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Abstract

The minus partial order is already known for complex matrices and bounded
linear operators on Hilbert spaces. We extend this notion to Rickart rings,
and thus we generalize some well-known results.

Keywords: Rickart ring, minus partial order
2000 MSC: 16B99, 47A05

1. Introduction and motivation

Let A be a ring with the unit 1. If M ⊆ A, then the right annihilator of
M is denoted by M◦ = {x ∈ A : (∀m ∈M)mx = 0}, and the left annihilator
of M is denoted by ◦M = {x ∈ A : (∀m ∈ M)xm = 0}. M◦ is the right
ideal of A, and ◦M is a left ideal of A. Particularly, if a ∈ A and M = {a},
then we shortly use a◦ = {a}◦ and ◦a = ◦{a}.

The set of idempotents of A is denoted by A• = {p ∈ A : p2 = p}.
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Marovt )

1The authors are supported by the Ministry of Education, Science and Technological
Development of Serbia, under grant no. 174007.

2The author is supported by the Ministry of Science of Slovenia, under grant no. BI-
RS/12-13-001.

Preprint submitted to Journal of Mathematical Analysis and ApplicationsOctober 15, 2013

Pr
ep

ri
n

t 
se

ri
es

, I
M

FM
, I

S
S

N
 2

23
2-

20
94

, n
o.

 1
19

1,
 O

ct
ob

er
 1

6,
 2

01
3



A ring A is a Rickart ring, if for every a ∈ A there exist some p, q ∈ A•
such that a◦ = pA and ◦a = Aq. Note that if A is a Rickart ring, then A
has a unity element. The proof is similar to that used for Rickart *-rings [1].

Let H be a Hilbert space, L(H) the set of all bounded linear operators on
H, and letR(A) and N (A) denote the range and the null-space of A ∈ L(H).
If M ⊆ H, we will denote by M the norm-closure of M in H. For a finite
dimensional Hilbert space H Hartwig [3] defined a partial order in L(H) in
the following way:

A � B if and only if rank(B − A) = rank(B)− rank(A).

He also observed that there exists another equivalent definition of this order,
namely

A � B if and only if A−A = A−B and AA− = BA−,

where A− is a generalized inner inverse of A, i.e. AA−A = A. The partial
order � is thus usually called the minus partial order.

In [6] Šemrl extended the minus partial order in L(H) for an arbitrary
Hilbert space H. The notion of a rank of an operator (equivalently, a rank of
a finite complex matrix) can not be applied for bounded linear operators on
general Hilbert spaces. Moreover, A ∈ L(H) has a generalized inner inverse
if and only if its image is closed. Since Šemrl could not use the notion
of rank of an operator and since he did not want to restrict his attention
only to closed range operators, he found a new approach how to extend the
minus partial order. He introduced another equivalent definition of the minus
partial order: for A,B ∈ L(H), where H is a finite dimensional Hilbert space,
we have A � B if and only if there exist idempotent operators P,Q ∈ L(H)
such that R(P ) = R(A), N (Q) = N (A), PA = PB and AQ = BQ. Recall
that the range of an idempotent operator P ∈ L(H), where H can be a
general Hilbert space, is closed. Using the same equations, only adding the
closure on R(A) Šemrl extended the concept of the minus partial order in
L(H) for an arbitrary Hilbert space H:

Definition 1.1. Let H be a Hilbert space and let A,B ∈ L(H). Then A � B
if and only if there exists idempotents P,Q ∈ (L(H))• such that the following
hold:

(1) R(P ) = R(A);
(2) N (A) = N (Q);
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(3) PA = PB;
(4) AQ = BQ.

Šemrl proved that � is indeed a partial order in B(H). Moreover, it
is proved in [6] that Šemrl’s definition is a proper extension of Hartwig’s
definition of the minus partial order of matrices. Also, in [5], the minus
partial order is generalized on Banach space operators which have generalized
inverses.

We prove the following result, which allows us to consider the algebraic
version of the minus partial order. First, we need the following auxiliary
statement.

