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Abstract 

The ballistic curve is the solution of a system of nonlinear differential 
equations if the resistance of the air is assumed to be proportional to the 
square of the velocity. In Chapter 4. vol 4. of his lectures on mathematics 
Jurij Vega (1754-1802) presents a careful analysis of the problem. The 
underlying assumptions fmm physics are examined, and then differential 
equations are derived. There is no closedform solution but the equations 
can be transformed into simpler forms that are more amenable to finding 
approximate solutions. 
Vega suggests various numerical procedures. Perhaps the most original 
part is the use of a result that can be traced back to Eider's work on 
ballistics. The arvlength covered by the cannon ball can be expressed 
explicitly as a function of the angle of the trajectory at a given moment. 
Vega develops an ingenious way to discretize the differential equations 
and find a numerical solution. The comparison to numerical solutions 
obtained by computer using Runge-Kutta methods shows that Vega's 
method gives superb results. 
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Povzetek 

Balistična krivulja je rešitev sistemu nelinearnih diferencialnih enačb, če 
privzatnemo. ila je zračni upor sorazmeren kvadratu hitrosti. V Četrtem 
poglavju eetrte knjige svojih matematičnih predavanj Jurij Vega (1754 -
1802) predstavlja podmhno analizo problema. Razdelilne so osnovne 
fizikalne predpostavke, nato sta izpeljani diferencialni enačbi. Rešitev v 
sklenjeni obliki ni. vendar pa je enačbe mogoče pretvoriti v preprostejšo 
obliko, ki ji je lažje najti približne rešitve. 
Vega predlaga različne numerične postopke. Morda najbolj izvirna je 
uporaba rezultata, ki ga lahko zasledimo v Hitlerjevem delu na področju 
balistike. Dolžino loka. ki ga opiše topovska krogla, lahko izrazimo eks-
plicitno kot funkcijo kota, pod katerim se giblje krogla v danem trenutku. 
Vega razvije inovativen način, s katerim je mogoče diskretizirati diferen-
cialni enačbi in najti numerično rešitev. Primerjava z numeričnimi reši-
tvami. kijih pridobimo z računalnikom z uporabo metode Runge-Kutta, 
pokaže, da daje Vegova metoda izvrstne rezultate. 

1. Introduction 

The mathematician Jurij Vega 1754-1802 was a prolific mathematical writer. 
He is best known for his monumental work on logarithmic tables and his mili-
tary exploits. From the perspective of a mathematician, however, his lectures on 
mathematics that were published between 1782 and 1802 in four volumes are per-
haps even more important. Shortly after starting his teaching career at the imperial 
Artillery School in Vienna in 1782 Vega set out to write systematic and clear text-
books. They became an instant success and were reprinted many times over the 
following decades. See Vega's bibliography in [3]. It is interesting to note that the 
last edition of volume 2 was published in 1848. The informal style and carefully 
chosen examples are enjoyable to read even today. 

In this paper we examine Vega's work on the ballistic curve, which appears as 
Chapter 4 in the last volume of his lectures published first in 1800 and then again 
in 1819. The volume is dedicated to hydrostatics, the motion of fluids and to the 
motion of objects in fluids. In his treatment of ballistics Vega sets out with a careful 
examination of the physical assumptions about the resistance of the medium to the 
motion of an immersed object. He acknowledges that there is some disagreement 
about the exact magnitude of the force opposing the motion, but finally settles for 
the quadratic law. He limits his investigation to spherical bodies, and as experi-
mental evidence presents an experiment that was conducted at Newton's urging in 
London in 1710 and 1719. 

The most intriguing part is the treatment of the ballistic curve. The basic equa-
tions are readily derived from Newton's laws. They are then skillfully transformed 
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in such a way as to obtain a single differential equation. Vega correctly observes 
that there is no closed form solution and sets out to suggest various approxima-
tions. Perhaps the most surprising result is the derivation of an explicit formula for 
the arclength along the trajectory as a function of its slope. This result can be traced 
back to Euler's work on ballistics |2|. This analytic representation is then exploited 
to give a surprisingly accurate numerical procedure for finding the ballistic curve. 
One of the main aims of this paper is to translate the text into modern notation and 
to check the results from a modern viewpoint. Along the way it is necessary to un-
ravel older notation, bul once that is done the presentation is wonderfully clear, and. 
we dare say. better than many calculus textbooks used today. Vega also provides 
fully worked-out examples illustrating the solutions from a practical viewpoint. At 
the end we reproduce Vega's calculations and examine the accuracy of his approx-
imations using modern computers. 

