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Slovenščina 2.0, 1 (2): 1–34.

URL: http://www.trojina.org/slovenscina2.0/arhiv/2013/2/Slo2.0_2013_2_02.pdf.

Morphological analysis is a prerequisite for many natural language processing

tasks. For inflectionally rich languages such as Croatian, morphological analysis

typically relies on a morphological lexicon, which lists the lemmas and their

paradigms. However, a real-life morphological analyzer must also be able to

handle properly the out-of-vocabulary words. We address the task of predicting

the correct inflectional paradigm of unknown Croatian words. We frame this as

a supervised machine learning problem: we train a classifier to predict whether

a candidate lemma-paradigm pair is correct based on a number of string- and

corpus-based features. The candidate lemma-paradigm pairs are generated using

a handcrafted morphology grammar. Our aim is to examine the machine learning

aspect of the problem: we test a comprehensive set of features and evaluate the

classification accuracy using different feature subsets. We show that satisfactory

classification accuracy (92%) can be achieved with SVM using a combination

of string- and corpus-based features. On a per word basis, the F1-score is 53%

and accuracy is 70%, which outperforms a frequency-based baseline by a wide

margin. We discuss a number of possible directions for future research.

Keywords: computational morphology, paradigm prediction, machine learning, feature

selection, Croatian language.
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1 INTRODUCTION

Morphological analysis plays an important role in many natural language pro-

cessing applications. Typical morphological analysis tasks include the recogni-

tion of morphologically related words, stemming and lemmatization, segmenta-

tion of words into morphemes, and the labeling of morphemes with grammatical

features they express. Inflectionally rich languages, such as Slavic languages, are

notoriously challenging for morphological analysis as they are highly fusional

and abound with morphological syncretisms. For such languages, the word-

and-paradigm approach to morphology (Hockett 1954) seems to be the only

reasonable option. In traditional grammar, an inflectional paradigm is “a set

of all the inflected forms that a lexeme assumes” (Aronoff and Fudeman 2011).

A paradigm is typically represented as a table (in general, an n-dimensional

array, where n is the number of features) in which each cell corresponds to a

particular combination of grammatical features (cf. Table 1). Paradigms with

identical patterns of inflection can be grouped together and for each such group

a single paradigm can be chosen as an exemplary paradigm. Calder (1989) was

among the first to use paradigms in a computational model of morphology. In

his work, and most subsequent work related to paradigmatic morphology, the

word “paradigm” is used in a more technical sense (which we adopt here) to

denote a formal description of an inflectional pattern.

Morphological analysis of inflectionally rich languages typically relies on some

sort of morphological lexicon, which lists the stems or lemmas (the canonical

forms of lexemes) and their associated paradigms. However, the unavoidable

problem of lexicon-based morphological analysis is the limited lexicon coverage.

A real-life morphological analyzer must be able to deal in a satisfactory manner

with out-of-vocabulary words. In paradigmatic morphology, this means being

able to predict the correct inflectional paradigm of a given word-form.

In this article we address the task of predicting the lemma and the correct

inflectional paradigm (the description of an inflectional pattern) of unknown

Croatian words. We frame this as a supervised machine learning problem: we
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train a model that decides which lemma and paradigm are correct based on a

number of string- and corpus-based features. The model is used to disambiguate

the output of a morphology grammar. Given an unknown word-form as input,

we first generate the candidate lemma-paradigm pairs using the morphology

grammar, and then use the classifier to decide which pair is correct. This is in

contrast to most earlier approaches, which use handcrafted scoring functions

to decide on the correct paradigm. The aim of this article is to examine the

machine learning aspect of the problem: what the relevant features are and how

well we can do on this classification task. We carry out feature analysis and

evaluate the classification accuracy using different feature subsets. We show that

a satisfactory level of accuracy can be achieved with a combination of string- and

corpus-based features. Although our focus is on Croatian language, we believe

our results are applicable to other languages, especially Slavic languages.

The rest of the article is structured as follows. In the next section we give a

brief overview of related work. In Section 3 we define the problem of paradigm

prediction, while in Section 4 we describe the features used for building the

models. In Section 5 we analyze the features, evaluate the classification accuracy,

and discuss the results. Section 6 concludes the article and outlines future work.

2 RELATED WORK

Much work on paradigm prediction comes from research in part-of-speech (POS)

tagging and the related task of POS guessing (Mikheev 1997; Kupiec 1992). The

problem has also been addressed in the context of rule-based machine translation

(Esplá-Gomis et al. 2011). However, most work seems to address paradigm pre-

diction in relation to (semi-)automatic lexicon acquisition (Oliver 2003; Tadić

and Fulgosi 2003; Oliver and Tadić 2004; Clement et al. 2004; Sagot 2005;

Forsberg et al. 2006; Hana 2008; Šnajder et al. 2008; Adolphs 2008; Lindén

2009; Kaufmann and Pfister 2010; Esplá-Gomis et al. 2011). The basic idea is to

first use a lemmatizer to obtain the lemmas and paradigms for each word-form

from a corpus. Because of grammar ambiguity, this usually results in a number

[ 3 ]
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of possible candidates. Thus, the next step is to disambiguate the output of the

morphology grammar by assessing the plausibility of each lemma-paradigm

pair. This is most commonly done by generating the corresponding word-forms

and analyzing their corpus frequencies. An incorrect lemma-paradigm pair is

likely to produce linguistically invalid word-forms that will not be attested in the

corpus, and in this case a suitably designed corpus-based scoring function can

be used to decide which paradigm is correct. Some approaches use the web as

additional source of information (Oliver and Tadić 2004; Cholakov and Van No-

ord 2009). Moreover, some approaches use word-form properties to decide on

the correct paradigm: Forsberg et al. (2006) use handcrafted constraints, while

Segalovich (2003) guesses the stems and the paradigms based on morphological

similarity. Lindén (2009) uses both corpus-based features and lexicon-based

information to learn analogical relations with which lemmas and paradigms

of unknown words can be predicted. It is also possible to use context-based

information when analyzing the word-forms from corpus (Kaufmann and Pfister

2010). More recent approaches use machine learning to predict the stem and

the morphosyntactic features (Kaufmann and Pfister 2010).

