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Abstract

In this paper we consider polynomials in noncommuting variables that admit sum of
hermitian squares and commutators decompositions. We recall algorithms for finding de-
compositions of this type that are based on semidefinite programming. The main part of the
article investigates how to find such decomposition with rational coefficients if the original
polynomial has rational coefficients. We show that the numerical evidence, obtained by the
Gram matrix method and semidefinite programming, which is usually an almost feasible
point, can be frequently tweaked to obtain an exact certificate using rational numbers. In
the presence of Slater points, the Peyrl-Parrilo rounding and projecting method applies.
On the other hand, in the absence of strict feasibility, a variant of the facial reduction is
proposed to reduce the size of the semidefinite program and to enforce the existence of
Slater points. All these methods are implemented in our open source computer algebra
package NCSOStools. Throughout the paper many worked out examples are presented
to illustrate our results.
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1 Introduction
In this paper we consider free noncommutative (nc) polynomials that are sums of hermitian
squares (and commutators). We focus on the following important question: how to obtain
a rational certificate (i.e., a symbolic proof) for such a decomposition when the given nc
polynomial has rational coefficients and we have numerical (approximate) evidence of a
sum of hermitian squares (and commutators) decomposition obtained by mathematical op-
timization methods (e.g. by using open-source software package NCSOStools)?

1.1 Notation

Nc polynomials with real coefficients, denoted by R〈X〉, are (real) linear combinations
of words in letters X1, . . . , Xn, including the empty word 1. We shortly denote by X
the n-tuple of letters (X1, . . . , Xn). These nc polynomials form a free algebra, which we
equip with the involution ∗ that fixes R and letters point-wise and thus reverses words,
e.g. (X1X2X3 − X2

3X1)∗ = X3X2X1 − 2X1X
2
3 . Hence R〈X〉 is the ∗-algebra freely

generated by n symmetric letters. The subset of R〈X〉 consisting of all symmetric nc
polynomials is denoted by

SymR〈X〉 := {f ∈ R〈X〉 | f = f∗}.

If V = (vi) is a (column) vector of nc polynomials vi ∈ R〈X〉, then V ∗ is the row vector
with components v∗i and V t denotes the row vector with components vi.

The length of the longest word in an nc polynomial f ∈ R〈X〉 is the degree of f and
is denoted by deg f . The degree of f in Xi, degi f , is the largest number of occurrences
of the letter Xi in a monomial appearing in f . Similarly, the length of the shortest word
appearing in f ∈ R〈X〉 is called the min-degree of f and denoted by mindeg f . Likewise,
mindegi f is introduced. If the variable Xi does not occur in any monomial of f , then
mindegi f = 0. The set of all nc polynomials of degree ≤ d will be denoted by R〈X〉≤d.
Whenever an nc polynomial f involves only two variables, we write f ∈ R〈X,Y 〉.

Example 1.1. Let f = 3Y 2X + 2XYXY − 5Y 3 ∈ R〈X,Y 〉. Then

deg f = 4, degX f = 2, degY f = 3, mindeg f = 3, mindegX f = 0, mindegY f = 2,

f∗ = 3XY 2 + 2Y XY X − 5Y 3.

Positivity of nc polynomials is a core part of free real algebraic geometry. In this paper
we consider two types of positivity: (i) positivity via eigenvalues, i.e., f ∈ SymR〈X〉
is positive if f(A) is a positive semidefinite matrix for every n-tuple of real symmetric
matrices A of the same order; (ii) trace positivity, i.e., f ∈ R〈X〉 is trace positive if
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tr f(A) ≥ 0 for every n-tuple of real symmetric matrices A of the same order. Note that
positivity implies trace positivity while the converse is not true.

Helton [16] and McCullough [27] proved that a symmetric nc polynomial f is positive
if and only if it can be decomposed as a sum of hermitian squares (SOHS), that is, there
exist nc polynomials g1, . . . , gm such that f =

∑m
i=1 g

∗
i gi. We denote all nc polynomials

that admit SOHS decompositions as

Σ2 :=
{
f ∈ SymR〈X〉 | f =

m∑
i=1

g∗i gi, gi ∈ R〈X〉, m ≥ 1
}
.

For trace positivity there is no necessary and sufficient condition of this type but there
exists an important sufficient condition, obtained using cyclic equivalence to SOHS [18];
for a more example specific approach to certificates for trace positivity we refer to [36].
Nc polynomials f, g ∈ R〈X〉 are cyclically equivalent (f

cyc∼ g) if and only if there exist
nc polynomials pi, qi ∈ R〈X〉 such that

f − g =

k∑
i=1

(piqi − qipi).

