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Abstract

The high dimensionality of global gene expression profiles, where number of
variables (genes) is very large compared to the number of observations (samples),
presents challenges that affect generalizability and applicability of microarray anal-
ysis. Latent variable modeling offers a promising approach to deal with high-dimen-
sional microarray data. The latent variable model is based on a few latent variables
that capture most of the gene expression information. Here, we describe how to
accomplish a reduction in dimension by a latent variable methodology, which can
greatly reduce the number of features used to characterize microarray data. We
propose a general latent variable framework for prediction of predefined classes of
samples using gene expression profiles from microarray experiments. The frame-
work consists of (i) selection of smaller number of genes that are most differentially
expressed between samples, (ii) dimension reduction using hierarchical clustering,
where each cluster partition is identified as latent variable, (iii) discretization of gene
expression matrix, (iv) fitting the Rasch item response model for genes in each cluster
partition to estimate the expression of latent variable, and (v) construction of predic-
tion model with latent variables as covariates to study the relationship between latent
variables and phenotype. Two different microarray data sets are used to illustrate a
general framework of the approach. We show that the predictive performance of our
method is comparable to the current best approach based on an all-gene space. The
method is general and can be applied to the other high-dimensional data problems.

1 Introduction
With decoding of the human genome and other eukaryotic organisms molecular biology
has entered into a new era. High-throughput technologies, such as genomic microarrays
can be used to measure the expression levels of essentially all the genes within an entire
genome scale simultaneously in a single experiment and can provide information on gene
functions and transcriptional networks (Cordero, Botta, and Calogero, 2007). Microar-
ray experiments can lead to a better understanding of the genetic pathways involved in
phenotype variations and diagnosis of diseases and therefore better management.
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The gene expression data can be represented in a matrix notation. Columns are used
to represent p genes and rows are used to represent expression levels in n biological sam-
ples. From the statistical point of view a gene is a variable and a biological sample is
an observation (Roberts, 2008). The major challenge in microarray data analysis is due
to their size, where the number of variables p far exceeds the number of observations n,
commonly known as the large p, small n problem. This takes it difficult or even impossi-
ble to apply directly classical statistical methods and machine learning algorithms to the
analysis of microarray data. In such tasks, class prediction is quite different from typical
data mining problem, in which every class has a large number of examples (Mitchell,
1997). For example, in linear discriminant analysis, the covariance matrix is singular
when n < p (Hastie, Tibshirani, and Friedman, 2001). Another example is regression,
where n < p leads to ill-posed problem because the ordinary least squares solution is not
unique (Nguyen and Rocke, 2004). In practical applications the common problem with
large number of variables over few samples is over-fitting the data. That is, the predicted
model can fit the original data well, but may predict poorly for new data. The usual way
to handle the problem is to reduce the number of variables by using variable selection
methods or projecting them to their lower dimensions. Although statistical analysis deal-
ing with microarray data has been one of the most investigated areas, there are only a
few papers discussing this problem. As Fan and Li (2006) claimed, the high-dimensional
data analysis will be one of the most important research topics in statistics in the nearest
future.

There are two major ways to handle high-dimensional data in the classification frame-
work. The first approach is to eliminate redundant or irrelevant variables and select the
most informative subset of differentially expressed genes to improve the generalization
performance. The most commonly used procedures of gene selection are based on simple
statistical tests (e.g., fold change, t-test, ANOVA, etc.), which are calculated for all genes
individually, and genes with the best scores are selected for further processing (Jeffery,
Higgins, and Culhane, 2006). The advantages of this approach are its simplicity and inter-
pretability. The standard statistical methods are then applied on this small subset of genes.
In biostatistical literature, this approach is often denoted as variable selection or gene fil-
tering. An alternative approach to overcome the problem of dimensionality is application
of different multivariate techniques. Cluster analysis has become the most widely used
such technique (Do and Choi, 2008).

The aim of cluster analysis is to reveal latent structure and identify interesting patterns
in the underlying data. More formally, clustering is the process of grouping objects into
a set of disjoint groups or clusters, so that objects within a cluster have high similarity to
each other, while objects in separate clusters are more dissimilar (Everitt et al., 2001). In
terms of microarray data analysis clustering have been applied to organize gene expres-
sion data by grouping genes or samples with similar expression. Coexpressed genes are
grouped in clusters based on their expression profiles. Genes with similar expression pat-
terns might share biological function or might be under common regulatory control (Do
and Choi, 2008).

