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Abstract

The paper focuses on similarity and distance measures for binary data and their

application in cluster analysis. There are 66 measures for binary data analyzed in

the paper in order to provide a comprehensive insight into the problematics and to

create their well-arranged overview. For this purpose, formulas by which they were

defined are studied. In the next part of the research, the results of object clustering

on generated datasets are compared, and the ability of measures to create similar

or identical clustering solutions is evaluated. This is done by using chosen internal

and external evaluation criteria, and comparing the assignments of objects into

clusters in the process of hierarchical clustering. The paper shows which similarity

measures and distance measures for binary data lead to similar or even identical

results in hierarchical cluster analysis.

1 Introduction

A binary vector is one of the most common representations of patterns in datasets.

Therefore many similarity and distance measures for binary data have been proposed

over the years. They are usually well examined; they are often implemented in both –

commercial (e.g., SPSS, MatLab) and non-commercial (e.g., R, Python) software. This

paper focuses on associations among selected similarity measures and distance mea-

sures for binary data in the field of cluster analysis. Similarity measures and distance
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measures for binary data are routinely used not only in the cluster analysis of binary data

but in clustering nominal data as well. In fact, it is considered as standard procedure to

perform a binary transformation when clustering nominal data.

The demand for processing binary (or nominal) data caused that numerous similar-

ity measures and distance measures for binary data have been proposed over the years

in various fields for various purposes. For example, the Jaccard similarity measure was

designed for clustering flowers (Jaccard, 1901), while Forbes (1925) proposed a co-

efficient for clustering ecologically related species of fishes. However, an enormous

quantity of available measures for binary data might be counterproductive, and it can

cause confussion. Duplicities can easily occur, there might be a functional relationship

between many measures for binary data, a certain measure can be referred to by several

different names in the literature, etc.

On the one hand, there are many authors who defined their own measures for binary

data, often by adjusting existing ones for the need of a specific study or not knowing that

the measure already had been defined before (maybe in a different field of study). On the

other hand, only a handful of authors studied and compared these measures among each

other. Jackson et al. (1989) compared eight binary similarity measures before choosing

the best measure for his ecological study. Hubálek (1982) collected and studied 43

measures. Twenty of them were used for cluster analysis on real data to produce five

clusters of related measures. His study proved that many measures might lead to similar

clustering solutions. Todeschini (2012) studied similarity measures for binary data on

chemoinformatics dataset. Based on his study, he claims that binary data measures are

often linearly dependent, and thus, the majority of them produces the same clusters. The

best summary of similarity measures and distance measures for binary data so far was

created by Cho and Chai (2010). They collected 76 measures used over the last century

and revealed their relationships through a simple hierarchical clustering of values that

were calculated by applying given measures on the same dataset. All of these authors

provide some kind of survey of similarity measures; however, the studies contained

a limited number of similarity measures or they were applied on one specific dataset.

Furthermore, no one (except Hubálek, 1982) studied the measures formulas that create

these associations in the first place.

This paper uses the studies of the previously mentioned authors as a baseline for

further research that tries to be robust enough and based on mathematics and definitions

that form these associations among measures for binary data. The paper aims to deter-

mine which measures for binary data lead to different clustering results and which ones

lead to similar or even identical results of cluster analysis. Firstly, the theory of gener-

ating datasets, clustering method and evaluation criteria are briefly presented in Section

2. Also similarity and distance measures for binary data are introduced in this section.

Section 3 is focused on revealing associations among the measures in their formulas.

We expect the formulas that are functions of the same statistics to lead to the same or
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similar results. This expectation is verified and analyzed later in the paper on clustering

solutions of generated datasets. Measures are used in hierarchical clustering of gener-

ated datasets in Section 4. The results of object clustering on generated datasets are

compared, the quality of clustering solutions is evaluated, and the ability of measures

to create similar or identical clusters is examined. This approach makes our research

different from previous research mentioned above.

