
Dynamic Relationships Management Journal, November 2013 29

IMPLEMENTING SCRUM USING BUSINESS PROCESS MANAGEMENT

AND PATTERN ANALYSIS METHODOLOGIES

Ron S. Kenett

KPA Ltd., Raanana, Israel

University of Torino, Turin, Italy

Center for Risk Engineering, NYU, New York, USA

ron@kpa-group.com

Abstract

The National Institute of Standards and Technology in the US has estimated that software defects and problems an-

nually cost 59.5 billions the U.S. economy (http://www.abeacha.com/NIST_press_release_bugs_cost.htm). The study

is only one of many that demonstrate the need for significant improvements in software development processes and

practices. US Federal agencies, that depend on IT to support their missions and spent at least $76 billion on IT in fiscal

year 2011, experienced numerous examples of lengthy IT projects that incurred cost overruns and schedule delays

while contributing little to mission-related outcomes (www.gao.gov/products/GAO-12-681). To reduce the risk of such

problems, the US Office of Management and Budget recommended deploying an agile software delivery, which calls

for producing software in small, short increments (GAO, 2012). Consistent with this recommendation, this paper is

about the application of Business Process Management to the improvement of software and system development

through SCRUM or agile techniques. It focuses on how organizational behavior and process management techniques

can be integrated with knowledge management approaches to deploy agile development. The context of this work is

a global company developing software solutions for service operators such as cellular phone operators. For a related

paper with a comprehensive overview of agile methods in project management see Stare (2013). Through this com-

prehensive case study we demonstrate how such an integration can be achieved. SCRUM is a paradigm shift in many

organizations in that it results in a new balance between focus on results and focus on processes. In order to describe

this new paradigm of business processes this work refers to Enterprise Knowledge Development (EKD), a comprehen-

sive approach to map and document organizational patterns. In that context, the paper emphasizes the concept of

patterns, reviews the main elements of SCRUM and shows how combining SCRUM and EKD provides organizations

with a comprehensive framework for managing and improving software and system development.

Keywords: SCRUM, agile development, business process management, organizational patterns, enterprise knowledge

development (EKD)

1. INTRODUCTION

In the past, service providers focused on
achieving top-line growth through customer acqui-
sition. Although this is still a top priority, service
providers are currently facing new challenges, such
as service commoditization, market saturation and
new competition. Customers currently have more
choices than ever before and, in their relationships
with service providers, customers demand simplic-

ity, convenience, value and new products. In addi-
tion, telecom, media, and software companies are
now competing on each other's traditional turf, with
cable companies offering phone service, Telco pro-
viding satellite TV, and software developers tying it
all together. If telecommunications giants are to
thrive in this highly competitive landscape, they will
need to cut operating costs dramatically while learn-
ing to be brisk innovators of new products and serv-
ices. Large carriers with extensive legacy systems
tend to reduce their overall list of suppliers. They

Dynamic Relationships Management Journal, November 2013

Ron S. Kenett: Implementing SCRUM using Business Process Management and Pattern Analysis Methodologies

30

should select one strategic best-in-class supplier
that addresses their requirements and business
goals in each of their key solutions areas.

Service providers are required to continuously
enhance their products and services helping to en-
sure maximum operational efficiency is achieved
through alignment, innovation through agility and
time to market, and customer loyalty through the
intentional customer experience. Information sys-
tems have a major influence on the agility of a com-
pany. They can inhibit or enhance it. Agility means
the time it takes to adapt to environmental shifts
quickly by changing products, systems and business
processes. The agility of company information sys-
tems cannot be achieved by accelerating
product/system development using traditional de-
velopment processes and architecture. Agility must
be built into the core development processes, roles
and architecture taking into accounts the complex-
ity of large global development organization that
need to support very large service providers.