2. Physical assumptions 

Vega's computations are based on the assumption that the force exerted by the 
resistance of the medium on a moving object is proportional to the square of its 
velocity. If the density of the medium is denoted by pa, the velocity by v and the 
cross-section by S, the force R is given as 

R=~kpaSv2l~ 

where v = |t7|. The proportionality factor k depends on the geometry of the moving 
body and is in general difficult to compute. In §117. however. Vega derives the 
explicit form of the resistance law for a moving ball. If the diameter of the ball is 
denoted by D. the force is given by 

R = -^-paD2 vv (2.1) 
lo 

In order to further simplify the formulae, the mass of the cannon ball is denoted by 
M. Clearly 

where /> is the mass density of the ball, and introducing the ratio N = />//>„ one 
gets 

M = JD*Npa. 

It follows that 
R 3 

— = cc. 
M SDN 

Introducing the parameter 

a = ^ DN (2.2) 
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which has the dimension of length, the force can finally be expressed as 

R 1 ^ 
— = - — v v . (2.3) 
M 2d 

It is interesting to note that Vega gives experimental evidence for the laws of 
resistance. First he solves the elementary differential equations describing the ve-
locity of a ball moving vertically under the inlluence of gravity. In equation (4.34) 
in [4] the distance x covered by the falling ball by the time t is given as 

/ l + /,-'"/« \ 
x = bt + 2ii log I I (2.4) 

where h is the notation for Euler's e and b is an abbreviation for 
m l4ga(N-l) 

N 
The calculations are then compared to data recorded in two experiments conducted 
at Newton's urging in London in 1710 and 1719. Balls were dropped from the 
dome of St. Paul's cathedral and the times it took them to reach the ground were 
recorded. In the first case glass balls were chosen and dropped from 220 feet. Vega 
computes the known height from the times using (2.4). Table 1 reproduces the 
results. 

Weight Diamet. Recorded Duration Computed 
of Ball of Ball of Fall Height 

Lon. Grain Lon.Inches Second. Tertia. Feet Inches 
510 5.1 8 12 226 11 
642 5.2 7 42 230 9 
599 5.1 7 42 227 10 
515 5.0 7 57 224 5 
483 5.0 8 12 225 5 
641 5.2 7 42 230 7 

T A B E L A / T A B L E 1 . Rezultati eksperimenta v Londonu iz leta 
1710 / The data from the 1710 experiment in London 

From the table it follows that the computed heights slightly overstate the height. 
In the second experiment, swine bladders were blown up in a wooden mold to give 
them the shape of a near perfect ball. The bladders were then dropped from 272 
feet. Table 2 gives the data in this case. 

In this second case the agreement between the computed and known height is 
more convincing except in the last case, which can most probably be attributed to 
measurement error. Vega offers no further comment on the experimental evidence 



3. VEGA'S DIFFERENTIAL EQUATIONS 399 

Weight Diarnct. Observed Duration Computed 
of Ball of Ball of Fall Height 
Grain Inch. Seconds Feet Inches 

128 5.28 19 271 11 
156 5.19 17 272 1.05 

137.5 5.3 18.5 272 7 
97.5 5.26 22 277 4 

99.125 5 21.125 282 0 

T A B E L A / T A B L E 2. Rezultati eksperimenta v Londonu iz leta 
1719/ The data from the 1719 experiment in London 

in his §164. It is quite likely that this was deliberate because such discrepancies 
would defeat the purpose of finding accurate numerical methods to approximate 
the solutions of subsequent equations. 