Class prediction is a crucial aspect of microarray studies and plays important role in
the interpretation of microarray data. With class prediction, the emphasis is on develop-
ing a classification function that enables one to predict the class membership of a new
sample based on its expression profile. Although cluster analysis is appropriate tool for
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exploratory data analysis and discovering patterns in gene expression data, it is not the
most suitable for class prediction (Simon, 2003). Since cluster analysis provides categor-
ical groupings on a nominal scale as output, it differs from other multivariate approaches
such as principal component analysis that is based on continuous variables (components)
and thus directly applicable in prediction modeling. However, hierarchical clustering
(HC) forms clusters in a hierarchical fashion resulting in a tree-like dendrogram, indicat-
ing which genes are grouped together at various levels of their similarity. Cluster analysis
does not provide statistically valid quantitative information about each cluster of genes,
suitable for numerical description and discrimination between clusters. More specifically,
there is no information about how much one cluster of genes differs from the other cluster
of genes on a continuous measurement scale.

The challenge now is the integration of such qualitative genomic information derived
from cluster analysis into prognostic models that can be applied in clinical settings to
improve the accuracy of class prediction in a disease understanding and management.
Latent variable modeling, especially item response theory (IRT) provides an appealing
framework for such task. By latent variable model we mean any statistical model that
relates a set of observer or manifest variables to set of latent variables (van der Linden and
Hambleton, 1996). It is assumed that the responses on the manifest variables are the result
of an individual’s position on the latent variable. The conceptual framework on latent
variable modeling originates from psychometrics, starting at the beginning of the 20th
century (Fischer and Molenaar, 1995). Utility of these models in biomedical research has
only quite recently been recognized (Rabe-Hesketh and Skrondal, 2008). Here, we use
HC to describe individual genes in terms of a small number of latent variables. Samples
can then be analyzed by summarizing their gene expression patterns in terms of expression
patterns of the latent variables. These latent variables provide for dimension reduction and
summarize patterns of covariation among the original genes. We assumed that genes with
similar expression (i.e., genes in the same cluster) determine one latent variable, and that
the item response model can be used to estimate the value of this latent variable.

Our main objective was to extract several latent variables associated with each mi-
croarray data set. Next, we were interested in constructing prediction models to evaluate
the discrimination power of the latent variables for observed phenotypes. We examined
the class prediction model both in the settings with latent variables and when no latent re-
duction of data was used. To make our evaluation more relevant to practice, the validation
of the approach was performed on two different microarray data sets.

2 Methods
In this section we explained the microarray data sets used and the proposed method. The
whole algorithm comprises six main steps: (i) preprocessing of the microarray data of
p genes and n samples and selection of smaller number of genes ps that are most dif-
ferentially expressed between samples; (ii) dimension reduction using cluster analysis to
cluster ps genes into c clusters, which can be identified as latent variables; (iii) discretiza-
tion of the gene expression matrix ps× n into binary variables; (iv) fitting the Rasch item
response model for genes in each of the ci cluster respectively to estimate the expression
of latent variable; (v) construction of prediction model with latent variables as covariates
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to study the relationship between latent variables and corresponding phenotype.

2.1 Data sets and preprocessing

In order to test the applicability of our method for microarray data in general and to
benchmark our approach, two different data sets have been used in our experiments. All
data sets were selected from publicly available microarray data.

The first data set analyzes the expression profiles of bone marrow or peripheral blood
obtained from acute leukaemia patients and contains probes for 3051 genes on Affymetrix
platform (Golub et al., 1999). The data set in publicly available as a part of Bioconductor’s
multtest package. In the original publication the patients are divided into training and test
set; only the training set of 38 samples was used in our experiment. Samples correspond
to two different types of leukaemia: acute lymphoblastic (ALL; 27 patients) and myeloid
leukaemia (AML; 11 patients). Although the separation between the two conditions is
more pronounced that in most other public available microarray experiments, this data set
can still be considered as a benchmark. The ALL/AML data set has been extensively used
by other scientists for testing different methods of analysis.