ABC Inc. is a typical large supplier of software
and services solutions to services providers world-
wide. The company offers customer relationship
management, order management, service fulfill-
ment, mediation, and content revenue manage-
ment products, collectively known as Integrated
Customer Management (ICM) enabling systems.
These ICM Enabling Systems support various lines
of business, including wireline, wireless, cable, and
satellite, as well as a range of communications serv-
ices, such as voice, video, data, Internet protocol,
broadband, content, electronic, and mobile com-
merce. ABC Inc. also supports companies that offer
bundled or convergent service packages. In addi-
tion, it provides directory sales and publishing sys-
tems for publishers of both traditional printed
yellow page and white page directories, and elec-
tronic Internet directories. In addition, the com-
pany's information technology services comprise
consulting, business strategy, system implementa-
tion, training, integration, and modification. Further,
ABC Inc. provides managed services that include
system modernization and consolidation, operation
of data centers, ongoing support, maintenance serv-
ices, system modification, provision of rating and
billing services, and communications facility man-
agement services. Its customers include communi-

cations providers, and network operators and serv-
ice providers. The company was founded in 1982.

The company's workforce of more than 16,000
professionals are located in more than 50 countries,
with development and support centers in Brazil,
Canada, China, Cyprus, India, Ireland, Israel and the
USA. ICM requires improved software development ca-
pabilities. This paper is about the application of new
software development paradigms in large global or-
ganizations such as ABC Inc. Specifically; this work fo-
cuses on the application of Business Process
Management to the improvement of software and sys-
tem development through SCRUM. Implementing ICM
using SCRUM or any other agile approach in large mul-
tisite organizations with highly demanding customers,
is a significant challenge. Governance in such a context
where knowledge management is critical and dissem-
ination of best practices across teams and cultures is
required, poses problems of capturing process pat-
terns, storing this knowledge and ensuring knowledge
reuse needs to occur. This paper presents a framework
for addressing this challenge in a practical way. The
main elements of SCRUM are reviewed in the next sec-
tion that also shows how combining SCRUM and EKD
(Enterprise Knowledge Development), a Business
Process Management methodology, provides organi-
zations with a comprehensive framework for managing
and improving software and system development.

2. AGILE SOFTWARE DEVELOPMENT

2.1 Background

Many software projects do not achieve their
goal with respect to time to market, budget, quality
and/or customers expectations. The National Insti-
tute of Standards and Technology in the US has es-
timated that software defects and problems
annually cost 59.5 billions the U.S. economy. The
study is only one of many that demonstrate the
need for significant improvements in software de-
velopment processes and practices (http://www.v3.
co.uk/v3-uk/news/1973196/software-bugs-cost-bil-
lions). See also GAO (2012). The main root-cause for
this was found not in the technology arena but in
the development process methodology (see Figure
1 based on data from a research conducted in 2003
by Forrester Research).

Dynamic Relationships Management Journal, November 2013 31

One possible response to this phenomenon is to
make developing methodologies more disciplined
and predictive, i.e., more planning, greater attention
on analysis of requirements, formal sign-off, detailed
and documented design before coding, strict change
control etc... This approach is known as the "waterfall
process" (Kenett & Baker, 1999). Under this approach
the organization gets better control but project suc-
cess rates does not necessarily improve. Many organ-
izations have found that, by this approach:

• Methodologies simply prove bureaucratic and
slow to deliver.

• It is hard for the business to completely concep-
tualise all requirements in one pass.

• It is even harder to capture all the requirements in
a document in a completely detailed and
 unambiguous form, The customer does not under-
stand UML and specs, that's lead to free interpre-
tation of the requirements by the different players
through the development downstream (e.g. sys-
tem analysts, designers, developers, testers).

• Businesses constantly change - requirements and
business priorities constantly change, the longer
the project the greater the risk. If change is suc-
cessfully suppressed, the business gets soft ware
they can’t use.

• Its hard to completely design a system in one ex-
ercise and not of great value if the requirements
change anyway.

• Developers do not know how to estimate the im-
pact of complex requirements.

For more on problems in software develop-
ment processes see April et al., 2005, Berntsson-
Svensson & Aurum, 2006 and Kenett & Baker, 2010.
An alternative to the waterfall process, that encour-
ages software development involving a high degree
of innovation, is a software development paradigm
labeled the "agile process" (http://en.wikipedia.org/
wiki/Agile_software_development). The next sub-
section provides an introduction to the agile
process.