We call an element of the form [p, q] := pq − qp, where p, q ∈ R〈X〉, a commutator.
Cyclically equivalent nc polynomials have equal trace if they are evaluated at the same n-
tuple of real symmetric matrices, since the trace of every commutator of matrices is zero.
Therefore if f is cyclically equivalent to SOHS, it is trace positive. We denote the set of nc
polynomials of this type by

Θ2 :=
{
f ∈ R〈X〉 | ∃g ∈ Σ2 : f

cyc∼ g
}
.

By definition, the elements in Θ2 are exactly the nc polynomials which can be written as
sums of hermitian squares with commutators.

Although any bivariate nc polynomial of degree at most 4 is trace positive if and only
if it is a sum of (four) squares with commutators [5, 8], there are trace positive nc polyno-
mials which are not members of Θ2. Probably the easiest example is the noncommutative
Motzkin polynomial, XY 4X+Y X4Y −3XY 2X+1 [18, Example 4.4]; see also Subsec-
tion 3.3.2. We also refer the reader to [19, Example 3.5] for more sophisticated examples
obtained by considering the BMV conjecture.

Cyclic equivalence is obviously an equivalence relation. It can be easily detected by
the following remark.

Remark 1.2 ([18]).

(a) For words v, w ∈ 〈X〉, we have v
cyc∼ w if and only if there are words v1, v2 ∈ 〈X〉

such that v = v1v2 and w = v2v1. That is, v
cyc∼ w if and only if w is a cyclic

permutation of v.

(b) Nc polynomials f =
∑
w∈〈X〉 aww and g =

∑
w∈〈X〉 bww (aw, bw ∈ R) are cyclically

equivalent if and only if for each word v ∈ 〈X〉,∑
w∈〈X〉

w
cyc
∼ v

aw =
∑

w∈〈X〉

w
cyc
∼ v

bw. (1.1)
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Example 1.3. Let f = 1 +X2 + 2X2Y − 2XY + 2XY 2X ∈ R〈X,Y 〉. Since

f = (X +XY )∗(X +XY ) + (1− Y X)∗(1− Y X) + [X2 −X,Y ] + [XY, Y X]

it follows that

f
cyc∼ (X +XY )∗(X +XY ) + (1− Y X)∗(1− Y X),

and therefore f ∈ Θ2.

1.2 Motivation and related work

There is s surge of interest in free real algebraic geometry in the last decade, partially due
to many facets of applications. A nice survey on connections to control theory, systems
engineering and optimization is given by de Oliveira, Helton, McCullough, Putinar [13].
Applications to quantum physics are explained e.g. by Pironio, Navascués, Acín [32] who
also consider computational aspects related to sums of hermitian squares. On the theoreti-
cal level, trace positive nc polynomials arise e.g. in the Lieb-Seiringer reformulation of the
famous Bessis-Moussa-Villani (BMV) conjecture [2] from statistical quantum mechanics,
which was recently proved by Stahl [39]. This connection will be explained in detail later
to demonstrate the usage of our proposed algorithm. In addition, trace positive nc poly-
nomials occur naturally in von Neumann algebras and functional analysis. For instance,
Connes’ embedding problem [12] on finite II1-factors is a question about the existence of
a certain type of sum of hermitian squares certificates for trace positive nc polynomials
[18]. Motivated by this intensive research in free real algebraic geometry we have devel-
oped NCSOStools [10] – an open source Matlab toolbox for solving such problems using
semidefinite programming. As a side product our toolbox implements symbolic computa-
tion with free noncommuting variables in Matlab.

1.3 Contribution

The main contribution of this paper is the following. Once we know that a given rational nc
polynomial f can be decomposed as a sum of hermitian squares (with commutators), i.e.,
we have numerical evidence for the existence of such a decomposition, we aim to obtain an
exact (rational) certificate. Following ideas from [31] (see also [17]) we propose an algo-
rithm which under a strict feasibility assumption theoretically and practically always yields
a rational certificate. On the other hand, in the absence of strict feasibility, a variant of the
facial reduction [3] (in our case projecting onto the orthogonal complement of the nullspace
of the analytic center) is used to reduce the size of the semidefinite program and enforce
the existence of Slater points. We employ the noncommutative version of Motzkin’s poly-
nomial to demonstrate how the proposed algorithm as implemented in NCSOStools is
used and provide new rational certificates for some instances of nc polynomials related to
the Bessis-Moussa-Villani conjecture.