3. Vega's differential equations 

Having dealt with physical assumptions. Vega turns to ballistics. The simple 
cases of motion in a straight line are dealt with first. In particular all the differential 
equations for vertical fall taking into account the resistance of the medium and the 
buoyancy are carefully solved. Then section 4.3 turns to the main problem: the 
ballistic curve. It is assumed that a cannon ball with mass density p and diameter 
D is fired at an angle // and initial velocity v. The density of the air is denoted by 
pa- The problem is to find the trajectory of the cannon ball under the quadratic law 
of air resistance. A few simplifying assumptions are also made. The air is assumed 
to be homogenous and at rest, the buoyancy is assumed to have a negligible effect, 
and there is no correction for the rotation of the earth. The question is translated 
into mathematics by placing the cannon at the origin of a coordinate system. The 
trajectory will lie in a plane determined by the vector of the initial velocity. The x-
axis will represent the ground and the force G of gravity will point in the direction 
opposite to the (/-axis as G — —Mgj. where j = (0.1). The trajectory will be 
described by a vector function 

?=if(t) = (x(t),y(t)) 
of time. As before. M is the mass of the cannon ball and g is the gravity constant. 
By Newton's second law we obtain the equation: 

Mf = R + G. 

Dividing by the mass M, the equation becomes 

r = - — v v - g j . (3.1) hi 
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Taking into account that 

v = (;i\ y) and v = \/x2 + />-, 

and writing (3.1) componentwise, we obtain a system of differential equations 

1 . 
x _ -—vx (3.2) 

2d 
1 . 

y = ~ 7 r v y ~ a (3.3) 2d 
with the initial conditions 

x(0) = 0. //(()) = 0. ,r(0) = ccos/i, y(0) = csiu// . 

The system of differential equations (3.2) and (3.3) has a unique solution satisfying 
the initial conditions. The solution, however, cannot be expressed in closed form 
using elementary functions. Approximate solutions can be found, bul first the basic 
equations have to be transformed. 

From (3.2) and (3.3) one can easily derive the identity 

Let p be the slope of the trajectory at time t. We have 

dx x 
From (3.4) one obtains 

P-i- = ~(J- (3.5) 
Denote the arc length from the starting point () to the position at time I by 

.s = S(t) = I I>(T) (IT. 

From 

= \ / l + p2 and š = ~ = v 
ax df 

and taking into account (3.2) we obtain 

r—i—T d.s d.s (It vx 2ax 
y j l + p 2 = — = — — = — = — — • 

d.r at dx x2 .r2 

Multiplying the equations 
/: t 2ax 

V i + P 2 = rs - (3.6) xz 

(J 
P = ~ (3.7) x 

we obtain 

x / l T ^ / i = 2ag^ = -„,ryjL ^ . 
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In other words, the equation is 

>/1 + p~ dj) = -agd j . 

(3.8) 
Because 

dp _ dp d t _ P _ p& _ 9 
dx d/ dx x x2 x2' 

the differential equation can be rewritten as: 

y/l+p2dp = ad . (3.9) 

The initial conditions imply that 

p(0) = tan a and ^ ( 0 ) = —„ 9 , . (3.10) 
dx cz cos- /i 

One can. in principle, integrate the equation (3.9), but the resulting differential 
equation linking p and dp/dx is too cumbersome for further calculations. 

Vega suggests various approximations to the solution of the equation above. 
For small initial angles (Vega considers angles up to 15° to be small) one can argue 
that the term \r is small enough so that the term \J 1 + p2 in (3.9) can be ignored. 
Integrating the simplified equation 

dp = a d ^ ) (3.11) 

one obtains a nonhomogeneous first order linear differential equation 

/ d p , 9 \ p - tan/ i = a — + . 
\d . r c- cos- // J 

Rewriting as 
dyj d;r 

p - t a n n - j r ^ i a 

and using the initial conditions in (3.10). the solution is obtained as 

los ) = f • 
V r- cos- // / ° 

Rewriting again we find 
dy ay ag * 
— =p = tan/ i + — ^ -5 5—en. 
dx c- cos- // c- cos- // 

Because y(0) = 0, yet another integration gives Vega's approximation to the bal-
listic trajectory as 

y = (tan // + , x - . / ' 9 (e« - l ) . (3.13) 
\ cr cos- /i J c cos- // V / 
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An interesting question arising at this point is the quality of this approximation. 
Figure 1 shows the numerical solution of the system of equations (3.2) and (3.3) 
using the Runge-Kutta algorithm with step size 0.1 s (solid line) and the data // = 
15°, c = 400 m/s, and a = 800 m. The dashed line shows Vega's approximate 
trajectory. As is to be expected, Vega's approximation slightly overstates the range 
of the cannon. 