2 Theoretical background

Theoretical background for the experiment, such as data generating process, similarity

and distance measures for binary data, a chosen clustering method, and evaluation cri-

teria are briefly introduced in this section. The vocabulary presented in the section is

used in the rest of the paper.

2.1 Data generator

Numerous datasets with a given specific set of features are needed in order to make the

results of the analysis reliable. For this purpose, the data generator suitable for the needs

of the experiment is used (Cibulková and Řezanková, 2018). The data generator was

designed mainly for generating multivariate datasets appropriate for cluster analysis.

A generated datasets consists of a given number of clusters, where each cluster cor-

responds to one sample of a given multivariate distribution. The idea of a dataset being

a mixture of several samples from given multivariate distributions follows the logic of

finite mixture models from model-based clustering. Finite mixture models assume that

the population is made up of several distinct clusters, each following a different multi-

variate probability density distribution (Stahl and Sallis, 2012). Therefore, the problem

of generating datasets with given features can actually be reduced to generating samples

from given multivariate distributions.

The algorithm for generating samples from given multivariate distributions is in-

spired by the NORTA (NORmal-To-Anything) transformation in combination with Cho-

lesky’s decomposition. The NORTA algorithm, inspired by Cario and Nelson (1997), is

used in order to generate samples from a given multivariate distribution. The Cholesky

matrix transforms a vector of uncorrelated normally-distributed random variables into a

vector of correlated normally-distributed random variables.

1. Generate a multivariate vector of uncorrelated normally-distributed random vari-

ables Zind = (Zind
1 , Zind

2 , . . . , Z ind
n ).

2. Suppose, that (ρij)
n
i,j=1 is given correlation matrix. Positive definiteness of the

matrix is verified and (if necessary) the matrix is adjusted to be the closest positive

definite correlation matrix (ρ∗ij)
n
i,j=1.
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3. Get a multivariate standard-normal random vector Z = (Z1, Z2, . . . , Zn), such

that Corr(Zi, Zj) = ρ∗ij , for 1 ≤ i, j ≤ n using Cholesky’s decomposition fol-

lowing the algorithm described in (Higham, 2009).

4. Compute Ui = Φ(Zi) for i = 1, 2, . . . , n, where Φ(·) is standard-normal cumula-

tive distribution function.

5. Compute Xi = F−1
i (Ui) for i = 1, 2, . . . , n, where F−1

i is the inverse of given

marginal cumulative distribution functions Fi.

Assuming each cluster in the dataset is generated from a given multivariate distribu-

tion, the generated dataset is a mixture of several samples obtained by this approach.

This generator allows us to generate numerous datasets with desired features to cover

a wide range of datasets types, making the results of the analysis more robust.

2.2 Hierarchical clustering method and evaluation criteria

Agglomerative hierarchical cluster analysis is used in this paper. Its algorithm considers

each object to start in its own cluster, and at each step, the nearest two clusters are

combined into a higher-level cluster (Sokal and Michener, 1958).

The average linkage method was chosen for the experiment since it can be seen as

a compromise between the sensitivity to outliers of complete linkage method and the

tendency to form long chains (that do not correspond to the intuitive notion of clus-

ters as compact, spherical objects) of single linkage method. This method takes av-

erage pairwise dissimilarity between objects in two different clusters. Let us denote

Daverage (Cp, Cq) the distance between clusters Cp and Cq, with the number of objects

np in the p-th cluster and nq in the q-th cluster. Then dissimilarity between two clusters

follows the formula:

Daverage (Cp, Cq) =

∑

xi∈Cp

∑

xj∈Cq
D (xi,xj)

npnq

, (2.1)

where D (xi,xj) is a distance between objects xi and xj .

Since the analyses are performed on the generated datasets, and thus, the objects’

cluster memberships are known, the produced clusters can be evaluated using both in-

ternal and external evaluation criteria.