Lemma 1.2. Let H,K,L,N be Hilbert spaces, A1 ∈ L(H,L) and A2 ∈
L(K,L). Then the following statements are equivalent:

(1) For every B ∈ L(L,N) the following equivalence holds: (BA1 = 0
and BA2 = 0) if and only if B = 0;

(2) R(A1) +R(A2) = L.

Proof. (1) =⇒ (2): Suppose that R(A1) +R(A2) 6= L. Then there exists
a non-trivial closed subspace L1 of L, such that R(A1) +R(A2) ⊕ L1 = L.
Let B1 ∈ L(L1, N) be any non-zero bounded linear operator, and define
B ∈ L(L,N) as follows:

Bx =

{
0, x ∈ R(A1) +R(A2),

B1x, x ∈ L1.

Obviously, B 6= 0, BA1 = 0 and BA2 = 0.
(2) =⇒ (1): Obvious.

Definition 1.3. Let H be a Hilbert space and let A,B ∈ L(H). Then we
write A � B if and only if there exist idempotent operators P,Q ∈ L(H)
such that the following hold:

(1) ◦A = L(H) · (I − P );
(2) A◦ = (I −Q) · L(H);
(3) PA = PB;
(4) AQ = BQ.

Theorem 1.4. The minus partial order given by Definition 1.1 is on L(H)
equivalent to the order given by Definition 1.3.
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Proof. First, let us prove that Definition 1.1 implies Definition 1.3. Let �
be the order defined with Definition 1.1 and suppose A � B, A,B ∈ L(H).
Let P be a projection from H onto R(A) and let I −Q be a projection from
H onto N (A). This is the same choice of projections as in [6], so statements
(3) and (4) of this theorem hold.

Let D ∈ L(H). Then D(I − P )A = 0, since R(A) ⊂ R(P ) = N (I − P ).
Thus, L(H) · (I−P ) ⊂ ◦A. On the other hand, suppose that D ∈ ◦A. Then
DA = 0 and R(P ) ⊂ N (D) since N (D) is closed. Thus, N (P ∗) ⊃ R(D∗),
or equivalently R(I−P ∗) ⊃ R(D∗). By the Douglas theorem [2], there exists
some C ∈ L(H) such that D∗ = (I−P ∗)C, implying D = C∗(I−P ). Hence,
◦A = L(H) · (I − P ).

If D ∈ L(H), since R(I − Q) = N (A), we get A(I − Q)D = 0. Thus,
(I−Q) ·L(H) ⊂ A◦. On the other hand, let D ∈ A◦. Then R(D) ⊂ N (A) =
R(I−Q). Again, using the Douglas theorem [2], we conclude that there exists
some C ∈ L(H) such that D = (I−Q)C. It follows that A◦ = (I−Q) ·L(H).

Let us now prove that Definition 1.3 implies Definition 1.1. Suppose
A � B, A,B ∈ L(H), where � is the order defined with Definition 1.3.

From (1) we get (I − P )A = 0, so R(A) ⊂ N (I − P ) = R(P ), and
consequently R(A) ⊂ R(P ). Since H = R(P )⊕N (P ), every operator from
L(H) has a 2×2 matrix form with respect to this decomposition. Particularly,
from R(A) ⊂ R(P ) we obtain the following:

A =

[
A1 A2

0 0

]
:

[
R(P )
N (P )

]
→
[
R(P )
N (P )

]
.

Now we use the fact ◦A = L(H) · (I − P ). Notice that B ∈ L(H) · (I − P ) if
and only if B = B(I − P ). If

B =

[
B1 B2

B3 B4

]
:

[
R(P )
N (P )

]
→
[
R(P )
N (P )

]
,

then B = B(I − P ) is equivalent to B1 = 0 and B3 = 0. On the other hand,
BA = 0 if and only if [

B1A1 B1A2

B3A1 B3A2

]
= 0.

So we have the equivalence:

(B1A1 = 0, B1A2 = 0, B3A1 = 0, B3A2 = 0) ⇐⇒ (B1 = 0, B3 = 0).
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From Lemma 1.2 we know that R(A1) +R(A2) = R(P ). Since A1 and A2

act on different subspaces, we actually have R(A) = R(P ).
Now, from the condition (2) of this theorem, using the result we have just

proved, the following hold:

A◦ = (I −Q) · L(H) ⇐⇒ ◦(A∗) = L(H) · (I −Q∗) ⇐⇒ R(Q∗) = R(A∗)

⇐⇒ R(I −Q) = N (Q) = N (A).