2 Nc polynomials and semidefinite programming
2.1 Semidefinite programming

Semidefinite programming (SDP) is a generalization of linear programming (LP) where
one looks for the optimum of a linear function over the intersection of an affine subspace
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with the cone of positive semidefinite matrices. Although this is a far-reaching extension of
LP, there exists several methods that can solve semidefinite programs efficiently in theory
and practice. Given s×s self-adjoint matrices C, A1, . . . , Am of the same size over R and
a vector b ∈ Rm, we formulate a semidefinite program in standard primal form as follows:

inf 〈C,G〉
s. t. 〈Ai, G〉 = bi, i = 1, . . . ,m

G � 0.
(PSDP)

Here 〈·, ·〉 stands for the standard inner product of matrices: 〈A,B〉 = tr(B∗A), andG � 0
means that G is positive semidefinite. If C = 0 or if C is not important, we call such a
problem a semidefinite programming feasibility problem:

G � 0,
s. t. 〈Ai, G〉 = bi, i = 1, . . . ,m.

(FSDP)

The complexity of solving semidefinite programs is mainly determined by the order s
of matrix variable G and the number of linear constraints m. Given ε > 0, the interior
point methods can find an ε-optimal solution with polynomially many iterations, where
each iteration takes polynomially many real number operations, provided that (PSDP) and
its dual both have non-empty interiors of feasible sets and we have good initial points.
The variables appearing in these polynomial bounds are s,m and log ε (cf. [40, Chapter
10.4.4]).

Many problems in control theory, system identification and signal processing can be
formulated using SDPs [4, 30, 1]. Combinatorial optimization problems can often be mod-
eled or approximated by SDPs [14, 23, 34, 35, 33]. SDP has important role in real algebraic
geometry, where it is used e.g. for finding sums of squares decompositions of polynomials
or approximating the moment problem [22, 21, 26, 24], and in free real algebraic geometry
[18, 20, 6], as is recalled in the following subsection.

2.2 Sums of hermitian squares (with commutators) and semidefinite programming

Testing whether a given nc polynomial f ∈ R〈X〉 is an element of Σ2 can be done ef-
ficiently by using semidefinite programming [20, 10]. This is the Gram matrix method,
which is based on the following proposition [16, 28], the noncommutative version of the
classical result for commuting variables.

Proposition 2.1. Suppose the nc polynomial f ∈ SymR〈X〉 is of degree ≤ 2d and let Wd

be the vector of all words w ∈ 〈X〉 of degree ≤ d. Then f ∈ Σ2 if and only if there exists
a positive semidefinite matrix Gf (called a Gram matrix for f) satisfying f = W ∗dGfWd.

Example 2.2. Take f = 1 +X2 +XY +Y X+ 4Y X2Y +Y 2 and let V = [1 X Y
XY ]t be a subvector of W2. Then the Gram matrix for nc polynomial f corresponding to
the vector V is

G(u) :=


1 0 0 u
0 1 1− u 0
0 1− u 1 0
u 0 0 4

 .
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The question is: does there exist (at least one) u such that G(u) is a positive semidefinite
matrix? Since G(2) = CtC for

C =

[
1 0 0 2
0 1 −1 0

]
,

it follows that f = (1 + 2XY )∗(1 + 2XY ) + (X − Y )∗(X − Y ) ∈ Σ2.

As we saw in the last example we can sometimes replace Wd with a smaller subvector
in the Gram matrix method. An algorithm (the Newton chip method) for reducing the size
of needed word vector is presented in [20] and is implemented in NCSOStools. See also
[29] for a strengthening.

Similarly we can use semidefinite programming to test whether a given nc polynomial
f ∈ R〈X〉 is an element of Θ2 as first observed in [19], see also [10, 7, 6]. The method
behind it is a variant of the Gram matrix method:

Proposition 2.3. Suppose that an nc polynomial f ∈ R〈X〉 is of degree ≤ 2d and let Wd

be as above. Then f ∈ Θ2 if and only if there exists a positive semidefinite matrix Gf
(called a tracial Gram matrix for f) such that f

cyc∼ W ∗dGfWd.

Again we can sometimes replace the full word vector Wd with a smaller subvector. An
algorithm (the Newton cyclic chip method) for reducing the size of needed word vector is
presented in [6] and is implemented in NCSOStools.