The purity is an external evaluation criterion of cluster quality. It is the percentage of

the total number of objects that were classified correctly. The larger the purity, the better

the clustering performance. Let us suppose there are l classes (real clusters), while the

clustering method generates k clusters, then the purity of the clustering solution with

respect to the known classes is given by the formula:

purity =
1

n

k
∑

q=1

max
(

np
q

)

, (2.2)
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where n is the total number of objects; np
q is the number of objects in the q-th cluster,

that belongs to the p-th class; (p = 1, 2, . . . , l).
The entropy is an another external evaluation criterion. It is a measure of uncertainty,

and the smaller the entropy, the better the clustering performance (Shannon, 1948). The

entropy of the clustering solution with respect to the known classes follows the formula:

entropy =
1

n log2 l

k
∑

q=1

l
∑

p=1

np
q log2

np
q

nq

, (2.3)

where nq is the total number of objects in the q-th cluster (q = 1, 2, . . . , k).
The Dunn index is an internal evaluation criterion (Dunn, 1974). It is the ratio of

the smallest distance between observations not in the same cluster to the largest intra-

cluster distance. The Dunn index takes on values between zero and infinity and should

be maximized. Let us denote a particular clustering partition C = C1, C2, . . . , Ck of n

objects into k disjoint clusters. Then the Dunn index is computed as:

Dunn index =
minCq ,Cp∈C;Cq , 6=Cp

(

min
xi∈Cq ;xj∈Cp

D(xi,xj)
)

maxCq∈C diam (Cq)
, (2.4)

where diam(Cq) is the maximum distance between observations in cluster Cq.

The silhouette coefficient is an internal evaluation criterion which is calculated as

the average of each object’s silhouette width (which is usually displayed as the width

in the silhouette graph). The silhouette width measures the degree of confidence in

the clustering assignment of a particular object (Rousseeuw, 1987). The well-clustered

objects do have values near 1 and poorly clustered objects have values near −1. For

object xi, it is defined as:

S (i) =
bi − ai

max(bi, ai)
, (2.5)

where ai is the average distance between object xi and all other objects in the same

cluster, and bi is the average distance between xi and the objects in the nearest neigh-

boring cluster following the formula bi = minCk∈C;Ck 6=C(i)

∑
j∈Ck

D(xi,xj)

nk
, where C(i)

is the cluster containing observation xi; D(xi,xj) is the distance between observations

xi and xj; nk number of objects in cluster Ck. The average silhouette width thus lies in

the interval [−1, 1], and should be maximized.

2.3 Similarity and distance measures for binary data

Let us denote the data matrix X = [xic], where i = 1, 2, . . . , n and c = 1, 2, . . . ,m;

n is the total number of objects; m is the total number of variables. Suppose that two
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objects, xi and xj are represented by the binary vector form. The symbols used for the

numbers of variables with certain combinations of categories for objects, as shown in

Table 1, are used for definitions of binary distance measures in this paper (Dunn and

Everitt, 1982). In Table 1, a is the number of variables where the values of xi and xj

are both equal to 1, meaning “positive matches”, b is the number of variables where

the value of xi and xj is (0, 1), meaning “xi absence mismatches”, c is the number of

variables where the value of xi and xj is (1, 0), meaning “xj absence mismatches”, and

d is the number of variables where both xi and xj are equal to 0, meaning “negative

matches”. Then, m = a+ b+ c+ d.

Table 1: Symbols used for the numbers of variables with certain combinations of categories

for objects xi and xj

xi \xj 1 (Presence) 0 (Absence)

1 (Presence) a b

0 (Absence) c d

Tables 2–4 provide the overview of formulas of the 66 similarity measures or dis-

tance measures for binary data. The main source for the formulas was Cho and Chai

(2010). The second column in Tables 2–4 gives a definition of a measure using symbols

from Table 1. The third column determines whether a measure is defined as a similarity

measure or a distance measure.