Hence, A � B.

2. Results in rings

Previous Theorem 1.4 suggests the following definition of the minus par-
tial order. Since some preliminary results can be proved in a general setting,
we shall in this section use that A is a ring with the unit 1.

Definition 2.1. Let A be a ring with the unit 1, and let a, b ∈ A. Then we
write a � b if and only if there exists idempotents p, q ∈ A• such that the
following hold:

(1) ◦a = A(1− p);
(2) a◦ = (1− q)A;
(3) pa = pb;
(4) aq = bq.

We call � the minus partial order on A. In the next section we will prove
that when A is a Rickart ring, � is indeed a partial order.

Notice that from (1) we obtain (1− p)a = 0 so a = pa. Similarly, a = aq.
We need some auxiliary results.

Lemma 2.2. Let p, q ∈ A•. Then

(i) A(1− p) = ◦p;

(ii) (1− q)A = q◦.

Proof. We have A(1− p) ⊆ ◦p, since (1− p)p = 0. Suppose that for u ∈ A,
up = 0. Then u = u(1− p) ∈ A(1− p). The proof of (ii) is similar.

It follows that we can replace the conditions (1) and (2) of Definition 2.1
by the conditions ◦a = ◦p and a◦ = q◦ respectively.
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Lemma 2.3. Let p ∈ A• and a ∈ A. Then

(i) (◦p)◦ = pA;

(ii) ◦a = A(1− p)⇐⇒ (◦a)◦ = (◦p)◦.

Proof. (i): By Lemma 2.2,

(◦p)◦ = (A(1− p))◦ = {u ∈ A : (∀x ∈ A)x(1−p)u = 0} = {u ∈ A : (1−p)u = 0} = pA

(ii): The ”only if” part follows from Lemma 2.2. Now, suppose that
(◦a)◦ = (◦p)◦ i.e. (◦a)◦ = pA. Let u ∈ ◦a. As p ∈ pA = (◦a)◦ we have up = 0
so u = u(1− p) ∈ A(1− p). On the other hand, suppose that u ∈ A(1− p)
i.e. up = 0. As a ∈ (◦a)◦ = pA we have a = pa so ua = upa = 0.

In the same manner we obtain the following lemma.

Lemma 2.4. Let q ∈ A• and a ∈ A. Then

(i) ◦(q◦) = Aq;

(ii) a◦ = (1− q)A ⇐⇒ ◦(a◦) = ◦(q◦).

It follows that we can replace the conditions (1) and (2) of Definition 2.1
by the conditions (◦a)◦ = pA and ◦(a◦) = Aq respectively.

Our definition of order � is a proper extension of well known partial order
on the set of idempotents.

Theorem 2.5. Let a, b ∈ A•. Then a � b if and only if ab = ba = a.

Proof. Suppose that a, b ∈ A• and ab = ba = a. By Lemma 2.2 we have
◦a = A(1 − a), a◦ = (1 − a)A and by assumption aa = ab, aa = ba so
a � b. Now suppose that a � b. There exist p, q ∈ A• as in Definition 2.1 so
ab = (pa)b = (pb)b = pb = a and ba = b(aq) = b(bq) = bq = a.

Recall that von Neumann regular ring is a ring A such that for every
a ∈ A there exists an x ∈ A such that axa = a. The following theorem
shows that, when A is a von Neumann regular ring, � order coincides with
well known minus partial order which is defined by a ≤ b if there exists an
x ∈ A such that ax = bx and xa = xb where axa = a. Thus, the minus
partial order in von Neumann regular ring is defined in the same way as in
L(H) where H is a finite dimensional Hilbert space.
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Theorem 2.6. Suppose that A is a von Neumann regular ring with the unit
1 and let a, b ∈ A. Then a � b if and only if a ≤ b.