Following Proposition 2.1, we can decide whether an nc polynomial f is a sum of
hermitian squares by solving a semidefinite programming feasibility problem in the matrix
variable G, where the constraints 〈Ai, G〉 = bi are implied by the fact that for each product
of monomials w ∈ {p∗q | p, q ∈W} the following must be true:∑

p,q∈W
p∗q=w

Gp,q = aw, (2.1)

where aw is the coefficient of w in f (aw = 0 if the monomial w does not appear in f ).
Since any input nc polynomial f is symmetric (so aw = aw∗ for all w), the corresponding
SDP feasibility problem is as follows:

G � 0
s. t. 〈Aw, G〉 = aw + aw∗ ∀w ∈ {p∗q | p, q ∈W}, (SOHSSDP)

where Aw = Aw∗ is the symmetric matrix defined by

(Aw)u,v =

 2; if u∗v ∈ {w,w∗}, w∗ = w,
1; if u∗v ∈ {w,w∗}, w∗ 6= w,
0; otherwise.

Similarly, following Proposition 2.3, an nc polynomial f is cyclically equivalent to a
sum of hermitian squares if and only if there exists a positive semidefinite matrix G such
that f

cyc∼ W ∗GW . Again, this is an SDP feasibility problem (FSDP) in the matrix variable
G, where the constraints 〈Ai, G〉 = bi are essentially equations (1.1), i.e., for each product
of monomials v ∈ {p∗q | p, q ∈W} the following must be true:∑

p,q∈W
p∗q

cyc∼ v

Gp,q =
∑
w

cyc∼ v

aw. (2.2)
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The SDP feasibility problem is as follows [6, Corollary 4.5]:

G � 0,

s. t.
∑

p,q, p∗q
cyc
∼ v

∨ p∗q
cyc
∼ v∗

〈Av, G〉 =
∑
w

cyc∼ v

(aw + aw∗), ∀v ∈W (CSOHSSDP)

where Av = Av∗ is the symmetric matrix defined by

(Av)p,q =

 2; if p∗q
cyc∼ v & p∗q

cyc∼ v∗,

1; if p∗q
cyc∼ v & p∗q 6cyc∼ v∗,

0; otherwise.

Remark 2.4. Finding a Gram matrix for the sum of hermitian squares (and commuta-
tors) decomposition problem by solving (SOHSSDP) and (CSOHSSDP) gives a solution of
highest rank since under a strict feasibility assumption the interior point methods yield so-
lutions in the relative interior of the optimal face, which is in our case the whole feasibility
set. If strict complementarity is additionally provided, the interior point methods lead to
the analytic center of the feasibility set [15].

Alternately, we can consider these SDP problems as usual SDP problems by using a
non-zero choice of C. The choice C = I is a commonly used heuristic for matrix rank
minimization [37], and it tends to give sum of hermitian squares (and commutators) with a
small number of hermitian squares.

Even though the above assumptions do not always hold for the instances of SDPs we
construct, in our experiments the choiceC = 0 in the objective function almost always gave
a solution of higher rank than the choiceC = I . High ranks are desired and exploited when
trying to compute a rational (exact) Gram matrix from numerical solution of (SOHSSDP)
and (CSOHSSDP).

3 Rational sums of hermitian squares and facial reduction
In this section particular emphasis is given to the extraction of rational certificates if the
input data is rational. We present several examples illustrating our results, e.g. concerning
the recently proven BMV conjecture [39] from statistical physics (Subsection 3.3.1) and
the noncommutative Motzkin polynomial (Subsection 3.3.2).

3.1 Rational sums of hermitian squares

Consider a feasibility SDP in primal form (FSDP) and assume the input data Ai, bi is
rational for i = 1, . . . ,m. If the problem is feasible, does there exist a rational solution? If
so, can one use a combination of numerical and symbolic computation to produce one?

Example 3.1. Some caution is necessary, as a feasible SDP of the form (FSDP) need not
admit a rational solution. For a simple concrete example, note that[

2 x
x 1

]
⊕

x 1 0
1 x 1
0 1 x

 � 0 ⇔ x =
√

2.

In fact there are commutative polynomials with rational coefficients that are sums of squares
of polynomials over the reals, but not over the rationals (see [38]). Adapting an example of
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Scheiderer, we obtain an nc polynomial with rational coefficients that is cyclically equiv-
alent to a sum of hermitian squares of nc polynomials over the reals, but not over the
rationals:

f = 1 +X3 +X4 − 3

2
XY − 3

2
Y X − 4XYX + 2Y 2 + Y 3 +

1

2
XY 3 +

1

2
Y 3X + Y 4.

This is a dehomogenized and symmetrized noncommutative version of the (commutative)
polynomial from [38, Theorem 2.1] (setting x0 = 1, x1 = X and x2 = Y ). So f is
not cyclically equivalent to a sum of hermitian squares with rational coefficients. By [38,
Theorem 2.1], f |R2 ≥ 0. Together with the fact that f is cyclically sorted, [18, Proposition
4.2] implies that f is trace positive. Since f is of degree 4 in two variables it is a sum of
hermitian squares with commutators [5, 8] (with real coefficients).