Another line of research that has addressed the problem of paradigm induction

is unsupervised morphology learning (Hammarström and Borin 2011). Unsu-

pervised morphology learning aims to discover morphology descriptions from

unannotated data, for the purpose of, inter alia, deriving language descriptions,

bootstrapping morphological analyzers, and modeling language acquisition. The

seminal work is that of Goldsmith (2001), who extracts sets of stems and affixes

(so-called signatures), the latter bearing resemblance to paradigms, based on

minimum description length principle. In other work paradigms are typically

induced by clustering the word-forms from corpus and an analysis of their end-

ings (Nakov et al. 2004; Oliver 2003; Monson et al. 2008), possibly within a

probabilistic framework (Chan 2006; Dreyer and Eisner 2011).

In this work we do not consider the problem of unsupervised paradigm induction,

but instead address the task of paradigm prediction in a supervised setting. We
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Case Singular Plural

Nominative vojnik-∅ vojnic-i
Genitive vojnik-a vojnik-a
Dative vojnik-u vojnic-ima
Accusative vojnik-a vojnik-e
Vocative vojnič-e vojnic-i
Locative vojnik-u vojnic-ima
Instrumental vojnik-om vojnic-ima

Table 1: Inflectional paradigm of the Croatian noun vojnik (soldier). Stem-internal
changes (due to sibilarization and palatalization) are shown in bold.

are interested in building good models for paradigm prediction, assuming that

the training data is available. Our work focuses on the machine learning aspect

of the problem: we test a comprehensive set of features and carry out a detailed

evaluation of the models.

3 PROBLEM DEFINITION

The problem of predicting inflectional paradigms of (unknown) words can be

formulated as follows: given a word-form w, determine its stem s and the

corresponding inflectional paradigm p. For example, given word-form vojnika

(genitive singular/accusative singular/genitive plural form of the noun vojnik

(soldier)), we wish to determine that its stem is vojnik and that its paradigm

p is the one shown in Table 1. The corresponding paradigm is the one which,

when used with stem s, generates the valid word-forms of s, including word-form

w itself. The stem s and the paradigm p are tied together in the sense that s

functionally depends on p: in other words, given w, the inflectional paradigm

(possibly ambiguously) determines the stem of w.1 For example, if we know

that p is the paradigm of vojnika, we also know that the stem of vojnika is

1 Ambiguity arises in the presence of a non-bijective transformation from a stem to a word-form,
which gives rise to a non-functional inverse transformation back from the word-form to the stem.
A typical example in Croatian inflectional morphology are the morphologically conditioned stem-
internal changes that replace two or more distinct phonemes with one identical phoneme. A case in
point are the palatalization alternations k/č (vojnik→vojniče) and c/č (stric→striče). For details,
please refer to (Šnajder 2010).
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vojnik. Likewise, the stem and the inflectional paradigm (possibly ambiguously)

determine the lemma l. Thus, the problem of paradigm prediction actually

amounts to determining, for a given word-formw, its lemma l and the associated

inflectional paradigm l. In what follows, we call a pair (l, p), consisting of lemma

l and inflectional paradigm p, a lemma-paradigm pair, or an LPP for short.

We call an LPP (l, p) correct if (1) the lemma l is valid (it is an existing word of

the language and it is indeed a lemma) and (2) the paradigm p is the correct

paradigm for l; otherwise we call the LPP incorrect.

The difficulty in determining the correct inflectional paradigm arises from the

fact that for most word-forms there are many candidate LPPs – a large number

of possible stems can be combined with many paradigms defined for a language.

It should be emphasized that this will be the case even when using a handcrafted

morphology grammar. A morphology grammar can, of course, narrow down the

space of possibilities, but it cannot completely resolve the ambiguity because the

question of which stems combine with what paradigms is ultimately a lexical

one. Thus, in order not to discard a possibly valid hypothesis, a morphology

grammar will have to overgenerate. In view of this, the problem of paradigm

prediction is typically approached in two steps: (1) generation of LPP hypotheses

admissible by the grammar and (2) the selection of the correct LPP based on

grammar-external evidence. Note that, due to homography, some word-forms

will have more than one correct LPP. The selection of correct LPPs is typically

accomplished using some heuristic scoring mechanisms. Alternatively, as we do

in this article, selection can be framed as a classification problem.

3.1 LPP candidate generation

The first step in paradigm prediction is the generation of LPP candidates using

a morphology grammar (an inflectional morphology model). We assume that

the grammar is generative (capable of generating word-forms given a lemma)

and reductive (capable of reducing a word-form to a stem); consequently, by

compositionality we assume that the grammar is capable of lemmatizing a given
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word-form. We can abstract this functionality with two functions:

wfs(l, p) 7→
{
(w1, t1), (w2, t2), . . . , (wn, tn)

}
(1)

which, given a LPP, generates a set of word-formsw1, . . . , wn paired up with the

corresponding morphological tags t1, . . . , tn, and

lm(w) 7→
{
(l1, p1), (l2, p2), . . . , (lm, pm)

}
(2)

which lemmatizes a word-form to a set of candidate LPPs. Note again that,

due to grammar ambiguity (and, in addition, due to homography), the result

of lemmatization is a set of LPP candidates. Moreover, again due to grammar

ambiguity, a single lemma li may be associated with more than one paradigm,

while one paradigm pi may be associated with more than one lemma.

As a concrete grammar implementation, in this work we use the Croatian Higher-

Order Functional Morphology (HOFM) grammar described by Šnajder and

Dalbelo Bašić (2008) and refined by Šnajder (2010). The grammar is based on

functional representation of word-form transformations and is implemented in

the functional programming language Haskell (Jones 2003).2 The current ver-

sion of the grammar uses 93 paradigms: 48 for nouns, 13 for adjectives, and 32

for verbs. The HOFM formalism uses a succinct representation of string-based

transformations, allowing for compact representation of more complex inflec-

tional paradigms. For example, a paradigm that involves stem-internal changes,

such as the one shown in Table 1, can be represented as a single paradigm,

without the need to factor it into several paradigms that operate on different

allomorphs of the stem. The reader is referred to (Šnajder and Dalbelo Bašić

2008; Šnajder 2010) for details.

At this point we should emphasize that our attention will be focused on paradigm

prediction for open-class words: nouns, adjectives, and verbs. Words with other

2 The Croatian HOFM grammar is available for download under the CC BY-NC-SA 3.0 license from
http://takelab.fer.hr/data/hofm
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part-of-speech (abbreviations, adpositions, conjunctions, interjections, particles,

numerals, pronouns) are less interesting in this respect because they constitute

a closed class and/or do not inflect. An exception are the ordinal numbers and

adverbs derived from adjectives, which are open-class words and inflect like

adjectives. These words could be covered by the adjective paradigms but would

need to be additionally disambiguated; we leave this for future work.

