclosing confidential information is very 

low, while minimizing the loss of information. The rising concerns of privacy, 

give rise to problems of disclosure including the issues of disclosing micro data. 

Several disclosure control techniques are used in the literature to achieve the 

required protection of confidential information. Two widely used techniques of 

disclosure control are “Controlled rounding” and “Cell suppression”.  

Rounding techniques involve the replacement of the original data by multiples 

of a given rounding base. Controlled rounding problem is the problem of optimally 

rounding real valued entries in a tabular array to adjacent integer values in a 

manner that preserves the tabular structure of the array. Rounding methods are 

used for many purposes, such as for improving the readability of data values, to 

control statistical disclosure in tables, to solve the problem of iterative 

proportional fitting (or raking) in two-way tables and controlled selection. 

Statistical disclosure control is one of the area in which rounding methods are 

widely used. Fellegi (1975) proposed a technique for random rounding which 

unbiasedly rounds the cell values and also maintains the additivity of the rounded 

table. The drawback of the random rounding procedure proposed by Fellegi (1975) 

is that it is applicable to one-dimensional tables only. Cox and Ernst (1982) used 

the transportation theory in linear programming to obtain an optimal controlled 

rounding of a two way tabular array. Using the general theory of transportation 

problems they demonstrated that solutions always exist to the controlled rounding 

problems. Causey, Cox and Ernst (1985) summarized the idea of Cox and Ernst 

(1982) and used the transportation theory to solve the controlled rounding 

problem. They discussed several statistical applications in which controlled 

rounding can be used and applied the concept of controlled rounding to solve the 

controlled selection problem. Cox (1987) presented a constructive algorithm for 

achieving unbiased controlled rounding which is simple to implement by hand. He 

also discussed a controlled rounding problem in three dimensions and provided a 

counter example to the existence of unbiased controlled rounding in three 

dimensions. Tiwari and Nigam (1988) improved the method of Cox (1987) to 

terminate in fewer steps. Salazar (2005) proposed a technique, termed as cell 

perturbation, which allows reducing the data loss from controlled rounding. This 

method is closely related to the classical controlled rounding methods and has the 

advantage that it also ensures the protection of sensitive cells  to a specified level, 



Statistical Disclosure Control using Random Rounding and Quadratic…  63 

 

 

while minimizing the loss of information. Glover, Cox, Kelly and Patil (2008) 

applied a single mixed integer linear program to protect the sensitive information 

in tabular data using the method of controlled tabular adjustment.  

Another method widely used by different researchers for protecting sensitive 

cells in a table is the method of cell suppression; in which sensitive cells are not 

published i.e. they are suppressed. This problem has been widely discussed by Cox 

(1980, 1995), Sande (1984), Carvalho et al. (1994) and Fischetti and Salazar 

(1999, 2000). In cell suppression, a large amount of information is lost as in 

addition to suppression of sensitive cells, some non-sensitive cells are also 

suppressed. To reduce the loss of information, Fischetti and Salazar (2003) 

proposed an improved methodology, known as partial cell suppression, in which 

instead of wholly suppressing primary and complementary suppressed cells, some 

intervals obtained with the help of a mathematical model, are published for these 

cell entries. The loss of information in partial cell suppression is smaller in 

comparison to complete cell suppression. Other statistical disclosure control 

approaches include data swapping, random noise, collapsing and roughly 

comparing. For details about statistical confidentiality, the readers may refer to 

Duncan, Elliot and Salazar (2011). 

In this article, we use the idea of random rounding and quadratic programming 

to propose an improved methodology for disclosure control in an array that 

perturbs only the sensitive cells and adjusts some non-sensitive cells to preserve 

the marginal values of the array. The table obtained through the proposed 

procedure guarantees the protection level requirement and also attempts to 

minimize the information loss by minimizing the distance between the original and 

final table. 

In Section 2, we describe the basic notations, problem of attacker and the 

protection of sensitive cells. The proposed methodology is introduced in Section 3. 

In Section 4, we discuss some numerical examples to demonstrate the utility of the 

proposed procedure. Section 5 concludes the findings of the paper.  