On the other hand, if (FSDP) admits a feasible positive definite solution, then it admits
a (positive definite) rational solution. More exactly, we have the following:

Theorem 3.2 (Peyrl & Parrilo [31]). If an approximate feasible point G0 for (FSDP) sat-
isfies

δ := min(eig(G0)) > ‖(〈Ai, G0〉 − bi)i‖ =: ε, (3.1)

then a (positive definite) rational feasible point G exists. It can be obtained from G0 in the
following two steps (cf. Figure 1):

(1) compute a rational approximation G̃ ofG0 with τ := ‖G̃−G0‖ satisfying τ2+ε2 < δ2;

(2) project G̃ onto the affine subspace L given by the equations 〈Ai, G〉 = bi to obtain G.

δ

τG̃

G

PsD

L

ε
G0

Figure 1: Rounding and projecting to obtain a rational solution

Note that the results in [31] are stated for SDPs arising from sum of squares problems,
but their results carry over verbatim to the setting of (the seemingly more) general SDPs.
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The rationalization scheme based on this Peyrl-Parrilo technique has been implemented in
NCSOStools; see Example 3.5 for a demonstration.

3.2 Facial reduction

Not all is lost, however, if the SDP solver gives a singular feasible point G0 for (FSDP).
Suppose that z is a rational nullvector forG0. Let P be a change of basis matrix containing
z as a first column and a (rational) orthogonal basis for the orthogonal complement {z}⊥
as its remaining columns. Then

P tG0P =

[
0 0

0 Ĝ0

]
,

i.e.,

G0 = P−t
[
0 0

0 Ĝ0

]
P−1

for some symmetric Ĝ0. Hence

bi = 〈Ai, G0〉 = tr(AiG0) = tr

(
AiP

−t
[
0 0

0 Ĝ0

]
P−1

)
= tr

(
P−1AiP

−t
[
0 0

0 Ĝ0

])
.

So if

P−1AiP
−t =

[
ai cti
ci Âi

]
then Âi is a symmetric matrix with rational entries and

bi = tr

([
ai cti
ci Âi

] [
0 0

0 Ĝ0

])
= tr(ÂiĜ0) = 〈Âi, Ĝ0〉.

We have established a variant of the facial reduction [3] which applies whenever the
original SDP is given by rational data and has a singular feasible point with a rational
nullvector:

Theorem 3.3. Let (FSDP), Âi and Ĝ0 be as above. Consider the feasibility SDP

Ĝ � 0

s. t. 〈Âi, Ĝ〉 = bi, i = 1, . . . ,m
(FSDP’)

(1) (FSDP’) is feasible if and only if (FSDP) is feasible.

(2) (FSDP’) admits a rational solution if and only if (FSDP) does.

3.3 Examples

3.3.1 BMV conjecture

In their 2004 paper [25], Lieb and Seiringer gave the following purely algebraic reformula-
tion of the Bessis-Moussa-Villani (BMV) conjecture [2] from quantum statistical physics,
which was recently proved in the original formulation by Stahl [39]:



252 Ars Math. Contemp. 9 (2015) 243–259

Conjecture 3.4. For all positive semidefinite matrices A and B and all m ∈ N, the poly-
nomial p(t) := tr((A+ tB)m) ∈ R[t] has only nonnegative coefficients.

The coefficient of tk in p(t) for a givenm is the trace of Sm,k(A,B), where Sm,k(A,B)
is the sum of all words of length m in the letters A and B in which B appears exactly k
times. For example, S4,2(A,B) = A2B2 +ABAB+AB2A+BABA+B2A2 +BA2B.
Thus Sm,k(X,Y ) is an nc polynomial; it is the sum of all words in two variables X,Y of
degree m in which Y appears exactly k times.

