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A closed solution of the plane problem of the generalized theory of plasticity and a model of the complex plastic medium were
theoretically developed. Solutions with the use of the deformation theory and the theory of plastic yielding were developed. The
solution for a simple strengthening medium was deduced.
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Razvita sta bila zaprta re{itev splo{ne teorije plasti~nosti in teoreti~en model kompleksnega plasti~nega medija. Opredeljene so
bile re{itve z uporabo teorije deformacije in teorije plasti~nega te~enja. Razvita je bila re{itev za preprost utrditveni medij.

Klju~ne besede: plasti~nost kovin, analiti~na re{itev, matermati~ni model, plasti~ni medij, parametri procesa

1 INTRODUCTION

A characteristic of the new method based on a closed
solution of the plane problem of theory of plasticity is a
simplified analysis of the deformation mode of the
medium and the theoretical connection to the medium
mechanical characteristics through the process para-
meters. The analytical solution of the plane problem of
the theory of plasticity for a strengthening medium is
known.1 The developed complex model for the
strengthening of the plastic medium is based on the shear
resistance to the plastic deformation and is a function of
the coordinates of the nucleus of deformation. This
approach offers a new possibility to evolve a new
solution for a problem, including the generalized theory
of plasticity. The approach includes equations and
criteria: an equilibrium equation, and the criteria of
yielding, the equation of incompressibility, of the
deformation rate and the deformation as well as
equations of continuity of the deformation rate and the
deformation:
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– the criterion of yielding
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– the constraint equations for the rates of deformation
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– the equations of incompressibility for the rates of
deformation and the deformation

� �x y+ = 0; � �x y+ = 0

– the equation of continuity for the deformation rates
and the deformation
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– the equation of heat conductivity
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The model of the complex plastic medium is defined
with

T H Tm m m
i i i= ⋅ ⋅ ⋅� ( ) ( ) ( )1 2 3G (2)

The system of equations (1) includes the equations of
the deformation theory of plasticity and the theory of
plastic yielding with the addition of the equation of heat
conductivity.2 The model (2) is a real strengthening
medium with the boundary conditions for stresses3
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xy2
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The additional conditions are given by the specific
contact forces (3) of the change of friction according to
the sinusoidal law of deformational and high-speed strain
hardening. All the intensities and the temperature depend
on the coordinates of the deformation nucleus.

Materiali in tehnologije / Materials and technology 44 (2010) 3, 141–145 141

UDK 539.374.001.8.621.7-111 ISSN 1580-2949
Original scientific article/Izvirni znanstveni ~lanek MTAEC9, 44(3)141(2010)



2 THEORETICAL DEVELOPMENT

With the aim to obtain the model (2), let us consider
three second-order equations in form of non-uniform
hyperbolic partial derivations:
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The boundary conditions (3) correspond to the
substitution � xy k A= ⋅ sin F. A complex dependence of
the coordinates is assumed with k f H T x yi i= ( , , , , )G . In
this case, k C= ⋅� 
exp ', with 
' ( , , , , )= f H T x yi iG , with
Gi, Hi, T standing for the intensity of the deformation, the
rates of deformation and the temperature.

The derivatives are taken as for the complex
function,4 and after substitution in the first equation (3)
we obtain:
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Equation (5) is equal to zero if the parts in the square
brackets are equal to zero. Then,
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The operations with the complex function allow us to
determine the exponent index as the sum of three
functions accounting for the effect of the deformation
degree and the rate, and of the temperature:
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The shear resistance and the components of the
tensor of the stresses are:
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By substituting the stress values into the equation of
constraint we obtain:
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It is possible to establish the relation between the
shears and the linear figures of the deformation rates and
the deformations. Taking into account the equations of
non-compressibility we obtain:
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In order to simplify, we define:
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By substituting these relations into the equations of
continuity of the deformation rate and the deformation
(1) or (4), we obtain:
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Brackets identical to (5) appear in equations (7) and
(8). For
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the equations are transformed into identities, with,

 
�
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' ' = −B2 as the indices of the exponents of
the functions determining the fields of the deformation
rate and the deformation, B1F and B2F are the trigo-
nometric functions determining the fields of the defor-
mation rate and the deformation.

The expressions for the deformation rate and the
deformation are:
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With a comparison of expressions (9), (10) and (7)

we can confirm that all the expressions have functional
dependencies on the coordinates 
 and F (the indices of
the exponents and the examples of the trigonometric
functions).

It is of interest to obtain similar dependencies for the
solution for the temperature fields that could allow us to
solve this task theoretically. Let us consider a differential
equation for the stationary temperature field
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For this case we look for the solution in the form of
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We will demonstrate that expression (11) is a solution

of the Laplace equation. By substituting the derivatives
(11) into the equation of the heat conductivity and a
simplification we obtain:
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In the case of equality to zero, the brackets,
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The last correlations correspond to Cauchy-Rieman
condition and are functions determined by the Laplace
equation corresponding to relation (11).