2 Basic notations, problem of attacker and the 

protection of sensitive cells 

In what follows, we describe the basic notations used in this manuscript. The 

problem of attacker and the protection of sensitive cells are discussed using the 

notations of Salazar (2005). In sensitive cells, we assume the existence of 

individuals who may analyze the published pattern to disclose the confidential 

information. These individuals are referred to as “Attackers” (or “Intruders” or 

“Snoopers”).  If there exists more than one attacker in a cell, the problem is 

referred to as “Multi-attacker” problem. On the other hand the problem with only 

one attacker in a cell is referred to as “Single-attacker” Problem. Attackers can 
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also be categorized as “External attacker” and “Internal attacker”. External 

attacker knows the set of linear system bMy  and the information that the cell 

values are non-negative.  Internal attacker knows the set of linear system 

bMy  and also the tighter bounds (lower and upper bounds) on cell values. In this 

paper, we concern ourselves with the problem of disclosure control with single 

internal attacker. 

Let A denote the tabular array 
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The tabular array A can be represented with the help of a vector a= ):( Iiai  , 

where a1 = a11, a2 = a12, a3 = a13 … are all non-negative integers and I is the set of 

all elements including internal, marginal and grand total, consisting of mn+m+n+1 

elements with the structure Ma=0, i.e.,   
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The vector a= ):( Iiai   satisfies the linear system My=b and contains some 

sensitive cells also. Let us denote the subset of sensitive cells by S. Let there be r 

sensitive cells each having one internal attacker denoted by ks (s= 1…r), where k 

denotes the set of attackers in different sensitive cells. Now suppose that by 
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observing the published pattern, attacker ks will compute the interval )...( ss k

s

k

s
yy , 

where sk

s
y  is the minimum and sk

s
y  is the maximum value of the interval. The 

sensitive cell s will be protected against the attacker ks if the interval computed by 

the attacker ks is wide enough. To decide whether the interval computed by the 

attacker ks is wide enough or not we need three parameters defined as follows:  

Upper protection level:        It is a number sk

sUPL  representing a desired lower 

bound for   

                                             s

k

s
ay s  . 

Lower protection level:        It is a number sk

sLPL  representing a desired lower 

bound for  

                                              sk

ss ya  . 

Sliding protection level:       It is a number sk

sSPL  representing a desired lower 

bound for  

                                             .ss k

s

k

s
yy   

The values of these parameters are provided by statistical offices for each 

sensitive cell and for each attacker ks. These values can also be defined by using 

common sense rule (see, Sande, 1984). Protection values are assumed to be 

unknown to the attacker. Let us assume that the attacker ks knows two bounds sk

ilb  

and sk

iub  such that )...( ss k

i

k

ii ublba   for each cell Ii . Thus the sensitive cells in 

the published table will be protected if,  

 

            ssssss k

i

k

s

k

sii

k

si

k

s

k

i ubyUPLaaLPLaylb  .                 (2.1) 

 

This protection level is obtained by satisfying the protection equations which 

are determined with the help of the attacker’s problem. Suppose the attacker is 

provided with the information that some values of the table are rounded to  a 

common rounding base b. Then the attacker’s problem becomes 

 



66 Neeraj Tiwari 

 

            j

i

iji byM    

                  bxybx iii                            (2.2) 

            ss k

ii

k

i ubylb   ,     Ii  

 

where j represents the number of equations ( j = 1,…,m+n+1 ) and ):( Iixi   is the 

published pattern. The attacker can compute the value of sk

s
y  and sk

s
y  by 

maximizing sk

s
y  and minimizing sk

s
y , respectively, subject to the constraints (2.2).                                                                                      

The published table will be protected if,  

 

           Maximize [ sk

s
y : (2.2) holds]  sk

sslu                                               (2.3) 

           Minimize [ sk

s
y : (2.2) holds]  sk

ssll                                                                   (2.4) 

          Maximize [ sk

s
y :(2.2) holds]-Minimize[ sk

s
y : (2.2) holds]  sk

sSPL ,  (2.5) 

 

where   sk

sslu  = as + sk

sUPL  and   sk

ssll = as - 
sk

sLPL . 

In order to solve the constraints (2.3)-(2.5), we convert these constraints into 

linear form, using duality theory in linear programming. Let us consider the dual 

variables
1

i ,
1

i ,
2

i ,
2

i and j associated  with  the inequalities sk

ii uby  , 

sk

ii lby  , bxy ii  , ii xby   and j

i

iji byM  , respectively. Thus the 

attacker’s problem  

 

Maximize [ sk

s
y : (2.2) holds]  

 

is equivalent to 

 

 Minimize )]()([
2121

bxlbbxubb ii

k

iiii

k

ii

ij

jj
ss              (2.6)  
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subject to the constraints 

                                                                                                                                    

1
2121

 
j

jjsssss M  ,    for all S         

0
2121

 
j

jjiiiii M  ,     for all non-sensitive cells 

           
1

i  0 

                 
2

i   0                                                                                         (2.7) 

           
1

i   0 

           
2

i   0 

           j  is unrestricted in sign. 