Proof. Suppose that a � b and let p, q ∈ A• be as in Definition 2.1. Since
A is von Neumann regular ring, there exists an x ∈ A such that axa = a.
Set y = qxp. We have aya = a(qxp)a = axa = a, ay = aqxp = bqxp = by,
ya = qxpa = qxpb = yb so a ≤ b.

Now suppose that a ≤ b. There exists an x ∈ A such that axa = a,
ax = bx, xa = xb. Set p = ax and q = xa. Then p ∈ A• and 1− p ∈ ◦a. On
the other hand if u ∈ ◦a then up = u(ax) = 0, so u = u(1−p), ◦a = A(1−p).
Moreover, pa = axa = axb = pb. Similarly, q ∈ A•, a◦ = (1− q)A, aq = bq,
so a � b.

Since we can not use decompositions of spaces induced by projections, we
have to use idempotents appropriately.

Remark 1. We say that equality 1 = e1+e2+ · · ·+en, where e1, e2, . . . , en ∈
A•, is a decomposition of the identity of the ring A if ei and ej are orthogonal
for i 6= j, i.e. eiej = 0 for i 6= j. Let 1 = e1 + · · ·+ en and 1 = f1 + · · ·+ fn
be two decompositions of the identity of a ring A. For any x ∈ A we have

x = 1 · x · 1 = (e1 + · · ·+ en)x(f1 + · · ·+ fn) =
n∑

i,j=1

eixfj,

and above sum defines a decomposition of A into a direct sum of groups:

A =
n⊕

i,j=1

eiAfj. (2.1)

It is convenient to write x as a matrix

x =

 x11 · · · x1n
...

. . .
...

xn1 · · · xnn


e×f

,

where xij = eixfj ∈ eiAfj.

If x = (xij)e×f and y = (yij)e×f , then it is obvious that x + y = (xij +
yij)e×f . Moreover, if 1 = g1 + · · · + gn is a decomposition of the identity
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of A and z = (zij)f×g, then, by the orthogonality of idempotents involved,

xz =
( n∑

k=1

xikzkj

)
e×g

. Thus, if we have decompositions of the identity of

A, then the usual algebraic operations in A can be interpreted as simple
operations between appropriate n× n matrices over A.

When ei = fi, i = 1, n, the decomposition (2.1) is known as the two-sided
Peirce decomposition of the ring A, [4]. When n = 2, e1 = p and f1 = q then
we write

x =

[
x11 x12

x21 x22

]
p×q

We prove the following result.

Theorem 2.7. Let A be a ring with the unit, and let a, b ∈ A. Then a � b
if and only if there exists idempotents p, q ∈ A• such that the following three
conditions hold:

(1) a =

[
a1 0
0 0

]
p×q

and b =

[
a1 0
0 b1

]
p×q

;

(2) If z ∈ Ap and za1 = 0, then z = 0;

(3) If z ∈ qA and a1z = 0, then z = 0.

Proof. Suppose that a � b and let p, q ∈ A• be corresponding idempotents.
As we have seen a = pa = aq = paq, so

a =

[
a1 0
0 0

]
p×q

.

Let

b =

[
b4 b2
b3 b1

]
p×q

.

From p(b− a) = 0 we get[
p 0
0 0

]
p×p

[
b4 − a1 b2

b3 b1

]
p×q

=

[
p(b4 − a1) pb2

0 0

]
p×q

= 0,

implying that p(b4 − a1) = 0 and pb2 = 0. Since pa1 = a1, pb4 = b4, and
pb2 = b2, we get a1 = b4 and b2 = 0. Analogously, from (b − a)q = 0 we get
b3 = 0. Thus, the statement (1) of this theorem is proved.
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In order to prove the statement (2), suppose that z ∈ Ap and za1 = 0.

Since a =

[
a1 0
0 0

]
p×q

we get za = 0, so z ∈ ◦a = A(1 − p) = ◦p, i.e.

z = zp = 0. The statement (3) can be proved proved in the same manner.
Now, we suppose that there exists idempotents p, q ∈ A• such that state-

ments (1) – (3) of this theorem hold. We immediately obtain

p(a−b) =

[
p 0
0 0

]
p×p

[
0 0
0 −b1

]
p×q

= 0 and (a−b)q =

[
0 0
0 −b1

]
p×q

[
q 0
0 0

]
q×q

= 0.