Even though the motivating conjecture was proved, the related questions concerning nc
polynomials remain interesting. In the last few years there has been much activity around
the following question: which pairs (m, k) does Sm,k(X2, Y 2) ∈ Θ2 or Sm,k(X,Y ) ∈
Θ2 hold for? An affirmative answer (for all m, k) to the former would imply the BMV
conjecture. This question has been resolved completely (see e.g. [19, 11, 9]), however
only finitely many nontrivial Sm,k(X2, Y 2) admit a Θ2-certificate. Adding to the current
state of knowledge (nicely summarized in [11]), we shall use our computer algebra system
NCSOStools to establish S10,2(X,Y ) ∈ Θ2 and S14,6(X,Y ) 6∈ Θ2. We also show that
S2m,2(X,Y ) ∈ Θ2 holds for all m ∈ N.

Example 3.5. Consider the nc polynomial f = S10,2(X,Y ), i.e., the sum of all words of
degree 10 in the nc variables X and Y in which Y appears exactly twice. To prove that
f ∈ Θ2 with the aid of NCSOStools, proceed as follows:

(1) Define two noncommuting variables:

>> NCvars x y

(2) Our nc polynomial f is constructed using BMV(10,2). For a numerical test whether
f ∈ Θ2, run

>> p.obj = 0;
>> [IsCycEq,G0,W,sohs,g,SDP_data] = NCcycSos(BMV(10,2),p);

Using the SDP solver SDPT3, this yields a floating point Gram matrix G0

G0 =


5.0000 2.5000 −1.8851 0.8230 −0.0899
2.5000 8.7702 1.6770 −2.7313 0.8230
−1.8851 1.6770 10.6424 1.6770 −1.8851
0.8230 −2.7313 1.6770 8.7702 2.5000
−0.0899 0.8230 −1.8851 2.5000 5.0000


for the word vector

W =
[
X4Y X3Y X X2Y X2 XYX3 Y X4

]t
.

The rest of the output: IsCycEq= 1 since f is (numerically) an element of Θ2; sohs
is a vector of nc polynomials gi with f

cyc∼
∑
i g
∗
i gi = g; SDP_data is the SDP data

for (2.2) constructed from f .

(3) To round and project the obtained floating point solution G0 following Theorem 3.2,
feed G0 and SDP_data into RprojRldlt:
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>> [G,L,D,P,err]=RprojRldlt(G0,SDP_data,true)

This produces a rational Gram matrix G for f with respect to W and its LDU decom-
position PLDLtP t, where P is a permutation matrix, L lower unitriangular, and D
a diagonal matrix with positive entries. We caution the reader that L,D, and G are
cells, each containing numerators and denominators separately as a matrix. Finally, the
obtained rational sum of hermitian squares certificate for f = S10,2(X,Y ) is

f
cyc∼

5∑
i=1

λig
∗
i gi

for

g1 = X2Y X2 +
7

44
X3Y X +

7

44
XYX3 − 2

11
X4Y − 2

11
Y X4

g2 = X3Y X − 577

1535
XYX3 +

408

1535
X4Y +

188

1535
Y X4

g3 = XYX3 +
11909

45984
X4Y +

7613

15328
Y X4

g4 = X4Y − 296301

647065
Y X4

g5 = Y X4

and

λ1 = 11, λ2 =
1535

176
, λ3 =

11496

1535
, λ4 =

647065

183936
, λ5 =

1242629

647065
.

This example is not surprising, as it is a particular instance of a larger pattern:

Proposition 3.6. For all m ∈ N we have: S2m,2(X,Y ) ∈ Θ2.

Proof. We first point out that for all m ∈ N we have

S2m,2(X,Y ) =
∑

α+β≤2m−2

XαY XβY X2m−2−α−β

cyc∼
2m−2∑
t=0

(2m− 2− t+ 1)Y XtY X2m−2−t

cyc∼
1

2

2m−2∑
t=0

(2m− 2− t+ 1)(Y XtY X2m−2−t + Y X2m−2−tY Xt)

=
1

2

2m−2∑
t=0

(
(2m− 2− t+ 1)Y XtY X2m−2−t + (t+ 1)Y XtY X2m−2−t

)
cyc∼ m

2m−2∑
t=0

Y XtY X2m−2−t.
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Note that for t = 2s we have Y XtY X2m−2−t cyc∼ Xm−s−1Y X2sY Xm−s−1 ∈ Σ2, hence
we next turn our attention to words Y XtY X2m−2−t for odd t. In such cases we write
t = 2s+ 1 and observe that

Y X2s+1Y X2m−3−2s

cyc∼
1

2

(
(Xs+1Y Xm−s−2 +XsY Xm−s−1)∗(Xs+1Y Xm−s−2 +XsY Xm−s−1)