 

Now (2.3) can be written in simplified form as, 

 

            Maximize [ sk

s
y : (2.2) holds]  sk

sslu                                                            

        Minimize (2.6)  sk

sslu      :     all
1

i ,
2

i ,
1

i ,
2

i , j   satisfying (2.7) 
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where sk

iUB =  i

k

i aub s   and  sk

iLB  = ai - 
sk

ilb , 

for all
1

i ,
2

i ,
1

i ,
2

i , j  satisfying (2.7). 

 

Similarly (2.4) can be written in simplified form as,  
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         
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k

iiiii

k
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)([  sk

siii LPLabx  )](
2'

                 (2.9) 

for all  
1'

i ,
2'

i , 
1'

i ,
2'

i and 
'

j   satisfying the following constraints: 

 

1
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 

j

jjsssss M  ,   for all S  

            0
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j

jjiiiii M  ,   for all non-sensitive cells 

           
1'
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i   0                                                                                     (2.10) 

           
1'

i    0 

           
2'

i    0 

           
'

j  is unrestricted in sign. 

 

Similarly (2.5) reduces to,       
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(2.11)   

for all 
1

i ,
2

i ,
1

i ,
2

i , j  satisfying (2.7) and
1'

i ,
2'

i ,
1'

i ,
2'

i ,
'

j satisfying (2.10) 

 

The conditions obtained through (2.8), (2.9) and (2.11) ensure upper 

protection, lower protection and sliding protection, respectively. Solving (2.7) and 

(2.10), we obtain the values of the dual variables
1

i ,
2

i ,
1

i ,
2

i ,
1'

i ,
2'

i ,
1'

i and 

2'

i .  

3 The proposed methodology 

Let us assume that there are r sensitive cells in the given array. The x-values are 

assumed to be 1 for the sensitive cells and 0 for the others. Following the notations 

given in Section 2, we set the values of sk

iUB  , sk

iLB and the protection levels for 

the sensitive cells provided by statistical offices. After solving (2.7) and (2.10), we 
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obtain the dual values
1

i ,
2

i ,
1

i ,
2

i ,
1'

i ,
2'

i ,
1'

i and 
2'

i  for the sensitive cells. 

Putting these values in (2.8), (2.9) and (2.11), we get protection equation for  the 

sensitive cells.  

Now, we round the sensitive cells unbiasedly to base b. The rounding base b 

should be chosen in such a way that it is, as far as possible, a factor of the sum of 

the entries in the sensitive cells. However, if it is not possible to choose a 

rounding base, which is a factor of sum of the entries in sensitive cells, some other 

rounding base may be chosen. The advantage of taking the rounding base, a factor 

of the sum of entries of sensitive cells is that the sum of the rounded values of the 

sensitive cells will remain unaltered. From these sets of unbiasedly rounded 

values, we select the set which satisfy the simplified inequalities for upper, lower 

and sliding protection, i.e., (2.8), (2.9) and (2.11). If more than one set of 

unbiasedly rounded values satisfy the protection equations, we choose the set 

which has the minimum distortion between the rounded and the original values, 

i.e., 

    









i

ii ax
2/12

’             (3.1) 

where ai and xi represents the original and rounded values, respectively. The 

sensitive values in the table are then replaced by these unbiasedly rounded values. 

After replacing the sensitive cell values with the rounded values, the resultant 

table may not be additive. To make the table additive, some or the entire non-

sensitive cell values are then adjusted by as small an amount as possible. This is 

achieved with the help of the following model: 

 

                    Minimize 1
1 1

2


 

m

p

n

q pq

pq

a

x
z                                                 (3.2) 

Subject to the constraints 
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where xpq’s are adjusted non-sensitive integer cell values, X denotes the marginal 

total of row and column and G (= a..) is the grand total. The objective function z is 

in fact the directed distance D from apq to xpq, defined as, 

 

 D = D(apq, xpq) = E pqa  2]1[ 
pq

pq

a

x
 = 1

1 1

2


 

m

p

n

q pq

pq

a

x
            (3.4)

  

The distance measure D(apq, xpq) defined in (3.4) is similar to the χ
2
-statistic 

often employed in related problems and is also used by Cassel and Sarndal (1972) 

and Gabler (1987). Other distance measures are also discussed by Takeuchi, 

Yanai, and Mukherjee (1983). 