The transformation from a similarity measure S (xi,xj) into a distance measure

D (xi,xj), that is necessary in order to be able to calculate a proximity matrix in clus-

tering process, is inspired by Deza and Deza (2013).

• If a similarity measure gets values from the interval [0, 1], then the corresponding

distance measure is obtained by the transformation 1− S (xi,xj).

• If a similarity measure gets values from the interval [−1, 1], then the correspond-

ing distance measure is obtained by the transformation
1−S(xi,xj)

2
.

• If a similarity measure gets values from a different interval, let’s say it is the

interval [min,max], then the similarity measure is transformed by min-max nor-

malization in the first step, resulting that the values are from the interval [0, 1].
Then the corresponding distance measure is obtained by substracting 1 from the

min-max normalized similarity measure.
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Table 2: Similarity/distance measures for binary data overview – part 1

Measure Formula Type

JACCARD a
a+b+c

similarity

DICE 2a
2a+b+c

similarity

CZEKANOWSKI 2a
2a+b+c

similarity

JACCARD 3W 3a
3a+b+c

similarity

NEI LI 2a
(a+b)+(a+c)

similarity

SOKAL SNEATH I a
a+2b+2c

similarity

SOKAL MICHENER a+d
a+b+c+d

similarity

SOKAL SNEATH II 2a+2d
2a+b+c+2d

similarity

ROGER TANIMOTO a+d
a+2(b+c)+d

similarity

FAITH a+0.5d
a+b+c+d

similarity

GOWER LEGENDRE a+d
a+0.5(b+c)+d

similarity

INTERSECTION a similarity

INNERPRODUCT a+ d similarity

RUSSEL RAO a
a+b+c+d

similarity

HAMMING b+ c distance

EUCLID
√
b+ c distance

SQUARED EUCLID
√

(b+ c)2 distance

CANBERRA (b+ c)2/2 distance

MANHATTAN b+ c distance

MEAN MANHATTAN b+c
a+b+c+d

distance

CITY BLOCK b+ c distance
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Table 3: Similarity/distance measures for binary data overview – part 2

Measure Formula Type

MINKOWSKI (b+ c)1/1 distance

VARI b+c
4(a+b+c+d)

distance

SIZE DIFFERENCE
(b+c)2

(a+b+c+d)2
distance

SHAPE DIFFERENCE
m(b+c)−(b−c)2

(a+b+c+d)2
distance

PATTERN DIFFERENCE 4bc
(a+b+c+d)2

distance

LANCE WILLIAMS b+c
2a+b+c

distance

BRAY CURTIS b+c
2a+b+c

distance

HELLINGER 2
√

1− a√
(a+b)(a+c)

distance

CHORD

√

2

(

1− a√
(a+b)(a+c)

)

distance

COSINE a

(
√

(a+b)(a+c))2
similarity

GILBERT WELLS log(a)− log(m)− log
(

a+b
m

)

− log
(

a+c
m

)

similarity

OCHIAI I a√
(a+b)(a+c)

similarity

FORBESI ma
(a+b)(a+c)

similarity

FOSSUM
m(a−0.5)2

(a+b)(a+c)
similarity

SORGENFREI a2

(a+b)(a+c)
similarity

MOUNTFORD a
0.5(ab+ac)+bc

similarity

OTSUKA a
((a+b)(a+c))0.5

similarity

MCCONNAUGHEY a2−bc
(a+b)(a+c)

similarity

TARWID
ma−(a+b)(a+c)
ma+(a+b)(a+c)

similarity

KULCZYNSKI II
a
2
(2a+b+c)

(a+b)(a+c)
similarity

DRIVER KROEBER a
2

(

1
a+b

+ 1
a+c

)

similarity

JOHNSON a
a+b

+ a
a+c

similarity

DENNIS ad−bc√
m(a+b)(a+c)

similarity

SIMPSON a
min(a+b,a+c)

similarity

BRAUN BANQUET a
max(a+b,a+c)

similarity

FAGER MCGOWAN a√
(a+b)(a+c)