In HOFM , the morphological tags are encoded as MULTEXT-East descrip-

tors (Erjavec et al. 2003).3 MULTEXT-East encodes values of morphosyntactic

attributes in a single string, using positional encoding. Each attribute is repre-

sented by a single letter at a predefined position, while non-applicable attributes

are represented by hyphens. HOFM omits the values of those features that

cannot be deduced solely at the morphological level, such as noun type (com-

mon/proper) or animacy of nouns and adjectives. For example, descriptor "N-

msn" denotes a word-form that is a masculine noun in singular nominative case,

but whose type and animacy feature are unknown.4 As regards the verbs, the

current version of HOFM encodes the complete paradigms of main verbs, except

the aorist, imperfect, and passive forms. In HOFM, the passive forms are covered

by adjectival paradigms, i.e., the passive participle (which is used for building

both passive verb forms and adjective forms) is considered as part of the adjecti-

val paradigm.5 On the other hand, the aorist and imperfect forms were left out

because they are rather uncommon in contemporary texts.6 HOFM also accounts

for doubletes (morphological variants with identical grammatical features), quite

3 The current version of HOFM uses the now-outdated MULTEXT-East Version 3, described at
http://nl.ijs.si/ME/V3. The changes introduced by the current MULTEXT-East Version 4 are not
relevant for the work described in this article.
4 Notice that, for predicting the inflectional paradigms, we will only be using morphosyntactic
attributes whose values vary across the different word-forms of a word. We can therefore safely omit
all attributes that are constant across a paradigm, such as noun type or animacy.
5 Due to the existence of adjectival and adverbial participles in Croatian language, it is arguably
difficult to draw a demarcation line between verbs and adjectives/adverbs. In the current version of
HOFM, the verb paradigm includes the adverbial participles but excludes the adjectival participles.
In MULTEXT-East Version 3 and Version 4 the verb paradigm includes both types of participles,
whereas for the upcoming Version 5 (currently in a draft stage) it is proposed to exclude both types
from the verb paradigm. Each of these decisions has theoretical and practical implications.
6 This is also the case for our newspaper corpus. Notice, however, that extending HOFM to include
the aorist and imperfect forms would be straightforward.
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common for Croatian adjectives (e.g., the -og/oga and -om/omu/ome allo-

morphs in crvenog/crvenoga and crvenom/crvenomu/crvenome, respectively)

and nouns with stem changes (e.g., tvrtki/tvrtci).

As an example of word-form generation and lemmatization using the Croat-
ian HOFM, consider the following output of the interaction with the grammar
module:7

> wfs "vojnik" N04

[("vojnik","N-msn"),("vojnika","N-msg"),("vojnika","N-msa"),

("vojnika","N-mpg"),("vojniku","N-msd"),("vojniku","N-msl"),

("vojni£e","N-msv"),("vojnikom","N-msi"),("vojnici","N-mpn"),

("vojnici","N-mpv"),("vojnicima","N-mpd"),("vojnicima","N-mpl"),

("vojnicima","N-mpi"),("vojnike","N-mpa")]

> lm "vojnika"

[("vojnik",N01),("vojnikin",N03),("vojnik",N04),("vojniak",N05),

("vojniak",N06),("vojniko",N17),("vojniko",N19),("vojniko",N30),

("vojnik",N37),("vojnik",N41),("vojnika",N45),("vojniko",N20),

("vojnika",N28),("vojnika",N47),("vojnika",N29),("vojnike",N49),

("vojnikati",V17),("vojnik",A01),("vojnik",A06),("vojniak",A15),

("vojniki",A12),("vojniki",A13)]

The first example shows the generation of word-forms of lemma vojnik according

to paradigm N04 (the correct paradigm for this lemma).8 The second example

shows the reduction of word-form vojnika to a set of LPP candidates. Due to

grammar ambiguity, this particular word-form reduces to 22 LPP candidates,

of which only the third one is correct. Despite the fact that HOFM defines

applicability conditions for many paradigms (in the form of conditions imposed

on the stem), the level of ambiguity is still quite large. On average, each word-

form will be lemmatized to 17 candidate LPPs, among which there will be 7

distinct lemmas and 15 distinct paradigms.
7 Output is from the interactive sessions of the GHC interpreter; http://www.haskell.org/ghc/
8 In HOFM, paradigms are denoted as N01, N02, etc. for nouns, A01, A02, etc. for adjectives, and
V01, V02, etc. for verbs. There is no special meaning associated with the number of the paradigm.
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3.2 LPP classification

In the second step, given candidate LPPs generated by the grammar, we wish

to decide which one is correct. In a supervised setting, the problem may be cast

as (1) multiclass classification (choosing one LPP among many candidate LPPs),

(2) multilabel classification (choosing a number of LPPs among many candidate

LPPs),9 or (3) binary classification (deciding for each LPP from candidate LPPs

whether it is correct). The problem with (1) and (2) is that that the set of

possible classes cannot be straightforwardly defined. More precisely, in these

cases each class should correspond to a single LPP (not a single paradigm, as

a single paradigm can occur in different LPPs), so one should come up with

a way of representing these without actually encoding the lemma itself (e.g.,

by encoding the paradigm and the stem transformation). Another problem is

that not all such classes would be admissible by the grammar, so one would

need to find a way to include that information as well (at a cost of increased

complexity, this information could be fed to the classifier as a binary feature). An

additional, albeit less significant problem with (1) is that it does not account for

homographs (the cases in which a single word-form has more than one correct

LPP).10 Approach (3), in which binary decisions are made for each LPP candidate,

does not suffer from either of these problems and we shall adopt it here.

For classification, we use the support vector machine (SVM) (Vapnik 1999) with

a radial basis function (RBF) kernel. The SVM algorithm tends to outperform

other machine learning algorithms on a variety of learning problems. The RBF

kernel implicitly defines an infinite-dimensional feature space, and is thus a

good choice for problems for which the number of instances is much larger

than the number of features, which will be the case here. We use the LIBSVM

9 We adopt standard machine learning terminology, which distinguishes multiclass classification
(categorizing each instance into a single class from a set of more than two classes) from multilabel
classification (categorizing each instance into multiple classes simultaneously).
10This is not to say that a morphological analyzer can ignore homographs; on the contrary, a
morphological analyzer should treat homographs properly by providing all possible analyses. Proper
analysis of homographs, however, is not directly related to the task of paradigm prediction: even if
we limit ourselves to predicting only one paradigm per word-form, the so-acquired morphological
lexicon could still provide multiple analyzes for homographic word-forms.
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implementation of the SVM algorithm (Chang and Lin 2011).