)
− 1

2
Xm−s−2Y X2s+2Y Xm−s−2 − 1

2
Xm−s−1Y X2sY Xm−s−1.

Therefore each word with odd t is cyclically equivalent to a hermitian square minus two
hermitian squares. These two negative hermitian squares cancel out with the “even” words
for t = 2s and t = 2s+ 2. In fact, each word with odd t cancels one half of these two even
terms, hence all even terms finally cancel out and only one half of the first and the last even
term remains (these two terms are cyclically equivalent). Finally we get

S2m,2(X,Y )

cyc∼
m

2

2m−2∑
t=0

(Xs+1Y Xm−s−2 +XsY Xm−s−1)(Xs+1Y Xm−s−2 +XsY Xm−s−1)∗

+Xm−1Y 2Xm−1.

Example 3.7. We conclude this subsubsection by showing S14,6(X,Y ) 6∈ Θ2. We define
two noncommuting variables and run NCcycSos as in the previous examples:

>> NCvars x y
>> [IsCycEq,G0,V,sohs,g,SDP_data] = NCcycSos(BMV(14,6));

However, this seems to be an infeasible problem. In fact, we shall use the generated data
SDP_data to prove it is strongly infeasible by computing a rational hyperplane separating
Θ2 and S14,6(X,Y ). LetP be the set of all nc polynomials pwith degX p = mindegX p =
8 and degY p = mindegY p = 6. Obviously, S14,6(X,Y ) ∈ P . Each p ∈ P can be repre-
sented by a 35×35 Gram matrix using the basis V from given as output of NCcycSos. An
important observation is that p ∈ Θ2 if and only if there is a positive semidefinite matrix G
satisfying p

cyc∼ V ∗GV , cf. Proposition 2.3.
Let L : P → R be a linear ∗-map nonnegative on Θ2 ∩ P . It can be represented as

p 7→ 〈M,Gp〉 for a symmetric 35× 35 matrix M , where Gp is a Gram matrix for p. Since
L(Σ2) ⊆ [0,∞), the matrix M is positive semidefinite. The fact that L(f) = 0 for all
f

cyc∼ 0, can be modeled with constraints 〈M,H〉 = 0 for all H ∈ A⊥, cf. [9, Section
2.2]. Here, A⊥ is the orthogonal complement of the span of the Av from Section 2.2 in the
set of symmetric matrices. Clearly, it suffices to consider H from a linearly independent
generating subset C of A⊥.

To express L(S14,6(X,Y )) < 0, we first compute a Gram matrix for S14,6(X,Y ). The
matrix A = SDP_data.A and vector b = SDP_data.b model the linear constraints
〈Av, G〉 = bv for v ∈ 〈X,Y 〉 with degX v = 8,degY v = 6. Hence a symmetrized
solution of the linear system

>> SDP_data.A\SDP_data.b
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will be a Gram matrix G for S14,6(X,Y ). Now consider the feasibility SDP

M � 0
s. t. 〈M,G〉 = −35, ∀H ∈ C : 〈M,H〉 = 0.

(Here, −35 is just a convenient scaling factor.) Every feasible point induces a hyperplane
separating Θ2 and S14,6(X,Y ). Solving this SDP with SeDuMi (using the trivial objective
function C = 0) yields a floating point solution M0 in the relative interior of the optimal
face, see Remark 2.4, with minimal eigenvalue δ = 0.3426 and residual norm ε = 6.8 ·
10−9. Thus we can find a rational feasible solution M as explained in Theorem 3.2, using
RprojRldlt. This proves S14,6(X,Y ) 6∈ Θ2.

3.3.2 Noncommutative Motzkin polynomial

The nc polynomial

fMot(X,Y ) = XY 4X + Y X4Y − 3XY 2X + 1 ∈ R〈X,Y 〉

is a noncommutative version of the (commutative) Motzkin polynomial. The Motzkin poly-
nomial is a well-known example of a (commutative) polynomial which is nonnegative on
R2 but is not a sum of squares of polynomials. Similarly, fMot is an example of trace
positive nc polynomial which is not a member of Θ2 [18, Example 4.4]. Indeed, since the
(commutative) Motzkin polynomial is not a sum of squares of polynomials, fMot is not a
member of Θ2. An alternative proof for trace positivity of fMot(X,Y ) follows from the
fact that fMot(X

3, Y 3) ∈ Θ2, as we can show with the aid of the facial reduction procedure
from Subsection 3.2.