− max(a+b,a+c)
2

similarity

FORBES II
ma−(a+b)(a+c)

mmin(a+b,a+c)−(a+b)(a+c)
similarity
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Table 4: Similarity/distance measures for binary data overview – part 3

Measure Formula Type

SOKAL SNEATH IV 1
4

(

a
a+b

+ a
a+c

+ d
b+d

+ d
c+d

)

similarity

GOWER a+d√
(a+b)(a+c)(b+d)(c+d)

similarity

PEARSON I χ2; where χ2 = m(ad−bc)2

(a+b)(a+c)(b+d)(c+d)
similarity

PEARSON II
(

χ2

m+χ2

)
1

2

similarity

PEARSON III
(

ρ
m+ρ

)
1

2

; where ρ = ad−bc√
(a+b)(a+c)(b+d)(c+d)

similarity

PEARSON HERON I ρ = ad−bc√
(a+b)(a+c)(b+d)(c+d)

similarity

PEARSON HERON II cos
(

π
√
bc√

ad+
√
bc

)

similarity

SOKAL SNEATH III a+d
b+c

similarity

SOKAL SNEATH V ad√
(a+b)(a+c)(b+d)(c+d)

similarity

COLE
√
2(ad−bc)√

(ad−bc)2−(a+b)(a+c)(b+d)(c+d)
similarity

STILES log1 0
m(|ad−bc|−n

2
(
2

(a+b)(a+c)(b+d)(c+d)
similarity

OCHIAI II ad√
(a+b)(a+c)(b+d)(c+d)

similarity

YULE Q 2bc
ad+bc

distance

YULE W
√
ad−

√
bc√

ad−
√
bc

similarity

KULCZYNSKI I a
b+c

similarity

TANIMOTO a
(a+b)+(a+c)−a

similarity

HAMANN
(a+d)−(b+c)
a+b+c+d

similarity

MICHAEL
4(ad−bc)

(a+d)2+(b+c)2
similarity
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3 Associations in formulas

It is possible to detect several groups of measures defined in Section 2.3 where func-

tional relationships among measures exist. The formulas were studied and compared

in order to unhide any functional relationships among them. Various associations were

discovered when studying the formulas. These associations may provide the first cate-

gorization of similarity and distance measures for binary data. We may consider four

groups of measures:

1. Euclid-based measures,

2. Pearson-based measures,

3. Hellinger-based measures,

4. other measures.

3.1 Euclid-based measures

Numerous measures for binary data proved to be dependent on the Euclid distance. Let

us denote the squared Euclid distance measure as

eu = (b+ c), (3.1)

where b and c are symbols used for a number of variables with certain combinations of

categories for objects xi and xj described in Table 1. Table 5 shows, how are some of

measures, presented in Section 2.3, dependent on eu.

The first column contains a measure’s name, a measure is expressed in relation to

the squared Euclid distance measure in the second column. If there is any restriction

for the relationship between a measure from the first column and the squared Euclid

distance measure, this restriction would be noted in the third column.

3.2 Pearson-based measures

Other measures for binary data proved to be dependent on the Pearson correlation coef-

ficient. Let’s denote

ρ =
ad− bc

√

(a+ b)(a+ c)(b+ d)(c+ d)
, (3.2)

where a, b, c, d are symbols used for number of variables with certain combinations of

categories for objects xi and xj described in Table 1. The measures that are based on

the Pearson correlation coefficient can be re-written using ρ in their formulas as shown

in Table 7. Measures’ names are in the first column, measures are expressed in relation

to ρ in the second column.
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Table 5: Association among the measures based on Euclid distance