As a source of training data, we use the semi-automatically acquired inflectional

lexicon from Šnajder et al. (2008).11 The lexicon was acquired from articles

comprising the newspaper section of the Croatian National Corpus totaling 20

million word form tokens (Tadić 2002). The lexicon contains 68,465 manually

verified LPPs for Croatian nouns, adjectives, and verbs. We will use a fraction

of this data for training and testing. It should be noted that the distribution of

LPPs in the lexicon with respect to the paradigms is very uneven; the ten least

frequent paradigms appear only 40 times in the lexicon, whereas the ten most

frequent paradigms appear over 50,000 times.

4 FEATURES

Given an LPP candidate generated by the grammar, we compute a set of features

based on which the LPP can be classified as either correct or incorrect. At

this point we make no attempt to define a minimal set of features; instead, we

use features that are easily computable and can be intuitively justified. We

distinguish between two groups of features: string-based and corpus-based.

4.1 String-based features

The string-based features are based on the orthographic properties of the lemma

or the stem. The intuition behind this is that incorrect LPPs tend to generate

ill-formed (or somewhat odd-formed) stems and lemmas. For example, there is

no adjective in Croatian language that ends in -kč; an LPP that would generate

such a stem could be discarded immediately. In fact, many paradigms defined in

traditional grammar books are conditioned on the stem ending, requiring that

it belongs to a certain group of phonemes or that it forms a consonant group.

Similarly, there are paradigms that are applicable only to one-syllable stems.

11 Alternatively, we could have used the Croatian Morphological Lexicon (Tadić and Fulgosi 2003),
but this would have been less straightforward because this lexicon uses a different set of paradigms
from HOFM.
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Slovenščina 2.0, 2 (2013)

With string-based features we aim to capture this information in an implicit and

less strict way.

We use a set of eleven string-based features:

1. EndsIn – the ending character of the stem;

2. EndsInCgr – a binary feature indicating whether the word-form ends in a

consonant group (two consecutive consonants);

3. EndsInCons – a binary feature indicating whether the word-form ends in

a consonant;

4. EndsInNonPals – a binary feature indicating whether the word-form ends

in a non-palatal (v, r, l, m, n, p, b, f, t, d, s, z, c, k, g, or h);

5. EndsInPals – a binary feature indicating whether the word-form ends in a

palatal (lj, nj, ć, d̄, č, dž, š, ž, or j);

6. EndsInVelars – a binary feature indicating whether the word-form ends in

a velar (k, g, or h);

7. LemmaSuffixProb – the probability P(sl|p) of lemma l having a 3-letter

suffix sl given inflectional paradigm p;

8. StemSuffixProb – the probability P(ss|p) of stem s having a 3-letter suffix

ss given inflectional paradigm p;

9. StemLength – the number of characters in the stem;

10. NumSyllables – the number of syllables in the stem;

11. OneSyllable – a binary feature indicating whether NumSyllables equals 1.

Notice that some features are overlapping. For example, the OneSyllable feature

is a stripped down version of the NumSyllables feature. While in general a more

expressive feature is preferred, the feature might just be too expressive and

confuse the model by overfitting it to the training data. To account for this, the

standard approach is to first consider all plausible features, some of which might

overlap, and then perform feature analysis to filter out the redundant features.

We turn to feature analysis in Section 5.2.

The features StemSuffixProb and LemmaSuffixProb can be seen as soft condi-
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Paradigm N Paradigm N Paradigm A

Suffix (ss) P(ss|N) Suffix (ss) P(ss|N) Suffix (ss) P(ss|A)

-ist 0.0196 -nik 0.5139 -ran 0.1694
-tor 0.0163 -jak 0.1389 -jen 0.1156
-ing 0.0143 -jek 0.0416 -van 0.0618
-ter 0.0196 -log 0.0416 -jiv 0.0565

-nov 0.0108 -lik 0.0278 -d̄en 0.0510

Table 2: Five most frequent 3-letter stem suffixes for noun paradigms N01 and N04 and
adjective paradigm A06 (estimates from a sample of morphological lexicon from Šnajder
et al. (2008)).

tions on stem and lemma endings, respectively. The intuition is that, if a stem or

lemma end in a suffix that is highly probable for a particular paradigm, then this

paradigm is likely to be the correct one. Conversely, if a stem or a lemma end in

a suffix that has rarely or never been observed for a stem or a lemma of a given

paradigm, it is very likely that the stem or the lemma are ill-formed and do not

belong to that particular paradigm. We obtain these probabilities as maximum

likelihood estimates from the morphological lexicon used for training. As an ex-

ample, consider Table 2, which shows five most frequent stem suffixes for noun

paradigms N01 and N04 and adjective paradigm A06.12 The probability distri-

butions are quite different for the three paradigms. Incidentally, for paradigm

N04 suffix -nik accounts for more than 51% of suffixes. Returning to our earlier

example from Section 3.1, we can use this information as a strong evidence that

LPP (vojnik,N04) is correct and that LPPs (vojnik,N01) and (vojnik,A06) are

both incorrect.

4.2 Corpus-based features

The second group of LPP features, the corpus-based features, are calculated

based on the frequencies of word-forms attested in the corpus. The general idea

12 Paradigm N01 describes the so-called “type a” declension of masculine nouns, such as izvor
(source) and ekran (screen). Paradigm N04 is similar to N01, except that it applies to stems ending
in k/g/h, which undergo a stem change, as exemplified by Table 1. Paradigm A06 describes the
inflection of qualificative adjectives with comparative suffix -iji, such as star (old) and loš (bad).
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is that a correct LPP should have more of its word-forms attested in the corpus

than an incorrect LPP. Instead of only looking at total counts of attested word-

forms, as proposed by Šnajder et al. (2008), one can also look at the distributions

of attested word-forms across the morphological tags. The intuition behind this

is that every inflectional paradigm has its own distribution of morphological tags,

and that a correct LPP will generate word-forms that obey such a distribution.

For instance, in case of a noun paradigm, we can expect a genitive word-form to

be far more frequent than a vocative word-form. Hence, an LPP that generates

more vocative word-forms than genitive word-forms is unlikely to be correct.