2.2 The Agile Process

One of the main ideas behind agile methodolo-
gies is that evolutionary processes that seek to
move by a large number of small steps, on schedule
based cycles (30-90 days), each of which deliver
some benefits that are stable and workable solution
is more effective. A common rule of thumb is that
20% of the features of a system delivers 80% of the
benefit, so earlier more frequent releases can bring
significant gains. A particular important observation
about agile processes is that they seek to shorten
or eliminate feedback loops. For example, bringing
empowered users into contact with the develop-
ment team can remove much longer cycles of trying
to describe what is needed, developing it and trying
out the product (Takeuchi & Nonaka, 1986, 1995).

Figure 1: Corporate Executives’ Reasons For Project Failures

Dynamic Relationships Management Journal, November 2013

Ron S. Kenett: Implementing SCRUM using Business Process Management and Pattern Analysis Methodologies

32

Similar observations can be made about other
agile practices such as establishing a joint cross dis-
cipline team that accountable as a team to deliver
the feature. The communication is mostly face to
face, with minimal unnecessary documentation
(versus the waterfall model were the main mean of
communication between the disciplines are through
documentation that leads to the need of interpre-
tations). Also other agile practices such as automatic
unit testing, pair programming (versus peer re-
views), daily stand-up meetings for planning, auto-
mated build and regression testing derived from the
notion that getting better feedback sooner improves
both quality and control. Finally priority-driven plan-
ning is an essential feature of most agile methods.
Managing requirements individually, rather than as
a composite document, allows the high benefit, low
cost features to be rolled out to users sooner. Also
fixing timescales for deliveries rather than fixing the
required features and allowing timescales to slip, is
a far more effective means of ensuring continuous
enhancement of business performance.

In systems development, an evolutionary ap-
proach requires investment – particularly in test-dri-
ven design, continuous integration and
comprehensive automated build facilities from a
configuration management system. Such invest-
ment is nearly always worthwhile since it can elim-
inate a separate integration and test phase and
allow early release of useful functionality. The tra-
ditional Quality Gates are not applicable to the new
agile process since now activities are not divided
into phases, but rather focused around implemen-
tation of individual features or stories. To replace
Quality Gates the new agile framework proposes a
set of repeating checkpoints. Some checkpoints re-
peat only once in iteration, for example the check-
point that marks the end of the iteration planning,
or the iteration review at the end. Other check-
points are associated with individual requirements
or features, such as the checkpoint that marks com-
pletion of a feature. While these checkpoints occur
much more frequently than Quality Gates, and in an
agile process must be much lighter weight in terms
of ceremony (For more on agile development see
Schwaber & Beedle, 2001; Kenett & Baker, 2010).

For agile methods to scale up, the most impor-
tant thing is to establish a suitable framework that

is sufficiently generic to apply across the organiza-
tion whilst providing detailed guidance. This frame-
work in itself has the power to improve agility
through helping programmers to structure their de-
liveries into shorter cycles while also steering them
towards a more iterative and collaborative approach
(Cohn & Ford, 2003). The next section describes the
basic elements of the agile process.

2.3 SCRUM

One of the most common agile methodologies
is SCRUM that mainly focus on the way agile project
should be managed. It was first described in 1986 by
Takeuchi and Nonaka. SCRUM is not an acronym,
name taken from the sport of Rugby, where everyone
in the team pack acts together to move the ball down
the field. Analogy to development is the team works
together to successfully develop quality software. In
particular: “SCRUM” refers to the entire team band-
ing together for a single aim: getting the ball!

2.3.1 The SCRUM Process

Figure 2 presents conceptually the SCRUM
process (adapted from Kenett and Baker, 2010).

Key SCRUM practices include:

• Focus on schedule based cadence, sprints are it-
erations of fixed 30 days duration.

• Work within a sprint is fixed. Once the scope of a
Sprint is committed, no additional functionality
can be added except by the development team.

• All work to be done is characterized as product
backlog which includes requirements to be deliv-
ered, defect workload, as well as infrastructure
and design activities.