The second study examines global changes in gene expression in the blood samples
of Huntington’s disease patients, compared with normal controls. The data set is pub-
licly available from NCBI GEO repository (GSE1751; Barrett et al., 2007). The data set
contains expression profiles for more than 33,000 of the best characterized human genes,
measured using Affymetrix technology. In total, global gene expression profiles of 12
symptomatic Huntington’s disease patients, 5 presymptomatic individuals carrying the
Huntington’s disease mutation, and 14 healthy controls are available. Due to uncertain
phenotype state, presymptomatic samples were omitted from further processing. This re-
sulted in a data set containing 26 samples. Further information describing this data set is
available in Borovecki et al. (2005).

The raw gene expression profiles were log transformed (log10) to stabilize the variance
and adjust the extremes, and standardized. In the microarray analysis it is not expected
that all the genes are expressed at the biologically meaningful levels. Because of a large
number of genes measures, many genes in the original data set are irrelevant to the anal-
ysis. Therefore, we used rank product (RP), a nonparametric method, which is based on
calculating rank products to identify most differentially expressed genes (Breitling et al.,
2004). RP provides a powerful test statistic for defining differentially expressed genes in
microarray experiment, because it does not depend on an estimate of the gene-specific
measurement variance and is therefore particularly powerful when only a small number
of samples are available, as is in our case. For ALL/AML data set we than selected 50
genes that are mostly overexpressed in ALL, and 50 genes that are mostly overexpressed
in AML samples. Similarly, we extracted 50 genes that are mostly overexpressed in
Huntington’s disease patients and 50 genes that are mostly overexpressed in healthy con-
trols. After data preparatory steps both data sets contain 100 most differentially expressed
genes. The choice to use only 100 most informative genes in the predictor set was totally
arbitrary. The number was seemed likely to be large enough to be robust against noise,
and was small enough to be applied for demonstration purposes.
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2.2 Hierarchical clustering
Among variety of algorithms available for clustering microarray data we choose HC to
detect similarity relationships in gene expression, because it was the simplest method that
provided a partition of our data into clusters. Moreover, HC is a widely used method to
group genes sharing similar expression levels under different experimental conditions in
microarray experiments (Do and Choi, 2008). Two key steps are involved in HC analysis.
The first is the measurement of the object dissimilarity, and the second is to group the
objects based upon the resulted distances. The final result of the algorithm is a binary tree
of clusters called a dendrogram, which shows how the clusters are related to each other.
Different aggregation methods can be used for the construction of the dendogram gener-
ally leading to different tree topologies and to various cluster definitions. In this study we
used Euclidean distance as a measure of similarity between variables and Ward’s mini-
mum variance algorithm to group genes into clusters. The Euclidean distance between a
pair of variables X = (x1, x2, . . . , xn) and Y = (y1, y2, . . . , yn) is defined as

d(X, Y ) =

√√√√ n∑
i=1

(xi − yi)2. (2.1)

The dissimilarity matrix was used as an input in the Ward clustering algorithm (Ward,
1963). Empirical studies have shown that Ward’s method is widely used for clustering
microarray data (Belacel, Wang, and Cuperlovic-Culf, 2006). It is based on the consec-
utive merger of two groups into a new group. Since we performed our analysis on the
basis of dissimilarity matrix, the Ward clustering algorithm computes the distance be-
tween groups according to Lance-Williams recurrence formula. We refer the reader to
Everitt et al. (2001) for details.

The key parameter to determine in proposed approach is the number of clusters c.
Parameter c can be obtained by cutting the dendrogram at a certain level to obtain the
desired number of clusters. There is no standard algorithm for choosing a cut-off point for
dendrogram. The choice is often made by visual inspection. The value of this parameter
was selected in the range of c = 2, 3, 4, 5 for both experiments. If this value is selected
too high, to our experiences the biological meaning of the latent variables is difficult to
assign.

2.3 Discretization
The gene expression values obtained from microarray experiment are continuous real
numbers. To apply the proposed item response model to the microarray data, gene ex-
pression levels need to be binarized. In order to represent microarray data in a binary
relation, discretization of the continuous gene expression values into a finite set of values
is required. Intuitively, we would like to discretize the gene expression values in such a
way that two close values share the same attribute.