In what follows, we use #(w,C) to denote the number of occurrences of word-

formw in corpus C. Let T(p) denote the set of morphological tags of inflectional

paradigm p. Furthermore, let P(t|p) denote the probability distribution of mor-

phological tag t conditioned on the inflectional paradigm p, and let P(t|l, p)

denote the probability of morphological tag t generated by LPP (l, p). We obtain

these distributions as maximum likelihood estimates using the LPPs from the

inflectional lexicon L and word-form frequencies from corpus C:

P(t|p) =

∑
(l,p′)∈L; p′=p; (w,t′)∈wfs(l,p); t′=t #(w,C)∑
(l,p′)∈L; p′=p; (w,t)∈wfs(l,p) #(w,C)

(3)

P(t|l, p) =

∑
(w,t′)∈wfs(l,p); t′=t #(w,C)∑
(w,t)∈wfs(l,p) #(w,C)

(4)

Due to syncretism, an identical word-form may be associated with different

morphological tags. Because we do not perform POS tagging of the corpus, we

do not disambiguate such cases. Instead, we treat an ambiguous group of tags as

a single probabilistic outcome.

As an example, consider Table 3, where we show the probability distributions for

two paradigms, N01 and N04. Paradigm N01 has six groups of syncretic forms

(all forms are syncretic except singular instrumental case), while paradigm N04

has four such groups (see also Table 1). Notice, however, that the syncretism is

not shared among the two paradigms. Thus, the distribution of tags for the two
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Slovenščina 2.0, 2 (2013)

Paradigm N Paradigm N

Tags (t) P(t|N) P(t|l,N) Tags (t) P(t|N) P(t|l,N)

N-ms[n|a] 0.37 0.09 N-msn 0.29 0.06
N-m[sg|pg] 0.27 0.77 N-m[sg|sa|pg] 0.32 0.54

N-ms[d|l] 0.11 0.01 N-ms[d|l] 0.06 0.01
N-m[sv|pa] 0.05 0.11 N-msv 0.06 0

N-msi 0.07 0.02 N-msi 0.03 0.01
N-m[pn|pv] 0.11 0 N-mp[n|v] 0.14 0.23
N-mp[d|l|i] 0.02 0 N-mp[d|l|i] 0.05 0.07

N-mpa 0.05 0.08

JS divergence 3.68 0.79

Table 3: Distribution of morphological tags for noun paradigms N01 and N04 in the
corpus and the distributions of tags generated by two LPPs for lemma l = vojnik . Bottom
row shows the Jensen-Shannon divergence between the two pairs of paradigm and LPP
distributions.

paradigms is rather different, although all tags have non-negative probabilities.

The third and sixth column show the tag distribution conditioned on both the

paradigm and the lemma l = vojnik. From this we can see that, for example, if

vojnik is paired with the paradigm N01, the genitive case forms would have a

high probability of 0.77, while the probability of the same forms at the paradigm

level is only 0.27. Overall, tag distribution of N04 seems to provide a better fit

to lemma vojnik than tag distribution of N01. The similarity of distributions

P(t|p) and P(t|l, p) can be measured in a number of ways, one of them being

the Jensen-Shannon divergence. In this particular case, the Jensen-Shannon

divergence is much larger for paradigm N01 than for N04, providing supporting

evidence that N04 is the correct paradigm.

We use the following nine corpus-based features:

1. LemmaAttested – a binary feature indicating whether the lemma is attested

in the corpus, i.e., #(l, C) > 0;

2. Score0 – the number of corpus-attested word-form types generated by the

[ 15 ]
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LPP:

score0(l, p) = |wfs ′(l, p) ∩ C|

3. Score1 – the sum of corpus frequencies of word-forms generated by the

LPP:

score1(l, p) =
∑

w∈wfs ′(l,p)

#(w,C)

4. Score2 – the proportion of corpus-attested word-form types generated by

the LPP:

score2(l, p) =
|wfs ′(l, p) ∩ C|
|wfs ′(l, p)|

5. Score3 – the product of paradigm-conditioned distribution of morphologi-

cal tags and the distribution of tags generated by the LPP:

score3(l, p) =
∑
t∈T(p)

P(t|p) × P(t|l, p)

6. Score4 – the expected number of corpus-attested word-form types gener-

ated by the LPP:

score4(l, p) =
∑
t∈T(p)

P(t|p) ×min
(
1,#(w,C)

)
7. Score5 – the Kullback-Leibler divergence between the paradigm-conditioned

distribution of morphological tags, p1(t) = P(t|p), and the distribution of

tags generated by the LPP, p2(t) = P(t|l, p):

score5(l, p) = −
∑
t∈T(p)

P(t|p) × ln
P(t|l, p)
P(t|p)

= KL(p1||p2)

8. Score6 – the Jensen-Shannon divergence between the aforementioned

distributions:

score6(l, p) =
1
2
KL(p1||p2) +

1
2
KL(p2||p1)
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9. Score7 – the cosine similarity between the aforementioned distributions:

score7(l, p) =

∑
t∈T(p) p1(t) × p2(t)√∑

t∈T(p) p1(t)
2 ×
∑
t∈T(p) p2(t)

2

We computed the above features on the Vjesnik newspaper corpus, spanning

years 1999 through 2009 and totaling about 400K word-form types and about

55M word-form tokens. Stop words (function words, including all closed-class

words) and words occurring less than tree times in the corpus were filtered out

to reduce the noise.

4.3 Other features

Besides the string- and corpus-based features, we also use the following two

features:

1. ParadigmId – a categorical (multinomial) feature denoting the LPP’s

inflectional paradigm;

2. POS – the part-of-speech of the LPP’s inflectional paradigm (noun, adjec-

tive, or verb).

The intuition behind ParadigmId feature is that we expect a functional de-

pendence to exist between the paradigm and the values of other features, and

having ParadigmId as a feature allows the model to exploit this dependence.

For example, it is reasonable to expect that endsInCons feature is relevant only

for a subset of paradigms that are applicable to stems ending in a consonant.

Similarly, we can expect the Score2 feature to be less indicative for adjectival

paradigms, because the proportion of corpus-attested word-form types will gen-

erally be lower for adjectives than for other parts-of-speech because comparative

and superlative word-forms are less frequent in the corpus.13 The same line of

reasoning holds for the POS feature.

13 Note that corpus-based features based on conditional probability P(t|p) do encode this depen-
dence. Nonetheless, the relevance and reliability of such features might vary across paradigms, thus
encoding ParadigmId as a separate feature might still be helpful.

[ 17 ]
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5 EVALUATION

In this section we turn to the evaluation of the paradigm prediction models. The

purpose of evaluation is twofold: apart from determining how accurately we can

predict the inflectional paradigms, we also wish to analyze what features are

most useful for this task. We continue by first describing the data set, followed

by feature analysis and evaluation of classification accuracy.