The solution obtained through the proposed procedure unbiasedly rounds the 

sensitive cells to base b while guaranteeing the protection requirements of the cells 

and also preserves the marginals through (3.2)-(3.3). 

4 Empirical results  

In what follows, we discuss some empirical examples to illustrate the proposed 

methodology and demonstrate its superiority by comparing it with the method 

given by Salazar (2005).  

  

Example 1: Consider the following one-dimensional population of 10 units 

borrowed from Fellegi (1975). 

 

 12   23   34   3   49   23   50   17   8   13 

Let the cell values a4 and a9 are sensitive. We set the values of sk

iUB  and sk

iLB  as  

 sk

iUB = ai     and sk

iLB = ai/2. 

Let the protection level for a4 provided by statistical office is 

 

       4

4

k
UPL = 2,    4

4

k
LPL = 1,   4

4

k
SPL = 5, 

for a9, the protection level is  

       9

9

k
UPL = 4,    9

9

k
LPL = 2,   9

9

k
SPL = 5,       

and b= 5. 

After solving (2.7) and (2.10), we get following values for a4:   
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1

4 = 0, 
2

4 = 1,
1

4 = 0,
2

4 = 0, 
1'

4 =0,
2'

4 =0,
1'

4 =0 and 
2'

4 =1 

and for a9, we get 

       
1

9 = 0, 
2

9 = 1,
1

9 = 0,
2

9 = 0, 
1'

9 =0,
2'

9 =0,
1'

9 =0 and 
2'

9 =1. 

Putting these values in (2.8), (2.9) and (2.11), we get protection equation for a4 as 

 (i) x4 +5-3 ≥ 2   x4 ≥ 0 

 (ii)  -x4 +5+3 ≥ 1   x4 ≤ 7 

and for a9, the protection equations are:  

 (i) x9 +5-8 ≥ 4   x9 ≥ 7 

 (ii)  -x9 +5+8 ≥ 2  x9 ≤ 11. 

Now we unbiasedly round above sensitive cell values and found that only the 

set (0, 10) of unbiasedly rounded cell values satisfies the protection equation. So 

we take this set and replace the original sensitive cell values by these unbiasedly 

rounded values. After substituting these rounded values, we observe that table is 

not additive. To make the table additive, we apply the model (3.2)-(3.3) and get 

following values corresponding to the cells of the given table:  

 

 12   23   34   0   50   23   50   17   10   13 

and z = 234.4737.   

Solving this example using the Salazar’s (2005) procedure, we get following 

values corresponding to the different cells of the table:  

 

 10   25   35   0   50   25   50   15   10   10   and z = -9. 

The deviation between the rounded and the original values of the table  using 

(3.1) comes out to be 3.74 for the proposed procedure whereas it turns out to be 

6.63 for the procedure suggested by Salazar (2005). Thus we see that the 

deviations is reasonably small for the proposed procedure. Moreover, the proposed 

procedure rounds the sensitive cells in such a way that the confidential information 

contained in the sensitive cells is protected against the single internal attacker and 

the marginal are also not disturbed. To make the table additive only one non-

sensitive cell (a5) has been disturbed and that also by 2.0408% only, while all 

other non-sensitive cell values are published in their original form. Using the 

procedure of Salazar (2005), as much as seven non-sensitive cells (a1, a2, a3, a5, 

a6, a8 and a10) have been disturbed. 
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Example 2: Consider following example taken from Cox (1995). 

 

 20 10 20 10 20 80 

 10 10 20 5 15 60 

 40 10 10 20 10 90 

 5 5 15 10 5 40 

 

 75 35 65 45 50 270 

 

Let the values a1, a9, a16 and a22 are sensitive. Let the protection levels for a1, 

a9 and a16 provided by the statistical office are: 

 

ik

iUPL = 7,    ik

iLPL = 5,   ik

iSPL = 14  for i = 1, 9 and 16   

and for a22, the protection levels are:  

22

22

k
UPL = 5,    22

22

k
LPL = 2,   22

22

k
SPL = 14. 

Now we solve (2.7) and (2.10) to find out the values of the dual variables 
1

i ,
2

i ,
1

i ,
2

i ,
1'

i ,
2'

i ,
1'

i  and 
2'

i  for all the sensitive cells. After solving (2.7) 

and (2.10), we put these values in (2.8), (2.9) and (2.11) and get only lower 

protection equation for the cell a1, given by, 

 

 (i) x1 ≤ 47.   