Among available algorithms for discretizing continuous variable we used equal fre-
quency discretization (EFD) in our application (Dougherty, Kohavi, and Sahami, 1995).
EFD divides the range of observed continuous values for a variable into k bins so that
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each bin contains n/k (possibly duplicated) adjacent values. k is a user-supplied param-
eter. In our settings the Rasch model requires binary discretization, so we set k = 2. To
denote gene expression levels, we use two discrete values, 0 and 1, ranging from low to
high expression levels.

2.4 Item response model

The Rasch model, sometimes referred to as the one parameter logistic model (1PL), is a
simple latent variable model where binary responses on each of J items are related to a
single continuous latent variable U , which is assumed to have the same effect on all item
responses (van der Linden and Hambleton, 1996). In terms of latent trait theory, we can
define each gene in a latent variable as an item, and each biological sample as a person.
In this manner the expression level is defined as the response of a given biological sample
to a given gene.

For a given sample, using expression profiles of genes in a given cluster, we estimated
the expression of a latent variable by fitting a Rasch model. Assume that we have I
observed variables and J samples. In this setting, the observed variables are genes. Uij

represents the continuous unobserved expression of the sample j. The response of sample
j to the gene i is Uij = 1 if gene expression level in sample j is high and Uij = 0 if gene
expression level in sample j is low. The Rasch model predicts the probability of high
gene expression level for sample j on gene i (i.e., P (Uij = 1)), as follows:

P (Uij = 1|θ) =
1

1 + exp{−(θ − δi)}
(2.2)

for i = 1, . . . , I , and j = 1, . . . , J , where θ is the sample parameter that expresses
the latent variable of the sample j that is measured by the I genes. δi is the gene-specific
parameter, which expresses the attractiveness of the gene i. Genes with large values of
δi have lower proportions of samples with high gene expression responses. The gene
parameters can be estimated based on the conditional likelihood. Details on the condi-
tional likelihood estimation of the item parameters can be found in van der Linden and
Hambleton (1996).

The final step of the item response modeling is to derive latent scores from the gene
responses for each sample. Latent scores are summary measures of the posterior distribu-
tion p(zj|uj), where zj denotes the vector of latent scores and uj the vector of manifest
gene responses (van der Linden and Hambleton, 1996). Latent scores are usually calcu-
lated as the mode of the posterior distribution for each sample:

ẑj = argmax
z
{p(xj|zj; θ)p(zj)}. (2.3)

Latent scores are then be used as predictor variables for latent variables in machine
learning setup.
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2.5 Predictive modeling
To provide a basis for predictive modeling (i.e., for discriminating between patients with
ALL/AML and between patients with Huntington’s disease and healthy controls), we
used two popular machine learning algorithms, namely support vector machines (SVM)
classifier and decision trees (DT).

SVM classifier is a very popular machine learning technique (Noble, 2006). SVM has
shown excellent empirical performance on many classification problems across different
domains. As suggested by a large body of literature to date, SVM can be considered
‘best of class’ algorithms for classification of microarray data (Wu et al., 2007). SVM
provide a framework for supervised learning which is robust against overfitting and ca-
pable of handling non-separable cases. A SVM model creates a separating hyperplane, a
higher-dimensional generalization, so that it optimally discriminates between two classes.
During a minimization procedure, the hyperplane is tuned so that the SVM model gen-
eralization error is minimized, thus achieving an optimal solution to the classification
problem (Vapnik, 1999). The proposed prediction method was implemented using Lib-
SVM library2. SVM require only a small number of labeled training data as input. This
training data is than used to learn parameters of the categorization model. In the validation
phase, the effectiveness of the model is tested on previously unseen examples.

DT is the most popular inductive learning algorithm (Mitchell, 1997). The nodes of
the tree correspond to attribute tests, the links to attribute values and the leaves to the
classes. To induce a DT, the most important attribute is selected and placed at the root;
one branch is made for each possible attribute value. The process is repeated recursively
for each subset until all instances at a node have the same classification, in which case
a leaf is created. To prevent over-training DT are typically pruned. DT are interesting
because we can see what features were selected for the top levels of the trees. In our
application we use Quinlans C4.5 algorithm (Quinlan, 1993) to generate decision trees.