5.1 Data set

We compiled the data set for training and testing from the aforementioned in-

flectional lexicon from Šnajder et al. (2008). We sampled from the lexicon 5,000

LPPs for training and 5,000 LPPs for testing, with at least one attested word-

form in the corpus. Because the distribution of paradigms is very uneven, we

used stratified sampling with respect to the inflectional paradigms. Furthermore,

we ensured that there is no LPP that appears in the test set, but does not appear

in the training set, as otherwise the probability distributions would be undefined.

Table 4 shows the distributions and coverage of noun, adjective, and verb

paradigms in the test set. The distributions follow a power-law distribution; the

five most-frequent paradigms for each part-of-speech account for over 77% of

types in the data set and cover over 75% word-form tokens in the corpus. Nouns

make up the majority of the lexicon (67%), followed by adjectives (22.6%), and

verbs (10.4%). In the corpus, however, the proportion of verbs (25.8%) is larger

than that of adjectives (19.2%), again with a clear prevalence of nouns (55%).

To generate the negative training and testing instances, we proceeded as follows.

For each LPP, we generate all word-forms using the function wfs (cf. Section 3.1).

Then, for all corpus-attested obtained word-forms, we generate the candidate

LPPs using the function lm, and filter out those LPPs that exist in the lexicon.

This generates a large number of incorrect LPPs, from which we again sample

5,000 for training and 5,000 for testing. Thus we end up with 10,000 LPPs

(5,000 correct and 5,000 incorrect) in both the training and test set. Given
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Nouns Adjectives Verbs

Id Count Cov.% Id Count Cov.% Id Count Cov.%

N01 920 12.3 A06 372 6.3 V17 194 11.5
N28 729 14.6 A08 329 5.0 V16 151 7.4
N22 309 4.0 A04 265 4.0 V27 32 2.2
N37 242 1.5 A10 105 0.2 V32 29 1.5
N33 142 1.5 A12 33 1.6 V13 26 1.5
N02 104 2.2 A14 8 0.3 V14 11 0.1
N10 78 1.1 A13 7 0.9 V25 9 0.1
N41 76 4.3 A11 4 0.2 V23 9 0.3
N15 75 1.0 A01 4 0.5 V21 7 0.2
N04 72 3.4 A09 2 ∼0 V20 6 0.1
N39 68 0.6 A15 1 ∼0 V11 6 0.1
N16 67 0.2 A07 1 0.1 V08 6 ∼0
N07 62 0.9 A03 1 0.1 V02 6 ∼0
N21 58 0.4 V01 6 0.1
N17 56 0.3 V24 4 0.2
N30 55 1.1 V15 4 0.2
N29 45 2.6 V09 3 0.1
N23 25 0.1 V30 2 0.1
...

...
...

...
...

...

Total 3350 55.0 1132 19.2 518 25.8

Table 4: Frequency-sorted lists of noun, adjective, and verb paradigms from the test set.
Cov.% denotes the proportion of word-form tokens in the corpus covered by each of the
paradigm.

the number of classes and features (a total of 146 binary-encoded features),

the amount of training data ought to be sufficient; a larger training set would

unnecessary increase the time required for training. Notice that the training set

contains correct and some incorrect LPPs for each sampled word-form, while

the test set contains LPPs obtained from word-forms that did not appear in the

training set. Also notice that the number of positive and negative instances is

artificially balanced; a realistic data set would contain about 17 incorrect LPPs

for each correct LPP. We chose to balance the data set because SVM tends to

perform poorly on imbalanced data sets (Wu and Chang 2003).

[ 19 ]



Slovenščina 2.0, 2 (2013)

5.2 Feature analysis

Some of the features we defined are redundant or perhaps irrelevant for LPP

prediction. Because in absolute terms the number of features is not large, we

need not perform feature analysis in order to reduce this number. Instead, the

purpose of our feature analysis is to gain insight into what features are useful for

paradigm prediction.

For feature analysis we used the open source tool Weka (Hall et al. 2009). We

used three univariate filtering methods: information gain (IG), gain ratio (GR),

and the RELIEF method. The univariate filtering methods determine the rele-

vance of features based on the intrinsic properties of the data; a statistical test is

applied to each individual feature in order to determine its importance, features

are ranked accordingly, and a desired number of top-ranked features is then

chosen. Among the three considered methods, RELIEF (Kira and Rendell 1992;

Kononenko 1994) is probably the most efficient. RELIEF works by iteratively

estimating the feature weights based on their ability to discriminate between

neighboring instances in the input space.14

Table 5 summarizes the feature analysis results. We lists feature rankings ob-

tained on the training set, with first five ranks shown in bold. The first two

methods produced similar rankings: among string-based features, suffix proba-

bilities are ranked the highest, and among corpus-based features, feature Score5

is often ranked high, while ranks of other features vary. There are a number

of features that are low-ranked (rank > 10) by each of the three methods: the

five EndsIn* features, NumSyllables, OneSyllable, StemLength, Score1, Score3,

and POS. Individually, these features seem to be less relevant for paradigm

prediction, according to the methods we used.

The univariate methods do not measure the dependencies between the fea-

tures, thus they cannot detect feature redundancy. We therefore also analyzed

14 More recently, Sun and Li (2006) have shown that RELIEF is less heuristic than initially thought,
and in fact solves a margin optimization problem based on the nearest neighbor classifier.
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Ranking FSS

Feature IG GR RELIEF CFS CSS

String-based features
EndsIn 12 13 2 ×
EndsInCgr 21 21 11 ×
EndsInCons 17 15 20
EndsInNonpals 22 22 19
EndsInPals 19 18 21
EndsInVelars 20 19 18
LemmaSuffixProb 2 2 3 ×
NumSyllables 14 14 12 ×
OneSyllable 16 17 17 ×
StemLength 15 16 15 ×
StemSuffixProb 1 1 6 × ×

Corpus-based features
LemmaAttested 11 3 8 ×
Score0 8 4 16 ×
Score1 13 12 22 ×
Score2 6 8 5 ×
Score3 10 11 13 ×
Score4 9 10 14
Score5 4 5 4
Score6 3 6 9 ×
Score7 5 7 7 ×

Other features
ParadigmId 7 9 1 ×
POS 18 20 10

Table 5: Feature selection analysis with univariate filtering (Ranking) and multivariate
feature subset selection (FSS).

the features using two multivariate feature subset selection (FSS) methods:

correlation-based feature selection (CFS) (Hall 1998) and consistency subset

selection (CSS) (Liu and Setiono 1996), both with greedy forward search as the

optimization method. Table 5 shows the optimal subset selection obtained with

each of these methods. Notice that both selected subsets contain both string-

and corpus-based features.
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5.3 Classification accuracy

We conducted two experiments to evaluate the classification accuracy of our

models. In the first experiment, we evaluate the binary classification accuracy,

which is in line with how we formulated the problem of paradigm prediction.