Numerical calculations show that the range of the cannon ball given the phys-
ical assumptions is 2.323.5 in. The highest elevation is 24(i m attained at x — 
1.437 m. Vega's range is 2,353.5 m with the highest elevation 249.3 m attained 
when x = 1,447 in. 

As an improvement to his first approximations - in particular, when the angles 
are not small - Vega suggests taking p = tan(///2) in equation (3.9). He argues 
that this quantity is approximately the average angle of the trajectory. The basic-
equation is 

which means that one only has to change the parameter a to u cos(/t/2) in all the 
calculations. 

In § 152 in [4] Vega sets out to calculate the range of a cannon from the charac-
teristics of the cannon ball, the angle, and the initial velocity. To this end one sets 
y = 0 in (3.13), which leads to the transcendental equation 

— t — = 1 -\ sin // cos p = 1 + - — sin2u. 
f "9 2ay ' 

For practical purposes Vega compiled a ballistic table giving the values of the func-
tion n i-*, (e" - 1 )/n for n ranging from 0.01 to 10.00 with step size 0.01. For 
purposes of interpolation, the table also gives the differences of subsequent entries. 
Taking n = x/a or n = x/(acos(p/2)), and using the table, one finds with a, p 
and c given the equation 

ew ~ 1 - , c2 en — 1 i r-2 sin 2// 
= 1 + - — sin 2/1. or = 1 H " 2ag n 2ag cos ^ 
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Once ii is found, the range is computed as x = na or x = na cos///2. 
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4. An alternative numerical procedure 

The equations (3.2) and (3.3) cannot be solved in closed form. Surprisingly, 
however, in § 173 in [4| Vega finds a simple expression for the arc-length as a func-
tion of the slope of the trajectory. Let p be the angle between the a.--axis and the 
tangent to the trajectory at a given point. Recall that p = tan</?. A simple calcula-
tion gives ds/d.r = yj 1 + p2 = 1/ cos</?, which leads to 

dp dy> d-,; d.s d tan p dp ds 1 d^ 
d.r d ^ d.s d.r dip ds d.r cos3 p ds 

Taking derivatives with respect to I on both sides and using (3.9) gives 

(4.1) 

cos * \ cos'1 p d.s J 

For convenience, introduce the function F as 
/ m ir\ ir 

< f < ~ . (4.2) ^ f * d l ? Si l l ^ 1 , (<p 7T\ 7T 
F(<P) = / — 3 ^ = - f - + - log tan 7 + t ) ' " o ./o cos v 2 cos- y> 2 \ 2 4 / 2 

Obviously. F(0) = 0, dF/dp = l / c o s 3 p and F(-p>) = -F(^). At the be-
ginning when s = 0 one has p = // and consequently the expression dp/dx = 
cl<^/(cos3 tpds) takes the value —fj/(r2 cos2 //)). Integrating, one obtains 

dt? a d^J <iq V + o , . (4.3) i: //( cos:1 i) cos3 p ds c- cos2 // 

Using the function F defined in (4.2). the equation can be written in simpler form 
as a first order nonhomogeneous linear differential equation 

F(tp) - F(n) = a— + d.s (•'- cosL // 

Rewriting as 
(IF 

ds = a-

and integrating, taking into account that s(p) = 0, one finally obtains 

• = 4*) = « " ™ ~ F ( "» ) - " K , s ( o t ) ' 

The last expression can be simplified to 

s(<p) = a log ( l + (F(/i) ~ F(<P))) • (4-4) 
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From this expression, the arelength to the highest point of the trajectory when <p = 
0 can easily be computed as 

Vega used this analytic result for an alternative approach to numerical calcula-
tion of the trajectory which does not rely on ignoring certain terms in the differential 
equations. He observed that the angle between the tangent to the trajectory and the 
z-axis will decrease steadily from the initial angle // to — n/2. The idea is to lirst 
choose an arithmetic progression of angles with small enough step size 

fj, = ip0 > <pi > ... > i ><Pk> ••• 

Denote the increments of the arelength between the subsequent angles by As/.: 

= s(<pk) - .s(^A-i), k = 1 .2 .3 . . . . 