2.6 Classification performance evaluation metrics
To substantiate the generalizability of the prediction models based on machine learning
algorithms, a statistical validation of classifiers is necessary. We used several classifi-
cation performance metrics. Predictive accuracy (Acc) is the overall correctness of the
prediction and was calculated as the sum of correct classifications (TP and TN) divided
by the total number of classifications (TP + FP + FN + TN). In this formula, TP is the
number of true positives (correctly predicted as positive samples); FP denotes the number
of false positives (incorrectly predicted as positive samples); FN refers to the number of
false negatives (incorrectly predicted as negative samples), and TN is the number of true
negatives (correctly predicted as negative samples).

Besides prediction accuracy, the performance measures of sensitivity and specificity
were used to evaluate the results of the classification algorithm. Sensitivity (Sen) and
specificity (Spe) were calculated as:

Sen =
TP

TP + FN
and Spe =

TN
TN + FP

. (2.4)

2http://www.csie.ntu.edu.tw/∼cjlin/libsvm/
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Note that neither sensitivity nor specificity, took individually, constitute an exhaustive
measure. A single value that summarizes both measures into a better one is Matthews
correlation coefficient (MCC), which is also known as phi coefficient. It can be computed
as follows:

MCC =
(TP× TN)− (FP× FN)√

(TP + FP)× (TP + FN)× (TN + FP)× (TN + FN)
. (2.5)

The range of Acc, Sen, and Spe measures falls between 0 and 1, with 1 indicating the
best quality of the classifier. A MCC of +1 represents a perfect prediction, 0 an average
random prediction, and −1 an inverse prediction.

We used 10-fold cross-validation to evaluate the performance of the classifiers. Cross-
validation is especially attractive in applications with relatively limited amounts of data
as all observations are used as both training and test data. Cross-validation is a commonly
used procedure for evaluating the quality of statistical models. In brief, in 10-fold cross-
validations, the available data are partitioned into 10 disjoint subsets of approximately
equal size. A set of 10 classifiers is then constructed; each classifier is trained on a differ-
ent combination of 9 subsets and tested on the remaining subset. In order to qualify and
compare the performance of each classifier, we calculated accuracy, precision, and recall
measure. Values of evaluation measures were averaged over runs for further reporting.
The average test performance of the 10 classifiers generally provides a good estimate of
the generalization performance of a single classifier trained on the entire data set.

2.7 Statistical comparison among classifiers
When comparing two classifiers, it is important to assess whether the observed differ-
ence in classification performance is statistically significant or simply due to chance. We
assessed significance of differences in classification performance using McNemar’s test
(Dietterich, 1998). We constructed the contingency table assuming there are two classi-
fiers A and B, where n11 is the frequency of cases misclassified by both classifiers; n21

is the frequency of cases misclassified by classifier B but not A; n12 is the frequency of
cases misclassified by algorithm A but not B; n22 are correctly classified cases by both
classifiers. McNemar’s test statistics (z0) is computed as follows:

z0 =
n21 − n12√
n21 + n12

. (2.6)

Square of McNemar’s statistics (z2
0) follows chi-square distribution with 1 degree-of-

freedom. The null hypothesis assumes that the performance of two different classifiers is
the same (i.e., n12 = n21). We also calculate corresponding p-value. Small p-value sug-
gest that null hypothesis is unlikely to be true, therefore we may reject the null hypothesis
if the probability that z2

0 ≥ 3.84 is less than 0.05.

2.8 Software
The computations were carried out in the R software environment for statistical comput-
ing and graphics (R Development Core Team, 2008). HC was performed using generic
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Figure 1: Dendrogram visualization of hierarchical clustering on selected genes for Golub
data set.

hclust function. Discretization of numerical gene expression values according to equal
width heuristics was performed by disc function in minet package. For latent variable
modeling the bundle of functions in ltm package was used. Rasch parameters were es-
timated by conditional maximum likelihood algorithm. RWeka, an interface to Weka
machine learning suite (Witten and Frank, 2005), was used for building SVM classifier.
We used SVM implementation in the LibSVM software library with polynomial kernel.
For all other parameters of the SVM algorithm, the default values set in Weka were used.
For decision trees modeling we used C4.5 learning scheme implemented as J48 class in
Weka. Statistical evaluation was done using mcnemar.test function in R.