Now, we prove that ◦a = A(1− p). If y ∈ A(1− p), then y =

[
0 y2
0 y4

]
q×p

.

It is easy to see that ya = 0. Thus, we established A(1− p) ⊆ ◦a.

To prove the opposite inclusion, suppose that z ∈ ◦a. Then z =

[
z1 z2
z3 z4

]
q×p

and

0 = za =

[
z1a1 0
z3a1 0

]
q×q

.

We conclude z1a1 = z3a1 = 0. Since z1, z3 ∈ Ap, (2) shows that z1 = z3 = 0.

Thus, z =

[
0 z2
0 z4

]
q×p
∈ A(1− p). Hence, we proved ◦a ⊆ A(1− p).

In the same manner we can prove that a◦ = (1− q)A.

3. Minus partial order in Rickart rings

The idempotents in Definition 2.1 need not be unique. Write

LP(a) := {p ∈ A• : ◦a = A(1− p)},
RP(a) := {q ∈ A• : a◦ = (1− q)A}.

When A is Rickart ring then LP(a) and RP(a) are nonempty. Lemma 2.2
gives characterizations LP(a) = {p ∈ A• : ◦a = ◦p} and RP(a) = {q ∈ A• :
a◦ = q◦}.

Lemma 3.1. Let a ∈ A, p ∈ LP(a) and q ∈ RP(a). (Such idempotents exist
if A is a Rickart ring.) Then

(i) LP(a) =

{[
p p1
0 0

]
p×p

: p1 ∈ pA(1− p)

}
;

9
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(ii) RP(a) =

{[
q 0
q1 0

]
q×q

: q1 ∈ (1− q)Aq

}
.

Proof. From (1 − p)a = 0 = a(1 − q) we conclude that a =

[
a1 0
0 0

]
p×q

. If

p′ =

[
p p1
0 0

]
p×p

then p′2 = p′ and

(1− p′)a =

[
0 −p1
0 1− p

]
p×p

[
a1 0
0 0

]
p×q

= 0. (3.1)

It is easily seen that u =

[
u1 u2

u3 u4

]
p×p
∈ ◦a if and only if u1 = u3 = 0. From[

0 u2

0 u4

]
p×p

[
p p1
0 0

]
p×p

= 0 we conclude ◦a ⊆ ◦p′. Now, (3.1) and Lemma 2.2

give ◦a = A(1− p′), that is p′ ∈ LP(a).

Suppose now that p′ =

[
p2 p1
p3 p4

]
p×p
∈ LP(a). Then ◦p′ = ◦a = ◦p, so

0 = (1− p′)p =

[
p− p2 −p1
−p3 1− p− p4

]
p×p

[
p 0
0 0

]
p×p

=

[
p− p2 0
−p3 0

]
p×p

and hence p2 = p and p3 = 0. From ◦a ⊆ ◦p′ it follows

0 =

[
0 u2

0 u4

]
p×p

[
p p1
0 p4

]
p×p

=

[
0 u2p4
0 u4p4

]
p×p

,

so u4p4 = 0, for every u4 ∈ (1−p)A(1−p). Setting u4 = 1−p we get p4 = 0.
Thus, the statement (i) of the theorem is proved. In the same manner we
can prove the statement (ii).

Corollary 3.2. Let a, b ∈ A. Suppose that a � b and let p, q ∈ A• be
corresponding idempotents. Then

{p′ ∈ LP(a) : a = p′b} =

{[
p p1
0 0

]
p×p

: p1 ∈ pA(1− p), p1b1 = 0

}
(3.2)

{q′ ∈ RP(a) : a = bq′} =

{[
q 0
q1 0

]
q×q

: q1 ∈ (1− q)Aq, b1q1 = 0

}
,

where b1 is as in Theorem 2.7.
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Proof. We will prove only the equality (3.2); the proof of the other one is
analogous. Since a � b, Theorem 2.7 gives

a =

[
a1 0
0 0

]
p×q

, b =

[
a1 0
0 b1

]
p×q

.