• The product Backlog is the basis for the Sprint
backlog as defined by the sprint team and the
product owner. The team decides what it can de-
velop.

• A SCRUM Master mentors and manages the self
organizing and self accountable teams that are re-
sponsible for delivery of successful outcomes at
each sprint.

• A daily standup meeting is a primary communica-
tion method.

Dynamic Relationships Management Journal, November 2013 33

• A heavy focus on time boxing. Sprints, standup
meetings, release review meetings and the like
are all completed in prescribed times.

• SCRUM also allows requirements, architecture and
design to emerge over the course of the project.

SCRUM lifecycle phases are Planning, Staging,
Development, and Release. There are typically a
small number of development sprints to reach a re-
lease. Later sprints focus more on system level qual-
ity and performance as well as documentation and
other activities necessary to support a deployed
product. Typical SCRUM guidance calls for fixed 30
day sprints, with approximately three sprints per re-
lease, thus supporting incremental market releases
on a 90 day timeframe (Schwaber & Beedle, 2001).

2.3.2 Roles in SCRUM

Agile development is carried out by individuals
with specific roles and responsibilities. These are de-
scribed below:

• SCRUM Master
Main focus is to safeguard the process, removing
the barriers between development and the cus-
tomer, enable close cooperation between roles
and functions across the organization, facilitating
creativity and empowerment.
Improving the productivity of the development
team in any way possible; and, Improving the en-
gineering practices and tools so each increment
of functionality is potentially shippable.

• SCRUM Team
This is a cross-functional group of people with all
the different skills that are needed to turn re-
quirements into something that is an increment
of potentially shippable functionality. The SCRUM
Team responsible for the project, committed to
deliver. Has the right to do everything within the
boundaries of the project guidelines to reach the
iteration goal. The team consists typically from 5-
10 people, Cross-functional team (QA, Program-
mers, Designers, etc.).
Members should be full-time as possible. Teams

Figure 2: The SCRUM process

Dynamic Relationships Management Journal, November 2013

Ron S. Kenett: Implementing SCRUM using Business Process Management and Pattern Analysis Methodologies

34

are self-organizing, ideally, no titles but rarely a
possibility. Membership can change only between
sprints.

• Product Owner
The 'Product Owner' is responsible for the finan-
cial success of the project. So this is the person
who is investing or representing everyone's inter-
est in the project and serves as the ultimate ar-
biter on any requirements issues and accepts or
rejects work results. The product owner defines
the features of the product, decides on release
date and content, prioritizes features according
to market value, can change features and priority
every Sprint, this requires high bandwidth com-
munication and transparency into the team’s
progress.

• Management
Management is in charge of final decision making,
along with the charters, standards and conven-
tions to be followed by the project. Management
also participates in setting the goals and require-
ments.

2.3.3 Meetings/Activities in SCRUM

Work in an agile development environment re-
quires a high degree of synchronization. To achieve
this one carries out a series of well-orchestrated and
actively managed meetings and activities. These are
described below.

• Pre-game – High level design and Architecture
In the architecture phase the high level design of
the system including the architecture is planned
based on the current items in the Product back-
log. In case of enhancement to an existing system
the changes needed for implementing the Back-
log items are identified along the problems they
may cause. A design review meeting is held to go
over the proposals for the solution and decisions
are made. In addition, preliminary plans for the
contents of releases are prepared.

• Pre-Game - Release Planning
The Product Backlog lists all the functionality that
the product or solution could have in it. If all of
this functionality is built before a release to pro-
duction it may waste the opportunity that SCRUM
provides for seeing an early return on investment

and useful production feedback. For these rea-
sons it is common practice to divide the Product
Backlog into "Releases" or collections of useful
system capability that make sense when put into
production.