Measure Formula Condition

SQUARED EUCLID eu -

EUCLID
√
eu -

HAMMING eu -

CANBERRA eu -

MANHATTAN eu -

MEAN MANHATTAN eu
m

-

CITY BLOCK eu -

MINKOWSKI eu -

VARI eu
4m

-

SOKAL MICHENER 1− eu
m

-

INNERPRODUCT m− eu -

SIZE DIFFERENCE eu2

m2 -

HAMMANN m−2eu
m

-

GOWER LEGENDRE
2(m−eu)
2m−eu

-

SOKAL SNEATH II
2(m−eu)
2m−eu

-

SOKAL SNEATH III n
eu

− 1 -

ROGER TANIMOTO m−eu
m+eu

-

FAITH m−eu−0.5d
m

-

SHAPE DIFFERENCE eu
m

if b = c
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Table 6: Association among the measures based on Pearson distance

Measure Formula

PEARSON HERON I ρ

PEARSON I nρ2

PEARSON II

(

(nρ2)
n+(nρ2)

)
1

2

PEARSON III
(

ρ
n+ρ

)
1

2

3.3 Hellinger-based measures

Some distance and similarity measures for binary data are dependent on the Hellinger

distance. Formulas of these measures demonstrate the dependency in Table 7.

Table 7: Association among the measures based on Hellinger distance

Measure Formula

HELLINGER hel

CHORD hel√
2

OCHIAI I 1−
(

hel
2

)2

OTSUKA 1−
(

hel
2

)2

FAGER MCGOWAN 1−
(

hel
2

)2 − max(a+b,a+c)
2

SORGENFREI
[

1−
(

hel
2

)2
]

FORBESI m
a

[

1−
(

hel
2

)2
]

Measures’ names are in the first column, measures are expressed in relation to the

Hellinger distance in the second column. Let us denote

hel = 2

√

1− a
√

(a+ b)(a+ c)
, (3.3)

where a, b, c and d are symbols used for number of variables with certain combinations

of categories for objects xi and xj described in Table 1.
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3.4 Other measures and associations among them

Several groups up to four measures of similarity or distance measures from Section 2.3

seem to have some kind of dependency among themselves.

The JACCARD similarity measure is identical with similarity measure TANIMOTO.

JACCARD =
a

a+ b+ c
=

= TANIMOTO =
a

(a+ b) + (a+ c)− a

(3.4)

Similarity measures DICE, CZEKANOWSKI, NEI LI are identical.

DICE =
2a

2a+ b+ c
=

= CZEKANOWSKI =
2a

2a+ b+ c
=

= NEI LI =
2a

(a+ b) + (a+ c)

(3.5)

Another pair of similarity measures that are defined by the same formula is LANCE WILLIAMS

and BRAY CURTIS.

LANCE WILLIAMS =
b+ c

2a+ b+ c
=

= BRAY CURTIS =
b+ c

2a+ b+ c

(3.6)

Moreover, if 2a = b + c, then all five measures DICE, CZEKANOWSKI, NEI LI,

LANCE WILLIAMS and BRAY CURTIS would be equal to each other.

There is a linear dependency between similarity measures INTERSECTION and

RUSSEL RAO.

INTERSECTION = a =

= m (RUSSEL RAO) = m

(

a

a+ b+ c+ d

)

(3.7)

Similarity measures KULCZYNSKI II and DRIVER KROEBER are identical and

they are linearly dependent with JOHNSON similarity measure.

KULCZYNSKI II =
a
2
(2a+ b+ c)

(a+ b)(a+ c)
=

= DRIVER KROEBER =
a

2

(

1

a+ b
+

1

a+ c

)

=

= 0.5 (JOHNSON) = 0.5

(

a

a+ b
+

a

a+ c

)

(3.8)
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Similarity measures SOKAL SNEATH V and OCHIAI II are identical.

SOKAL SNEATH V =
ad

√

(a+ b)(a+ c)(b+ d)(c+ d)
=

= OCHIAI II =
ad

√

(a+ b)(a+ c)(b+ d)(c+ d)

(3.9)

If d = 0, then formulas of measures KULCZYNSKI II and SOKAL SNEATH IV

are identical.