3 Results
In this section, we report the results from two experiments that study the usefulness of the
latent variable approach to predict disease status. First, we examined the cluster solution
of HC in order to define appropriate set of latent variables. Next, we examined the clas-
sification performance over two prediction models (SVM and DT) where latent variables
were used as predictors. For meaningful and well-grounded evaluation, we directly com-
pared the classification results based on latent variable approach to classical approach,
where full data set (all-genes model), without latent variable induction, was used.

The visualizations of the HC for both data sets are presented in Figure 1 and Figure 2.
When performing HC, we needed to define threshold (i.e., appropriate height) to cut the
tree of clusters into individual clusters on the dendrogram, which determines the number
of clusters. However, due to exploratory orientation of our study, we decided to examine
the behaviour of classification performance by setting the number of clusters c = 2, 3, 4, 5,
respectively. This is very important, because we were interested in how the number of
clusters, could influence the results.
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Figure 2: Dendrogram visualization of hierarchical clustering on selected genes for
Huntington’s disease data set.

Table 1: Mean values and 95% confidence intervals of estimated latent variable scores for
Golub data set.

ALL AML
Model LV M CIl CIu M CIl CIu p
1 A −0.41 −0.60 −0.21 1.46 1.15 1.78 < 0.01

B 0.34 0.17 0.50 −1.43 −1.63 −1.23 < 0.01
2 A −0.41 −0.60 −0.21 1.46 1.15 1.78 < 0.01

B 0.42 0.25 0.59 −1.40 −1.60 −1.19 < 0.01
C 0.37 0.17 0.58 −0.96 −1.13 −0.79 < 0.01

3 A −0.47 −0.65 −0.29 1.30 0.99 1.60 < 0.01
B −0.41 −0.64 −0.18 1.09 0.80 1.38 < 0.01
C 0.42 0.25 0.59 −1.40 −1.60 −1.19 < 0.01
D 0.37 0.17 0.58 −0.96 −1.13 −0.79 < 0.01

4 A −0.47 −0.65 −0.29 1.30 0.99 1.60 < 0.01
B −0.41 −0.64 −0.18 1.09 0.80 1.38 < 0.01
C −0.07 −0.30 0.16 −0.83 −0.99 −0.68 < 0.01
D 0.58 0.41 0.75 −1.27 −1.47 −1.06 < 0.01
E 0.37 0.17 0.58 −0.96 −1.13 −0.79 < 0.01

Legend: ALL - acute lymphoblastic leukaemia; AML - acute myeloid leukaemia; LV - latent variable; M -
Mean latent score; CIl - lower confidence limit; CIu - upper confidence limit; p - level of statistical

significance of the Welch t-test.
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Table 2: Mean values and 95% confidence intervals of estimated latent variable scores for
Huntington’s disease data set.

HD Ctrl
Model LV M CIl CIu M CIl CIu p
1 A 0.18 −0.14 0.50 −0.15 −0.35 0.05 0.10

B 0.14 −0.27 0.56 −0.12 −0.35 0.11 0.29
2 A −0.52 −0.75 −0.29 0.44 0.15 0.74 < 0.01

B 0.14 −0.27 0.56 −0.12 −0.35 0.11 0.29
C 0.64 0.25 1.03 −0.55 −0.73 −0.37 < 0.01

3 A −0.52 −0.75 −0.29 0.44 0.15 0.74 < 0.01
B 0.18 −0.22 0.57 −0.15 −0.65 0.34 0.32
C 0.64 0.25 1.03 −0.55 −0.73 −0.37 < 0.01
D 0.02 −0.46 0.50 0.03 −0.45 0.51 0.98

4 A −0.52 −0.75 −0.29 0.44 0.15 0.74 < 0.01
B 0.18 −0.22 0.57 −0.15 −0.65 0.34 0.32
C −0.02 −0.06 0.03 0.02 −0.02 0.05 0.25
D 0.85 0.58 1.12 −0.72 −0.89 −0.55 < 0.01
E 0.02 −0.46 0.50 0.03 −0.45 0.51 0.98

Legend: HD - Huntington’s disease; Ctrl - control group; LV - latent variable; M - Mean latent score; CIl -
lower confidence limit; CIu - upper confidence limit; p - level of statistical significance of the Welch t-test.