The equations to satisfy the upper protection requirement for the cell a1 could 

not be obtained. Since the values of the dual variables for all the other sensitive 

cells come out to be 0, we could not obtain any protection equation for all the 

other sensitive cells as well. This may be noted that if we cannot form any lower 

or upper protection equation for a particular sensitive cell , even then the sensitive 

cell may be protected. In such situations, we will have to check in the auditing 

phase whether the sensitive cell for which no protection equation could be 

obtained or only one protection equation (upper or lower) is obtained, is protected 

or not. Now we unbiasedly round these sensitive cell values taking b=14 and get 

the following sets of rounded values, which are protected and nearest to the set of 

original sensitive cell values:  

 

 (i)  (28,   14,   14,   14) 

 (ii) (14,   28,   14,   14) 

 (iii) (14,   14,   28,   14) 
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After replacing the original sensitive cell values by the above sets of rounded 

values and applying the model (3.2)-(3.3), we could not obtain the solution for the 

set (iii). Also the value of the objective function, which minimizes the distance 

between original and final table comes out to be 213.9713 and 209.7067 for the set 

(i) and (ii), respectively. Hence we select set (ii) of rounded values and get the 

following results: 

 

 14 12 18 13 23 80 

 9 8 28 4 11 60 

 47 10 8 14 11 90 

 5 5 11 14 5 40 

 

 75 35 65 45 50 270 

 

with z = 209.7067. For this problem, we could not obtain any protection equation 

for the sensitive cells a9, a16 and a22. Moreover, for the sensitive cell a1, the upper 

protection equation could not be obtained. Therefore, we verify whether these 

sensitive cells are protected or not. In auditing phase, we observe that all the 

sensitive cells are protected. 

We also solved this problem by the procedure of Salazar (2005) and obtained 

the following results: 

 

 14 14 28 14 14 84 

 14 14 14 0 14 56 

 42 0 14 14 14 84 

 0 0 14 14 14 42 

 

 70 28 70 42 56 266 

 

 with z = -68. 

Distortions in the final table obtained by the proposed procedure from the 

original table, using (3.1) is 16.43, whereas it is 28.53 using the Salazar’s 

procedure. Thus we conclude that using the proposed procedure we get smaller 

distortions for this problem also. 

In this problem, although we could not obtain any protection equations for the 

sensitive cells a9, a16 and a22, but the final table is still protected using the 
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proposed procedure. To make the table additive, only 12 non-sensitive cells are 

disturbed using the proposed procedure, whereas in the procedure of Salazar(2005) 

all the non-sensitive cells are disturbed and marginal are also not preserved.  

 

Example 3: Consider the following two way table: 

 

 200 40 50 200 120 610 

 20 70 60 100 120 370 

 40 90 250 100 30 510 

 100 150 30 80 150 510 

 

          360 350 390 480 420 2000 

 

Suppose that the cell values a1, a4, a10, a15, a19, a20 and a23 are sensitive. Let 

the protection levels provided by the statistical office for these sensitive cells are:  

For cells a4   

UPL = 20, LPL = 10, SPL = 15. 

For cells a10 and a19   

UPL = 10, LPL = 5, SPL = 15. 

For cells a15  

UPL = 25, LPL = 20, SPL = 15. 

And for cells a20 and a23   

UPL = 15, LPL = 7, SPL = 15. 

 

Now we solve (2.7) and (2.10) to find out the values of the dual variables 
1

i ,
2

i ,
1

i ,
2

i ,
1'

i ,
2'

i ,
1'

i  and 
2'

i  for all the sensitive cells. After solving (2.7) 

and (2.10), we substitute these values in (2.8), (2.9) and (2.11) and get the 

following protection equations: 

 (i) x4 ≤ 209, for the sensitive cell a4 to satisfy the lower protection  and 

sliding protection requirement and 

 (ii) x23 ≤ 154, for the sensitive cell a23 to satisfy the lower protection  and 

sliding protection requirement.  

We could not obtain the equations to satisfy the upper protection requirement 

for the cell a4 and a23. Since the values of the dual variables for all the other 
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sensitive cells come out to be 0, we could not obtain any protection equation for 

all the other sensitive cells. Now we unbiasedly round these sensitive cell values 

taking b = 19 and get the following sets of rounded values: 

 

 (i) (190, 114, 247, 95, 152, 152) 

 (ii) (190, 95, 247, 114, 152, 152) 

Both of these sets are equidistant from the set of original sensitive cell  values 

and satisfy the protection equations for a4 and a23. 