If p′ belongs to the set on the right hand side of (3.2) then, by Lemma 3.1,
p′ ∈ LP(a). Also,

p′b =

[
p p1
0 0

]
p×p

[
a1 0
0 b1

]
p×q

=

[
a1 p1b1
0 0

]
p×q

=

[
a1 0
0 0

]
p×q

= a.

To prove the opposite inclusion, suppose that p′ ∈ LP(a) and a = p′b.

Lemma 3.1 leads to p =

[
p p1
0 0

]
p×p

. Now, a = p′b gives

[
a1 0
0 0

]
p×q

= a = p′b =

[
a1 p1b1
0 0

]
p×q

,

so p1b1 = 0.

However, to prove that � is actually a partial order, we need the assump-
tion that A is Rickart ring.

We now prove the main result of this section.

Theorem 3.3. Let A be a Rickart ring. Then � is a partial order in A.

Proof. Since A is a Rickart ring, for any a ∈ A there exist idempotents
p, q ∈ A•, such that ◦a = A(1− p) and a◦ = (1− q)A. Now the reflexivity of
� follows.

To prove the antisymmetry, suppose that a � b and b � a. Then

a =

[
a1 0
0 0

]
p×q

, b =

[
a1 0
0 b1

]
p×q

, (3.3)

and there exist r, s ∈ A• such that b = ra = as. Let r =

[
r1 r2
r3 r4

]
p×p

. We

have [
a1 0
0 b1

]
p×q

= b = ra =

[
r1a1 0
r3a1 0

]
p×q

,
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so b1 = 0 and hence a = b.
We have to show transitivity. Let a � b and b � c. Then there exist

idempotents p, q, r, s ∈ A• such that a and b have the matrix forms as in
(3.3), ◦a1 = ◦p, a◦1 = q◦ and ◦b = A(1 − r) = ◦r, b◦ = (1 − s)A = s◦,
b = rc = cs. Suppose that

r =

[
r1 r2
r3 r4

]
p×p

and c =

[
c1 c2
c3 c4

]
p×q

.

Since

0 = (1−r)b =

[
p− r1 −r2
−r3 1− p− r4

]
p×p

[
a1 0
0 b1

]
p×q

=

[
(p− r1)a1 −r2b1
−r3a1 (1− p− r4)b1

]
p×q

,

◦a1 = ◦p shows that 0 = (p− r1)p = p− r1 and 0 = r3p = r3. Also, r2b1 = 0.
From b = rc we conclude that[

a1 0
0 b1

]
p×q

=

[
p r2
0 r4

]
p×p

[
c1 c2
c3 c4

]
p×q

=

[
c1 + r2c3 c2 + r2c4

r4c3 r4c4

]
p×q

,

so
a1 = c1 + r2c3 and 0 = c2 + r2c4. (3.4)

Let p′ =

[
p r2
0 0

]
p×p

. From Corollary 3.2 it follows that

◦a = A(1− p′) and a = p′b. (3.5)

Since,

p′c =

[
c1 + r2c3 c2 + r2c4

0 0

]
p×q

,

(3.4) shows that
p′c = a. (3.6)

Similar consideration shows that if s =

[
s1 s2
s3 s4

]
q×q

than s1 = q, s2 = 0 and

that for q′ =

[
q 0
s3 0

]
q×q

we have

a◦ = (1− q′)A, a = bq′ = cq′. (3.7)

By definition, from (3.5)–(3.7) we obtain that a � c.
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Moreover, from the proof of Theorem 3.3 it follows that if a � b and
b � c then there exist common idempotents p′ and q′ showing that a � b and
a � c.

Theorem 3.4. Let A be a Rickart ring and a, b ∈ A. Then a � b if and
only if there exist decompositions of the identity of the ring A

1 = e1 + e2 + e3, 1 = f1 + f2 + f3

such that the following five conditions hold:

(1) a =

a1 0 0
0 0 0
0 0 0


e×f

and b =

a1 0 0
0 b1 0
0 0 0


e×f

;

(2) If z ∈ Ae1 and za1 = 0, then z = 0;

(3) If z ∈ f1A and a1z = 0, then z = 0;

(4) If z ∈ Ae2 and zb1 = 0, then z = 0;

(5) If z ∈ f2A and b1z = 0, then z = 0.