Suppose that the segment of the trajectory between the angles ipk-i and <pk starts in 
7fc_i(xjfc_i,i/fc_i) and ends in Tk(xk,yk)- The distance between these two points 
is approximately A.s .̂. The smaller the step size A^a- = — Vfc-i between 
subsequent angles, the smaller will be the error of this approximation. See Figure 
2. 

The increments in the x and y directions defined as 

Axk = xk - st:jfc_i and Ayk = yk -

can be approximated quite accurately by 

= and A ^ . = ASfc sin ^ h z l + H \ 
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The position of the cannon ball when the angle is ip„ can be calculated as 
n n 

x = a n d y = Ayjfc-

fc=l fc=l 

As an example take // = 30°, c — 400 m/s, and a = 800 m. The dashed line 
in Figure 3 shows the approximate solution from Section 2. There is virtually no 
difference, however, between the numerical solutions obtained by Vega's second 
method and the solution obtained by the Runge-Kutta algorithm with step size 0.1. 
The agreement is amazing! 

m Stepsize 0.1 

Figure 3 

This time Vega's calculations give that the highest point on the trajectory is 
G72.G ID when x = 1,725 m and the range is 2.707 in. The approximate formulae 
from Section 2 would give the numbers 700.7 m at x = 1.791 m and the range 
2.808.5 m which overstates the cannon's capability. 

Just as the arc-length can be given explicitly as a function of the angle ip, it is 
also possible to give an explicit formula for the velocity of the ball as a function of 
the tangent angle p. Using the equation (3.8) one can express v2 as 

= G £ ) ( S ) = - 9 ( 1 + p 2 ) % = - ^ h 
d r 
dp" 

Substituting (4.1) for dx/dp it follows that 

(/ -i d.s q cos w 
v = '—— cos' <p — = ,. • 

cos- p dy r d« 

Taking into account (4.3) one linally gets 

v2 = v2(ip) = «!l 
c-os-V + 
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When \p — 0 we get the velocity at the highest point of the trajectory as 

o «// 
~~ Fhi) + " ' cr cos /< 

As a final example recall that 

2 /i i -V1-'' d x  
v = -g{i + p )~r = -9~r-d p (lv? 

This gives 

d.r = —v2(<p) dtp, 
9 

and from dy = (d///d.r) d.r = tailed./ ' 

dw = —~v2((p) tanujdw. 
9 

In principle one gets a parametric form of the ballistic curve by integration, c. f. 
[1]. 

x=x(<p) = ~~ r v2(d)dv, 
9 J ii 
1 / v 

y = y(ip) = — / v("d) tantfdtf . 
9 J ft 

The function v2{ip), however, cannot be integrated in an elementary way. 

Finally, let us consider the angle ip as a function of time. From da: = x d t = 
v cos,? d t = —(v2 /g) d ^ one obtains 

g cos v? 

Integrating, one obtains 

t - t m — i r u S L u . 
g.),, cos d 

Inverting (4.5) gives the angle as a function of time. Figure 4 shows the graph of 
the velocity v versus the angle <p as well as the individual components x and y 
of the velocity. The initial conditions are given as // = 30°, c = 400 m/s , and 
a = 800 m. 
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5. Conclusions 

Vega's work on the ballistic curve is a wonderful example of how he was able 
to combine theoretical work with practical considerations. He is careful with phys-
ical assumptions, even citing experiments to confirm the quadratic law of medium 
resistance. The elementary differential equations may have been standard in Vega's 
time. The work on the numerical aspects of the ballistic curve can accurately be 
described as genuine research even by today's standards. The discovery that the 
distance covered by the cannonball can be explicitly described as a function of 
the angle and the use of this fact to numerical ends is by no means obvious. The 
observation that one can use this analytic result for practical purposes is another 
wonderful observation that would amuse any numerical analyst today: discretizing 
over the angles avoids approximating the derivatives, which is known to be likely 
to cause numerical problems. 

lll/s /i = 30° 

- u 
A 
A 
\\ 
\ \ 
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