Next, we fit the Rasch model for a set of genes in each of the c clusters respectively.
Table 1 and Table 2 summarized descriptive statistics of estimated latent variable scores
for different number of extracted latent variables for each data set. In all experimental
settings, the latent variables concerning different clusters were not statistically signifi-
cant correlated. To indicate the differences between experimental conditions the results
are presented separately for each experimental group. The Welch t-test was computed
to compare mean latent scores between experimental conditions within a given latent
variable. In the case of Golub data set all latent variables showed statistical significant
differences between ALL and AML type of disease. On the other hand, the differences
on Huntington’s disease data set are less discriminative. Only two latent variables (A and
C) indicate statistically significant differences between patients with Huntington’s disease
and healthy controls.

The evaluated scores on latent variables were used as predictors in the machine learn-
ing setup. The output of the prediction model is a list of predicted classes for all the
samples. The comparison of our method with two classifiers with respect to the classifi-
cation accuracy, sensitivity, specificity, and MCC is summarized in Table 3 and Table 4.
For each parameter calculation, 10 runs were performed and the averages were calculated.

SVM were able to classify the ALL/AML data without loss of performance. Accord-
ing to classification results the optimal number of latent variables was found to be c = 2
since it gave the highest classification performances while retaining the simplicity of the
solution. Overall classification results based on DT modeling are lower in comparison to
SVM results.
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Table 3: Classification results for Golub data set.

SVM DT
c c

2 3 4 5 Full 2 3 4 5 Full
Acc 1.00 1.00 1.00 1.00 1.00 0.97 0.97 0.97 0.97 0.95
Sen 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.96
Spe 1.00 1.00 1.00 1.00 1.00 0.91 0.91 0.91 0.91 0.91
MCC 1.00 1.00 1.00 1.00 1.00 0.94 0.94 0.94 0.94 0.87

Legend: SVM - support vector machines; DT - decision trees; c - number of latent variables in prediction
model; Full - predictor model with all selected genes; Acc - accuracy; Sen - sensitivity; Spe - specificity;

MCC - Matthews correlation coefficient.

Table 4: Classification results for Huntington’s disease data set.

SVM DT
c c

2 3 4 5 Full 2 3 4 5 Full
Acc 0.73 0.92 0.96 1.00 1.00 0.46 0.88 0.88 0.96 0.96
Sen 0.75 0.92 0.92 1.00 1.00 0.00 0.92 0.92 1.00 1.00
Spe 0.71 0.93 1.00 1.00 1.00 0.86 0.86 0.86 0.93 0.93
MCC 0.46 0.85 0.92 1.00 1.00 −0.27 0.77 0.77 0.93 0.93

Legend: SVM - support vector machines; DT - decision trees; c - number of latent variables in prediction
model; Full - predictor model with all selected genes; Acc - accuracy; Sen - sensitivity; Spe - specificity;

MCC - Matthews correlation coefficient.

Classification results for Huntington’s disease data set for SVM and DT algorithms,
respectively, indicated that both algorithms had difficulty learning task when the number
of latent variables is low (c = 2); the SVM scored a classification accuracy of Acc = 0.73,
while the DT prediction model scored with accuracy of Acc = 0.46. The performance
measures increases as the number of latent variables increases. The overall performance
of SVM was better that with DT algorithm.

Next, the performance results of classification prior to latent variable induction are
also summarized in Table 3 and Table 4. Although the numbers appears to be high, due to
a larger set of predictors it is not unusual that the classification accuracy would be 100%.
To evaluate the statistical significance in performance between classifiers with all-genes as
predictors and latent variable models, we used McNemar’s test as described previously in
the Methods section. McNemar’s test showed that only two latent models with two latent
variables as predictors in the case of Huntington’s disease data set were outperformed by
the all-genes model at p < 0.01, regardless the prediction method (i.e., SVM or DT) used.