In the second experiment, we consider a more realistic setting and evaluate

classification accuracy on a per word basis.

5.3.1 BINARY CLASSIFICATION ACCURACY

In the first experiment, we trained eight models using different feature sub-

sets. We optimized the parameters of each model separately using 5-fold cross-

validation on the training set. Table 6 shows classification accuracy on the test

set. The reliability of probability estimates used for some of the corpus-based

features depends on the frequencies of word-forms in the corpus. In a realistic

setting, the unknown words tend to be less frequent in corpus. To analyze how

models would perform in such cases, we evaluated on three frequency bands:

all LPPs, LPPs for which the frequency of word-forms in the corpus is less than

or equal to 100 (rare words, accounting for 66% of the test set) and less than or

equal to 10 (very rare words, accounting for 22% of the test set). The performance

baseline is the majority class in each test set.

As expected, the maximum accuracy of about 92% was achieved when using all

features. Interestingly, in this case the classification accuracy does not decrease

much on rare or very rare word-forms. Using only string- or corpus-based fea-

tures gives worse performance than when using both kinds of features. Further-

more, as expected, using only corpus-based features decreases the performance

on rare words. As regards the models with feature selected subsets, all perform

above the baseline except the one obtained with CSS. The RELIEF method seems

to have selected a very good subset of features; a model with only five features

(ParadigmID, EndsIn, LemmaSuffixProb, Score5, and Score2) performs only

slightly worse than the model using the full set of 22 features.
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Word-forms attested

Features Count ≥  ≤  ≤ 

All 22 91.97 91.94 90.65
String-based 13 87.01 87.69 87.98
Corpus-based 11 87.78 86.59 82.04
IG 5 81.14 79.05 76.46
GR 5 59.76 80.90 77.29
RELIEF 5 90.62 90.60 89.27
CFS 3 81.69 79.51 78.67
CSS 13 27.41 91.56 90.37

Baseline 50.00 56.51 69.92

Table 6: Paradigm classification accuracy (%) for models with different feature subsets,
for three different frequency bins of the word-forms

5.3.2 PER WORD CLASSIFICATION PERFORMANCE

Binary classification accuracy gives us an insight into how models with differ-

ent feature sets compare against each other. In practice, however, we are not

interested in binary classification per se, but choosing the correct LPP among

the set of LPP candidates (choosing one among about 17). Thus, a more realistic

evaluation would consider model performance on a per word basis. To this end,

we built another test set comprised of 1,000 LPPs sampled from 5,000 correct

LPPs that we used for testing in the first experiment (cf. Section 5.1). The set con-

tains 654 noun LPPs, 233 adjective LPPs, and 113 verb LPPs. For each LPP from

this set, we generated the incorrect LPPs by choosing at random one word-form

from the set wfs(l, p) and applying on it the lm(w) function to obtain all its LPP

candidates. In this way we obtain for each word-form its correct LPP and all its

incorrect LPPs.15 The final data set contains 17,111 LPPs. On this set we compute

the model performance in terms of standard information retrieval measures of

precision (P), recall (R), and (micro-averaged) F1-score (van Rijsbergen 1979).

Precision score of 100% would mean that no incorrect LPP has been classified
15 Here we ignore the fact that homographs have more than one correct LPP. This only marginally
affects the precision scores.
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All Nouns Adjectives Verbs

Features P R F1 P R F1 P R F1 P R F1

All 37.4 91.6 53.1 37.0 91.9 52.3 40.7 94.8 57.0 33.0 83.2 47.2
RELIEF 32.3 90.3 47.6 31.6 89.3 46.6 37.1 96.1 53.5 28.0 84.1 42.0

Baseline 15.9 82.8 26.7 13.7 79.7 23.4 18.1 90.6 30.2 41.9 85.0 56.1

Table 7: Per word classification performance of all-features model and 5-features model
across different parts-of-speech.

as correct, while a recall of 100% would mean that all correct LPPs have been

identified as such.

Table 7 shows the results for the two best-performing models from the first

experiment: the all-features model and the model that uses five features selected

by RELIEF. As the baseline, we use the score1 function (cf. Section 4.2), which

predicts as correct the LPPs with the largest sum of word-form frequencies

from corpus. Overall, the all-features model performs best with an F-score of

above 53%. Both models have a relatively high recall and a comparatively low

precision across all parts-of-speech. Using only five features leads to a 5 point

drop in precision. Both models perform best on adjectives and worst on verbs.

Moreover, both models outperform the baseline, except on the verbs, for which

the simple frequency-based scoring seems to be a competitive baseline. This

suggests that incorrect LPPs of verbs tend to generate word-forms that have less

evidence in the corpus. In contrast, incorrect LPPs of nouns and adjectives often

generate valid word-forms. Notice, however, that in practice we do not know a

word-form’s true part-of-speech, thus we cannot make use of this information.

Overall per word precision is 37%, which means that for each word-form one

or two LPPs will be wrongly classified as correct. The reason for this is that

the problem is formulated as binary classification. Binary LPP classification

makes locally optimal decisions, without considering the set of LPP candidates

as a whole and the constraint that only one LPP may be correct.16 This also

16 Again, this is the case if we ignore the homographs.
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All Nouns Adjectives Verbs

Features Acc Ties Acc Ties Acc Ties Acc Ties

All 70.2 2 67.7 2 79.4 0 65.5 0
RELIEF 66.5 1 63.3 1 72.5 0 72.6 0

Baseline 34.0 655 23.9 489 40.5 155 78.9 11

Table 8: Per word classification accuracy (top-ranked LPP) and the number of ties of
all-features model and 5-features model across different parts-of-speech.

explains why for verbs the baseline model, which chooses only the top-scored

LPP, achieves a larger precision than binary classifiers, which consider each LPP

in isolation.

By considering the confidence scores of LPP candidates we could in principle

make more informed classification decisions, which could improve the precision.

A straightforward approach is to choose, for each word-form, only the top-ranked

LPP as the correct one. Table 8 shows the results for this setting. Because we

choose only one LPP per word, computing precision and recall would make no

sense here, thus we compute the accuracy as the number of correctly predicted

paradigms averaged over the number of word-forms in the sample. In case

of ties (cases in which two or more LPPs are predicted the same score), we

compute partial credits: 1/2 score for two-way ties, 1/3 score for three-way ties,

etc. In Table 8 we also show the total number of words for which there are ties.