From the comparison of the solutions (7) to (11)
(conditions superimposed on functions) it was concluded
that 
 
�

' ' = −B3 for the stressed and deformed conditions
and the temperature fields can be used to determine a
common parametric function, which is included into the
fields of the stresses, the deformations, the rates of
deformation and the temperatures, allowing us to express
them mathematically, one with another. Thus,
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With substitution into an expression for resistance to
deformation, we obtain
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The form of expression (13) corresponds to a depen-
dence of the yield stress from the rate, the degree of
deformation and the temperature proposed in1.

3 ANALYSIS OF THE RESULTS

In the analysis the expressions (6) are used to study
the stressed condition of the plastic medium in the case
of a flat upsetting of rough plates. If the problem is
reduced to a more simple mathematical model (A2

' = A3
' =

0), expression (6) will correspond to the solutions in5.
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Applying the condition for plasticity
� 0 2= − ⋅k Acos F, C k= � , the functions AF and 

become harmonic. Starting from the Laplace equation
and the Cauchy-Rieman conditions we obtain the
expressions for determining the functions in the form of
the coordinate polynomial.
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The constants in the expressions were determined as
proceeding from the real boundary conditions
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By substituting the components of the tensor of
stresses into (14), we obtain
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The results of the calculation according to equations
(15) in Figures 1 to 4 show that the distribution of the
contact stresses is related to the factor of the shape of the
stress nucleus l/h and the friction coefficient f, the
relative normal stresses �y/2k0 and the relative tangent
stresses �xy/k0. The results of the calculation correspond
to the real distribution diagrams of the contact stresses.6

It should be emphasized that expressions (15) are uni-
form for the entire nucleus of deformation and there is
no need to break it into separate zones of contact fric-
tion.7 Figures 5 and 6 show the distribution of stresses
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Figure 4: Distribution of the normal stresses along the strip height
during the upsetting with rough strikers f = 0,3, l/h = 2...15
Slika 4: Porazdelitev normalnih napetosti po vi{ini plo{~e pri kr~enju
s te`kimi kladivi f = 0,3, l/h = 2...15

Figure 2: Distribution of the normal and tangent stresses at the
contact during upsetting with rough strikers f = 0,3, l/h = 1...15
Slika 2: Porazdelitev kontaktnih normalnih in tangetnih napetosti pri
kr~enju s te`kimi kladivi f = 0,3, l/h = 1...15

Figure 3: Distribution of the normal stresses along the plate height
during the upsetting with rough strikers l/h = 8, f = 0,1...0,5
Slika 3: Porazdelitev normalnih napetosti po vi{ini plo{~e pri kr~enju
s te`kimi kladivi: l/h = 8, f = 0.1…0.5

Figure 1: Distribution of the normal and tangent stresses at the
contact during upsetting with rough strikers l/h = 8, f = 0,1...0,5
Slika 1: Porazdelitev kontaktnih normalnih in tangetnih napetosti pri
kr~enju s te`kimi kladivi l/h = 8, f = 0,1...0,5



in the nucleus of deformation, which also include the
shape factor and the friction coefficient.

The obtained results display qualitatively and quanti-
tatively the general patterns of the distribution fields of
the tensor of stresses over the entire nucleus of defor-
mation. The results meet fully the requirements of the
boundary conditions. In particular, the proposed proce-
dure and expressions15 can be recommended for the
calculation of various problems in applications.

The proposed complex model of a plastic medium
based on the closed solution can be considered as a
generalization of the theory of plasticity, uniting the
theories of deformation and of plastic yielding.
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LIST OF SYMBOLS

� – normal components of the stress tensor;
� – tangential components of the stress tensor;
� – linear components of the strain-rate tensor;
� – shear components of the strain-rate tensor;
� – linear deformation along the axes x and y;
� – factor of correspondence between the tangent stress and the

temperature-deformation parameter of the centre to deformation;
Gi – intensity of the shift of the deformation;
�n – tangential contact stress on an arbitrary inclined area;
� – angle of inclination of the contact area;
k – shearing plastic deformation strength;
F – harmonic function depending on the coordinates of the deforma-

tion zone and the argument of a trigonometric function;
F0 – argument of trigonometric function for x = ±l/2 and y = ±h/2;
A – constant characterizing the trigonometric function for the state of

stress of the plastic medium;
A6, A13 – constant factor, characterizing the shearing tangent stress in

the zone of reduction
Y0, Y1 – values taking into account the influence of the factor of fric-

tion;
B – constant value characterizing the trigonometric function for the

state of strain of the plastic medium;

0 – factor exhibitors for x = ±l/2 and y = ±h/2;

 ' – harmonic function, exponential index, characterizing the shearing

stress distribution in the zone of reduction;

 ' ' – a harmonic function, exponential index, characterizing the distri-

bution of the rate of shearing in the zone of reduction;
C� – constant value determining the state of stress of the plastic me-

dium;
C� – constant value characterizing the state of strain of the plastic me-

dium;
T – temperature in the k-th point;
Ti – intensity of tangential stress;
Hi – intensity of shearing rates;
CT – constant value characterizing the temperature field;
a – coefficient of temperature conductivity;
l and h – length and height of the deformation nucleus during strip up-

setting;
f – friction coefficient;
k0 – contact shear resistance at the beginning of the deformation nu-

cleus
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