Example 3.8. Consider f = fMot(X
3, Y 3) = X3Y 12X3 + Y 3X12Y 3− 3X3Y 6X3 + 1.

To prove that f ∈ Θ2 with the aid of NCSOStools, proceed as follows:

(1) Define two noncommuting variables and the nc polynomial f :

>> NCvars x y
>> f = x^3*y^12*x^3 + y^3*x^12*y^3 - 3*x^3*y^6*x^3 + 1;

(2) Define a custom vector of monomials W

>> W = {’’; ’x*y*y’; ’x*x*y’; ’x*x*y*y*y*y’;
’x*x*x*x*y*y’; ’x*x*x*y*y*y*y*y*y’; ’x*x*x*x*y*y*y*y*y’;
’x*x*x*x*x*y*y*y*y’; ’x*x*x*x*x*x*y*y*y’};

(3) For a numerical test whether f ∈ Θ2, run

>> param.V = W;
[IsCycEq,G0,W,sohs,g,SDP_data] = NCcycSos(f,param);

This yields a floating point Gram matrix G0 that is singular.

(4) Try to round and project the obtained floating point solution G0, feed G0 and
SDP_data into RprojRldlt:
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>> [G,L,D,P,err] = RprojRldlt(G0,SDP_data)

This exits with an error, since unlike in Example 3.5, the rounding and projecting alone
does not yield a rational feasible point.

(5) Instead, let us reexamine G0. A detailed look at the matrix reveals three nullvectors.
We thus run our interactive procedure which aids the computer in reducing the size of
the SDP as in Theorem 3.3.

>> [G,SDP_data] = fac_reduct(f,param)

This leads the computer to return a floating point feasible point G0 ∈ R9×9 and the
data for this SDP, SDP_data. It also stays in interactive mode and the user can inspect
the matrix and enter the nullvector z to be used in the dimension reduction. We feed in
three nullvectors as a matrix of three columns:

K>> z = [0 -1 0; -1 0 0; 0 0 1; 0 -1 0; 0 -1 0; -1 0 0;
0 0 1; -1 0 0; 0 0 1];

return

Inside the interactive routine this enables the computer to produce a positive definite
feasible Ĝ0 ∈ R6×6. Hence we exit the interactive routine.

K>> stop = 1; return

Now, NCSOStools uses Ĝ0 to produce a rational positive semidefinite Gram matrix
G for f , which proves f ∈ Θ2. Like in the Example 3.5, the solution G is a cell
containing two matrices with numerators and denominators of the rational entries of
G. The reader can verify that f

cyc∼ W ∗GW exactly by doing rational arithmetic or
approximately by computing floating point approximation for G and using floating
point arithmetic.

(6) To compute the LDU decomposition PLDLtP t for the rational Gram matrix G of f
with respect to W (where G,L,D are cells, each containing numerators and denomi-
nators separately as a matrix) run

>> [L,D,P] = Rldlt(G)

The obtained rational sum of hermitian squares certificate for fMot(X
3, Y 3) is then

fMot(X
3, Y 3)

cyc∼
6∑
i=1

λig
∗
i gi
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for

g1 = 1− 1

2
X2Y 4 − 1

2
X4Y 2

g2 = XY 2 − 1

2
X3Y 6 − 1

2
X5Y 4

g3 = X2Y − 1

2
X4Y 5 − 1

2
X6Y 3

g4 = X2Y 4 −X4Y 2

g5 = X3Y 6 −X5Y 4

g6 = X4Y 5 −X6Y 3

and
λ1 = λ2 = λ3 = 1, λ4 = λ5 = λ6 =

3

4
.

Remark 3.9. We point out that this yields a rational sum of squares certificate for f̌(x3, y3)
where f̌(x, y) = 1 + x4y2 + x2y4 − 3x2y2 is the commutative Motzkin polynomial.

4 Conclusions
In this paper we considered nc polynomials p in freely noncommuting variables which can
be decomposed as a sum of hermitian squares (and commutators) with a special focus on
nc polynomials with rational coefficients that admit rational decompositions.

We explained how to obtain rational decompositions in theory and practice: if the re-
lated semidefinite programming problems have strictly feasible solutions then the algorithm
we proposed - a variant of Peyrl-Parrilo rounding and projecting method - always yields
a rational (i.e., exact symbolic) decomposition. In the absence of strict feasibility we pro-
posed a variant of the facial reduction to reduce the size of the semidefinite program and
enforce the existence of Slater points.

We implemented both methods in our open source software package NCSOStools
[10] and demonstrated them on several illustrative examples.
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