 

After replacing the original sensitive cell values by the above sets of rounded 

values and applying the model (2.12)-(2.13), we observe that the set (i) is nearer to 

the set of the original sensitive cell values as compared to set (ii). Thus we select 

set (i) and get the following results: 

 

 204 41 52 190 123 610 

 19 65 58 114 114 370 

 42 92 247 98 31 510 

 95 152 33 78 152 510 

 

          360 350 390 480 420 2000 

and z = 1056.654.  

Since in this problem we could not obtain the protection equation for some 

sensitive cells, so in auditing phase we have to check whether these cells are 

protected or not. In auditing phase, we observe that the sensitive cells a4 and a15 

could not satisfy the upper protection requirement, while all other cells are 

protected. 

Solving this problem by the procedure of Salazar (2005), we get the following 

results: 

 

 209 38 57 190 114 608 

 19 57 57 114 114 361 

 38 95 247 95 38 513 

 95 152 38 76 152 513 

 

          361 342 399 475 418 1995 

with z = -86. 
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Deviations of the final table obtained by the proposed procedure from the 

original table using (3.1) is 21.45 and that for the final table obtained by the 

procedure of Salazar is 34.99. Thus for this example also, the proposed procedure 

results with smaller loss of information as compared to the procedure of 

Salazar(2005). 

 

Example 4: We consider the following two-way table borrowed from Fischetti 

and Salazar (2003): 

 

 20 50 10 80 

 8 19 22 49 

 17 32 12 61 

  

          45 101 44 190 

   

Let the cell value a7 is sensitive. Let the protection levels provided by the 

statistical office for a7 is: 

 7

7

k
UPL = 7,    7

7

k
LPL = 5,   7

7

k
SPL = 5. 

Now we solve (2.7) and (2.10) to find out the values of the dual 

variables
1

i ,
2

i ,
1

i ,
2

i ,
1'

i ,
2'

i ,
1'

i  and 
2'

i  for the sensitive cell a7. After 

solving (2.7) and (2.10) all the values of the above dual variables comes out to be 

0, so we cannot form any protection equation for the sensitive cell a7. After 

applying rounding procedure with b= 5, we get the rounded value for a7 as 20. 

Now we put this value in place of the original sensitive cell value and apply the 

model (3.2)-(3.3). After applying the model, we get the following results: 

 

           20 49 11 80 

 9 20 20 49 

 16 32 13 61 

  

          45 101 44 190 

with z =  172.3245.  

In this problem also, we could not obtain the protection equation for the 

sensitive cell, so in auditing phase we have to check whether the sensitive cell is 

protected or not. In auditing phase, we observe that the sensitive cell a7 could not 
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satisfy the upper, lower and sliding protection requirements and hence we 

conclude that the cell  a7  is not protected against the single internal attacker. 

 We also solved this problem by the procedure of Salazar (2005) and get the 

following results: 

 

 20 50 15 85 

 10 20 20 50 

 20 30 10 60 

  

          50 100 45 195 

and z = -9. 

Using (3.1), the distortion obtained by the proposed procedure from the 

original table is 3.16, whereas it is 11.4 for the procedure of Salazar (2005). This 

result again displays the utility of the proposed procedure.  

5 Concluding remarks 

In this paper, using the technique of random rounding and quadratic programming, 

we introduce a new methodology for protecting the confidential information of 

tabular data with minimum loss of information. The tables obtained through the 

proposed method consist of unbiasedly rounded values, are additive and have 

specified level of confidentiality protection. Some numerical examples are also 

discussed to demonstrate the superiority of the proposed procedure over the 

existing procedures. One of the limitations of the proposed procedure is that the 

problem of disclosure control with single internal attacker is only discussed. If 

there are more than one internal attackers, the formation of the problem may 

become more complex. Three and more dimensional problems could also not be 

discussed. Moreover, as in the case of linear programming, there is no guarantee of 

convergence of a quadratic programming problem. Kuhn and Tucker (1951) have 

derived some necessary conditions for the optimum solution of a quadratic 

programming algorithm but no sufficient conditions exist for convergence. 

Therefore unless the Kuhn-Tucker conditions are satisfied in advance, there is no 

way of verifying whether a quadratic programming algorithm converges to an 

absolute (global) or relative (local) optimum. Also, there is no way to predict in 

advance that the solution of a quadratic programming problem exists or not.  
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