KULCZYNSKI II =
a
2
(2a+ b+ c)

(a+ b)(a+ c)
=

= SOKAL SNEATH IV =
1

4

(

a

a+ b
+

a

a+ c
+

d

b+ d
+

d

c+ d

) (3.10)

If d = 0, then similarity measures KULCZYNSKI I and SOKAL SNEATH III are

identical.

SOKAL SNEATH III =
a+ d

b+ c
=

= KULCZYNSKI I =
a

b+ c

(3.11)

4 Associations in clustering solutions

We have shown that some measures are functionally dependent, linearly dependent, or

even identical in Section 3. Therefore, we may expect that the process of assigning

objects into clusters would be somehow associated. If there is a linear dependence

between measures, we may even assume that the clustering process will be identical.

Thus, it would lead to the same clustering solutions and that the dendrograms will be

similar. Figure 1 demonstrates nearly identical outcome of hierarchical clustering pro-

cess (average-linkage) on a sample dataset when four different (but linearly dependent)

similarity measures were used. The goal of this section is to express such a similarity

of dendrograms for various measures in numerical terms.

4.1 Experiment design

The datasets were generated using the data generator described in Section 2.1. Desired

features of the generated datasets were chosen with an aim to cover a wide range of

possible situations that can occur. Since the paper focuses on measures suitable for

binary data, all data are generated from the Bernoulli distribution, but they differ in

a number of objects, a number of variables, and the strength of a relationship among
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Figure 1: Example of 4 different measures used in hierarchical clustering of a sample

dataset leading to the same result

variables (expressed by correlation matrix). The following features were used in the

data-generating process:

1. probability distribution: Bernoulli,

2. number of variables: 5, 10, 15, 20,

3. number of clusters: 2, 3, 4, 5,

4. number of observations in a cluster: 30–60, 60–120, 30-120,

5. correlation among variables: ∈ [−1;1]; at random for each cluster.

This leads to 48 possible combinations of dataset features (numbers of variables, num-

bers of clusters, and numbers of observations). Each combination of features is gen-

erated ten times to make the outcomes of the experiment more robust, and the final

number of generated datasets is hence equal to 480. The information about “real clus-

ter” membership is stored for each observation of each dataset, and it is later used in the

process of evaluation of clustering solutions.

The average linkage method combined with every binary similarity distance from

Section 2.3 is applied to each dataset. Clustering solutions with three clusters are used

to examine associations among similarity and distance measures in clustering solutions

via internal evaluation criteria (average silhouette width, Dunn index), in order to mimic

a real-life situation, where the number of real clusters is usually unknown. The exam-

ination of associations among measures in clustering solutions via external evaluation
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criteria (purity, entropy) uses information about “real cluster” membership. These val-

ues of four evaluation criteria from Section 2.2 are calculated for each clustering solu-

tion, and their averages and standard deviations across all datasets are compared with

respect to similarity/distance measure used.

Due to the complexity of computations, the evaluation of the assignment of objects

into clusters is performed on two-to-four-clusters clustering solutions. For each num-

ber of clusters in the clustering solution (the last three steps of the clustering process)

and each pair of measures from Section 2.3, the percentage of identical objects-into-

clusters assignments was calculated. The percentage gives a value between 0 and 1,

where 1 means the two clustering outcomes match identically. The percentage of iden-

tical objects-into-clusters assignments is also known as the Rand index (Rand, 1971).

The pairs of last three steps of the clustering process for every two similarity measures

are then compared, and measures that lead to identical/similar clustering process are

identified.

All the calculations and visualizations were done in R programming language (R

Core Team, 2018).

4.2 Results of the experiment

There are 66 similarity and distance measures for binary data examined in the paper

and used in the clustering process. The ability of the measures to produce a quality

clustering solution is measured by four chosen evaluation criteria: purity, entropy, Dunn

index, and silhouette coefficient.