The overall accuracy is 70.2% and 66.5% for all-features model and 5-features

model, respectively. The accuracy is again the best on adjectives and the worst

on verbs. Both models outperform the score1 baseline by a wide margin on

nouns and adjective, but not on verbs. Because the models output probability

estimates, there are not many ties. In contrast, the baseline output values are

more coarse-grained and therefore there are many more ties.

5.4 Remarks

The above results have raised several issues that deserve further comments.
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Choice of corpus. In this work we used a newspaper corpus, and it is pos-

sible that this choice has an effect on the overall prediction accuracy. As noted

by one reviewer, a newspaper corpus is not likely to contain many aorist and

imperfect verb forms, which would add significantly to homography. Although

the grammar we used does not model the aorist and imperfect verb forms, the

argument still applies to vocative noun forms, which would also add to homogra-

phy but are likewise underrepresented in newspaper corpora. Although this issue

deserves further examination, from a practical viewpoint it is indeed reasonable

to use a corpus that minimizes homography, as this will improve the overall

prediction accuracy.

Choice of grammar. Perhaps a more interesting question is the choice of

the grammar. What might be of particular importance for paradigm prediction

in Croatian is the modeling of verbs, more concretely the question of how to

treat adjectival and adverbial participles (cf. footnote 5). In the current imple-

mentation of the HOFM grammar, the adjectival participles are not included

in the verb paradigm. However, including them into the verb paradigm might

allow for better prediction of verb paradigms. We leave this issue for future work.

Another issue is the level of grammar ambiguity. HOFM defines applicability

conditions for many paradigms; a grammar that does not define such conditions

would overgenerate more, leading to a decrease in precision. This suggest that

paradigm prediction performance is dependent on the specific grammar used

and perhaps does not readily generalize across different grammars.

Training set selection. Another issue that we did not address is the size and

diversity of the training set. Often a large morphological lexicon is not available,

and one wishes to use paradigm prediction to acquire such a lexicon. Related

to this is the question of how many instances per paradigm we need to train

a good classifier. The active learning framework provides a way to minimize

the number of training instances and hence reduce the manual labeling efforts.

Active learning may also be combined with ranking-based classification to speed

up the annotation process.

[ 26 ]
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Semi-automatic lexicon acquisition. Probably the most interesting ap-

plication of paradigm prediction is semi-automatic lexicon acquisition. In this

setting, confidence-ranked lists of LPP candidates are presented to an expert,

who then identifies the correct LPP, which ideally should be ranked first. In

this setting it would make sense to evaluate paradigm prediction as a ranking

task. There are also a number of other factors that should be considered, such as

the presence of noise in the corpus (i.e., words for which no correct LPP exists

and which should be rejected), treatment of proper names, and the workflow

parameters (e.g., in what order the word-forms should be processed, is the model

being updated based on the input from the expert, etc.).

Other evaluation scenarios. There are a couple of other evaluation scenar-

ios that may be considered. First is the evaluation in the context of rule-based

tagging (e.g., constraint grammar based tagging, as described by Peradin and

Šnajder (2012)), in which the goal is to disambiguate ambiguous morphosyntac-

tic tags, rather than ambiguous paradigms (the former is probably an easier task

in most cases). Related to this is a setting in which corpus-based information is

not available (e.g., on-the-fly tagging), and one must choose the correct paradigm

using only string-based and possibly context-based features. Yet another inter-

esting evaluation scenario is the acquisition of inflectional lexicons from a list

of lemmas, which is obviously an easier task than the one we addressed here

because the level of grammar ambiguity is lower.

6 CONCLUSION AND PERSPECTIVES

Being able to determine the inflectional paradigm of an unknown word is im-

portant for morphological analysis of highly inflectional languages. We have

addressed the problem of paradigm prediction for Croatian words as a binary

classification task over the output of a morphology grammar. We defined a

number of string- and corpus-based features and trained different SVM models

on selected subsets of these features. The highest accuracy (about 92%) was

achieved using the complete set of 22 features. Just slightly worse performance
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can be obtained with a subset of only five features (paradigm label, two string-

based features and two corpus-based features). Degradation in classification

performance on infrequent words is minimal. When evaluated on a per word

basis, the all-features model achieves 53% of F1-score and 70% of accuracy, out-

performing the frequency-based baseline by a wide margin. The models perform

best on adjectives and worst on verbs.

This work provides a basis for further research. Our first priority will be to

apply paradigm prediction to semi-automatic lexicon acquisition and carry out a

comprehensive task-based evaluation in this setting. From a machine learning

perspective, we will consider using additional features, such as part-of-speech

tags and capitalization features.
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MODELI ZA PREDIKCIJO OBLIKOSLOVNIH
PARADIGEM ZA HRVAŠKE BESEDE

Morfološka analiza je predpogoj za številne naloge pri računalniški obdelavi

jezika. Pri oblikoslovno bogatih jezikih, kot je hrvaščina, temelji morfološka

analiza navadno na morfološkem leksikonu, ki vsebuje seznam lem in njihove

oblikoslovne paradigme. Vendar pa mora uporaben morfološki analizator znati

ustrezno razčleniti tudi besede, ki jih ni v leksikonu. V prispevku se lotevamo

avtomatskega prepoznavanja ustrezne oblikoslovne paradigme pri še neznanih

hrvaških besedah. Problem obravnavamo z nadzorovanim strojnim učenjem,

kjer na osnovi vrste besednih in korpusnih značilk klasifikator naučimo pred-

videvati, ali je določen par lema–paradigma ustrezen. Pare lema-paradigma smo

generirali s pomočjo ročno izdelane oblikoslovne gramatike. Namen prispevka

je analizirati postopke strojnega učenja pri obravnavi tega problema: testirali

smo bogat nabor značilk in ocenili natančnost klasifikacije z uporabo različnih

podmnožic značilk. Pokažemo, da je zadovoljivo natančnost klasifikacije (92 %)

mogoče doseči z metodo SVM in z uporabo kombinacije besednih in korpus-

nih značilk. Dosežena natančnost za posamezno besedo v našem modelu je

70 %, vrednost F1 je 53 %, kar je bistveno boljše kot rezultat, ki upošteva samo

pogostost pojavitev. Članek zaključimo s smernicami za nadaljnje delo.

Ključne besede: računalniška morfologija, predikcija oblikoslovnih paradigem,

strojno učenje, izbor značilk, hrvaški jezik.
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