According to a 10-fold cross-validation results, the SVM model overall outperformed
the DT model.
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4 Discussion
Traditional approaches to microarray data analysis focus on identifying individual marker
genes, which are associated with a phenotype of interest, and on using them to build clas-
sification and prediction models for samples whose phenotype may be unknown. Herein
we introduce a latent variable approach to reduce the dimensionality of microarray gene
expression data to a small number of latent variables, which could reduce noise while still
capturing the main biological properties of the original data. The results presented in this
paper illustrate that latent variable approach provides an effective and reliable method for
dimensional reduction of microarray data.

The method, as introduced here, has a number of advantages over classical approaches
to the analysis of microarray data. Latent variable approach reduces dimensionality and
summarizes the most noticeable features of a data set with coherent patterns shared by
multiple coexpressed genes. Results indicate that class prediction using latent variables
as covariates compares favourably with standard prediction model, where all individual
genes are used in the predictor set. Slightly better classification performance in the case of
Golub data set confirm the fact that the biological separation between the two conditions
(ALL/AML) is more pronounced in Golub data set than in Huntington’s disease data set
(De Smet et al., 2004).

In contrast to approaches using principal component analysis or singular value de-
composition, it yields a comprehensive representation of the original data. Moreover,
latent variables in proposed approach are easier to interpret and analyze by domain ex-
perts. Classifiers build in latent variable, rather than in all-gene space, are more robust,
reproducible, and generalizable across platforms and laboratories because the latent space
projection can reduce noise and technology-based variation more than simple normaliza-
tion (Tamayo et al., 2007).

Recently several machine learning approaches to class prediction in the domain of
microarray analysis have been proposed (Ressom et al., 2008). Decision to use SVM
and DT classifiers was totally arbitrary, based on a list of top 10 algorithms in machine
learning (Wu et al., 2007). In this application, we observed that SVM outperforms DT,
although the differences are not statistically significant. Although this is an important
observation, it is consistent with previous empirical findings (e.g., Wang, 2005). Observed
differences between algorithms can be explained by the capability of SVM to handle high-
dimensional data based on Vapnik’s statistical learning theory (Vapnik, 1999). In contrast,
DT utilizes tree nodes to select only a small number of latent variables for classification.

The data used to derive the IRT scales required extensive transformations. IRT scaling
assumes a dichotomous response of a gene expression level. Although our results indicate
that there were no loss of information due to discretization step in our procedure, it is still
the issue, if it is reasonable to consider gene expression discretely. Referring to the work
of Sheng, Moreau, and De Moor (2003), who demonstrated the effectiveness of the Gibbs
sampling to the biclustering of discretized microarray data, we argue that discretization
may improve the robustness and generalizability of the prediction algorithm with regard
to the high noise level in the microarray data. Following Hartemink (2001) the discretiza-
tion of continuous gene expression levels is preferred for four reasons: (i) discretization
offers the benefit of allowing the majority of the qualitative relationships between vari-
ables to be modelled while at the same time reducing the dimensionality of the problem;



64 Andrej Kastrin

(ii) gene transcription occurs in one of a small number of states (low/high, off/low/high,
low/medium/high, off/low/medium/high, etc.); (iii) the mechanisms of cellular regulatory
networks can be reasonably approximated by primarily qualitative statements describing
the relationships between states of genes; (iv) discretization, as a general rule, introduces
a measure of robustness against error. It is a worthwhile future project to study the perfor-
mance of our method on different levels of discretization, using polytomous IRT models
(e.g., partial credit model) that could model more than two states of gene expression.

The major dilemma coupled with class prediction studies is the measurement of the
performance of the classifier. The classifier cannot be evaluated accurately when sample
size is very low. Moreover, feature selection and feature extraction steps should be an
integral part of the classifier, and as such they must be a part of the evaluation procedure
that is used to estimate the prediction performance (Asyali et al., 2006). This is especially
important issue because HC provided a basis for predictive modeling in our framework.
HC is known to be quite sensitive to sampling error (Everitt et al., 2001). To address
these issues, the future work should concern the application of cross-validation scheme
to estimate the appropriate number of latent variables and re-randomization experimental
design to stabilize performance measures. We should also concern fit analysis, which was
not introduced in this work.

However, the proposed approach not only decreases the dimensionality of microarray
data, but can also provide a powerful knowledge-based approach to the analysis of mi-
croarray data. This method is of general applicability, not limited to analyzing microarray
gene expression data.
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