Average values of evaluation criteria (calculated as described in Section 4.1) are

shown in Figure 2. In general, Euclid-based measures (red color in all graphs) pro-

duce clusters with the highest quality according to the evaluation criteria. The quality

of Pearson-based measures (purple color in all graphs) is, on average, not very good,

but it is steady across all four measures. The same applies to Hellinger-based measures

(black color in all graphs), and all pairs/groups of measures, where any functional rela-

tionship was detected in Section 3. Alhough some measures lead to clustering solutions

with low average quality, keep in mind that these measures might perform very well

when clustering datasets with specific features. Therefore, one should not jump into

any conclusions and general recommendations for universal use.

Even though the evaluation criteria’ average values might not be beneficial for for-

mulating general recommendations, they help reveal associations among the measures.

The relationships among binary similarity/distance measures are quite evident based

on the average values of evaluation criteria and their standard deviations. Figure 3

shows the arrangement of the clusters produced by average-linkage hierarchical cluster-

ing with Euclid distance in the dendrogram. From this graph, it is possible to see that

some measures lead to more similar clustering solutions than others. All Euclid-based

measures lead to clustering solution with similar values of evaluation criteria, except for
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similarity or distance measures for binary data
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SHAPE DIFFERENCE. That can be explained by the fact, that there exists a functional

relationship among all these measures, but only SHAPE DIFFERENCE has this rela-

tionship conditiond by a restriction (see Section 3.1). All identical or linearly dependent

similarity and distance measures, see Section 3, lead to the identical cluster solutions

as well. Clearly, the Euclid-based measures lead to very similar clustering solutions

in terms of cluster quality. Due to non-linear relationships among Pearson-based mea-

sures, all the Pearson-based measures are much less similar in clustering solution qual-

ity. Negative-matches exclusive measures (such as JACCARD, HELLINGER, DICE,

...) also produce clusters of similar quality. Measures for which we have not found

any association to other measures generally provide qualitatively different clustering

solutions.

Figure 4 shows the average percentages of identical objects-into-clusters assign-

ments for every pair of similarity or distance measures for binary data. The figure

reflects the average similarity of dendrograms in the final three steps of the clustering

process (2–4 clusters) for any two measures. The associations among all measures in

the clustering process are indisputable. Almost all measures lead to more or less similar

clustering solutions (at least in the last three steps of the clustering process). Especially

dendrograms for identical or linearly dependent measures are essentially all the same.

At the same time, it can be seen that measures without any apparent dependency on any

other measure (such as DENNIS, MICHAEL, or MOUNTFORD) produce least similar

dendrograms. Interestingly, the absence of negative matches in a measure’s formula

and the presence of only positive matches in a measure’s formula seems to be a com-

mon feature for measures that produced clustering solutions of similar quality and al-

most identical dendrograms. These negative-matches exclusive measures produce very

similar dendrograms regardless of whether they are Pearson-based or Hellinger-based.

5 Discussion and conclusion

Many similarity measures and distance measures for binary data have been used in

various fields of study. This led to a situation where measures are duplicated or strongly

dependent on each other. Despite the fact that these measures are widely known and

often used, only a limited number of authors aimed their research in this area. Even

though their studies usually focused on a limited number of similarity/distance measures

for binary data or they were applied on only one specific dataset, they concluded that

binary data measures are often linearly dependent, and thus, they often produce the same

clusters.

Not only were we able to support this claim on hundreds of generated datasets, but

we also explained the reason for this behavior (that is rooted in the measures’ definition)

while providing a comprehensive study of 66 selected measures for binary data. Mea-

sures were examined based on the quality of clustering solutions they produce and based
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Figure 4: The average percentage of identical objects-into-clusters assignations
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on the percentage of identical objects-into-clusters assignations in the last three steps of

the hierarchical clustering process. Based on this we might claim that Euclid-based

measures lead to identical (or very similar) clustering solutions. Another big group

of measures that lead to very similar clustering results are negative-matches exclusive

measures.
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