Proof. ”If” part follows from Theorem 2.7. Now, suppose that a � b. By
Theorem 2.7 we have

a =

[
a1 0
0 0

]
p×q

and b =

[
a1 0
0 b1

]
p×q

,

such that z = 0 whenever z ∈ Ap and za1 = 0, and z = 0 whenever
z ∈ qA and a1z = 0. A is a Rickart ring so there exist r, s ∈ A• such that
◦b1 = A(1 − r) = ◦r and b◦1 = (1 − s)A = s◦. Notice that pr = 0. Indeed,
since b1 ∈ (1 − p)A(1 − q), we have pb1 = 0 and therefore p ∈ ◦b1 = ◦r.
Let r′ := r − rp(1 − r) = r − rp = r(1 − p). We have r′ ∈ A• since
r′2 = (r−rp)(r−rp) = r−rp = r′. Our next claim is that ◦b1 = ◦r′. If ub1 = 0
then ur = 0 so ur′ = 0. On the other hand, (1− r′)b1 = (1− r + rp)rb1 = 0,
due to b1 = rb1. Thus

◦b1 = ◦r′ = A(1− r′). (3.8)

Next, pr = 0 implies pr′ = 0. Moreover, r′p = r(1 − p)p = 0. Set e1 = p,
e2 = r′, and e3 = 1 − p − r′. Then 1 = e1 + e2 + e3 is decomposition of the
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identity of the ring A and from (3.8) it follows that zb1 = 0 implies z = 0
when z ∈ Ae2.

Now, set f1 = q, f2 = (1 − q)s and f3 = 1 − f1 − f2. With similar
consideration we can show that 1 = f1 + f2 + f3 is the decomposition of the
identity of the ring A and that condition (5) of this theorem holds. Of course,
statements (2) and (3) are satisfied by Theorem 2.7 since e1 = p and f1 = q.
As ◦b1 = A(1 − r) and b◦1 = (1 − s)A we have e2bf2 = r(1 − p)b(1 − q)s =
rb1s = b1. The statement (1) is proved.

Note that the statements (1)–(5) of the previous theorem are equivalent
to

e1 ∈ LP(a), e2 ∈ LP(b− a), f1 ∈ RP(a), f2 ∈ RP(b− a).

Corollary 3.5. Suppose that A is a Rickart ring and a, b ∈ A. Then a � b
if and only if b− a � b.

We conclude this section with one more characterization of minus partial
order.

Theorem 3.6. Let A be a Rickart ring and a, b ∈ A. Then a � b if and
only if there exists idempotents e1 ∈ LP(a), e2 ∈ LP(b − a), f1 ∈ RP(a),
f2 ∈ RP(b− a) such that e1e2 = 0 and f2f1 = 0.

Proof. The ”only if” part follows from Theorem 3.4. In order to prove ”if”
part suppose that e1 ∈ LP(a), e2 ∈ LP(b − a) and e1e2 = 0. Then e1a = a
and e1b = e1a+e1(b−a) = a+e1e2(b−a) = a. Similarly, from f2f1 = 0 where
f1 ∈ RP(a), f2 ∈ RP(b−a) it follows that af1 = a and bf1 = af1+(b−a)f1 =
a + (b− a)f2f1 = a. By definition, a � b.

Under the notation of Theorem 3.4 it is easy to check that

e1 + e2 ∈ LP(b) and f1 + f2 ∈ RP(b).

Also, one can show

(e1 + e2)A = e1A⊕ e2A and A(f1 + f2) = Af1 ⊕Af2.

We have not proof for the opposite implication:
If there exist e1 ∈ LP(a), e2 ∈ LP(b − a), e3 ∈ LP(b), f1 ∈ RP(a),

f2 ∈ RP(b− a), f3 ∈ RP(b) and if

e3A = e1A⊕ e2A and Af3 = Af1 ⊕Af2,

then a � b. This can be suggested as an open problem.
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