• Sprint Planning
Usually every sprint has a goal or main theme that
express the Product Owner’s motivation for this
sprint, embodied as specific measurable exit cri-
teria. Each Sprint must include some business
functionality. The sprint planning session consist
of 2 segments (usually around 4 hours each). Seg-
ment 1 - The Product Owner selects the ideal
backlog for the coming Sprint and communicates
its meaning and importance to the team. Seg-
ment 2 - Team decides what they can commit to
delivering in the Sprint. The Product Owner an-
swers questions but does not direct the team’s
choices. The Team decides how to turn the se-
lected requirements into an increment of poten-
tially shippable product functionality. The team
self-organizes around how they’ll meet the Sprint
Goal, The Team devises its own tasks and figures
out who will do them. The outcome is the Sprint
Backlog.

• Spike
A spike is an experiment that allows developers
to learn just enough about something unknown
in a user story, e.g. a new technology, to be able
to estimate that user story. A spike must be time-
boxed. This defines the maximum time that will
be spent learning and fixes the estimate for the
spike.

• Daily SCRUM
A short status meeting that is time-boxed to 15
minutes and is held daily by each Team. During
the meeting the Team members synchronize their
work and progress and report any impediments
to the SCRUMMaster.

• Sprint Review
The Sprint Review provides an inspection of proj-
ect progress at the end of every Sprint. The team
presents the product increment that it has been
able to build. Management, customers, users, and
the Product Owner assess the product increment.
Evaluation possible consequences: Restoring un-
finished functionality to the Product Backlog and

Dynamic Relationships Management Journal, November 2013 35

prioritizing it. Removing functionality from the
Product Backlog that the team unexpectedly com-
pleted. Working with the SCRUMMaster to refor-
mulate the team. Reprioritizing the Product
Backlog to take advantage of opportunities that
the demonstrated functionality presents. Ask for
a release Sprint to implement the demonstrated
functionality, alone or with increments from pre-
vious Sprints. Choosing not to proceed further
with the project and not authorizing another
Sprint. Requesting that the project progress be
sped up by authorizing additional teams to work
on the Product Backlog.

• Sprint Retrospective
This is a meeting facilitated by the SCRUMMaster
at which the Team discusses the just concluded
Sprint and determines what went well and what
could be changed that might make the next Sprint
more productive. While the Sprint Review looks
at "What" the team are building whereas the Ret-
rospective looks at "How" they are building.

• Post-Game – Release sprint (integration, system
packaging)
When the Product Owner and Stakeholders iden-
tify that there is sufficient functionality in the sys-
tem to provide immediate business value they
may choose to put this into production. Typically,
a "Release Sprint" will follow that contains all the
necessary Sprint Backlog tasks to put the system
into production. These tasks shouldn't contain ad-
ditional functionality but they may include: Full
end-2-end system test, integration, performance
and regression test if necessary. Finishing re-
quired documentation, Deploying the code to the
Production Environment, production data popu-
lation, setting up management and operational
systems and processes, training and handover for
support staff and Cutover and fallback planning.

2.3.4 SCRUM Artifacts

Artifacts are concrete deliverables that are pro-
duced and maintained during software develop-
ment. We list here the five most important artifacts
associated with agile development.

 1. Product Backlog
 A product backlog is a prioritised list of project

requirements with estimated times to turn

them into completed product functionality. Es-
timates are in days and are more precise the
higher the item is in the Product Backlog prior-
ity. Priority should be assigned based on the
items of most value to the business or that offer
the earliest Return on Investment. This list
should evolve, changing as the business condi-
tions or technology changes.

 2. Sprint Backlog
 The Sprint backlog is a list of tasks that defines

a Team's work for a Sprint. The list emerges dur-
ing Sprint planning. The tasks on the Sprint
backlog are what the Team has defined as being
required to turn committed Product Backlog
items into system functionality. Each task iden-
tifies who is responsible for doing the work and
the estimated amount of work remaining on
the task on any given day during the Sprint.

 3. Impediment list
 Anything around a SCRUM project that impedes

its productivity and quality is an impediment. It
is the responsibility of the SCRUMMaster to re-
move any impediment that is stopping the team
from producing production quality code. The
impediment list is simply a set of tasks that the
SCRUMMaster uses to track the impediments
that need to be solved.

 4. Task List
 Tasks to turn product backlog into working

product functionality. Tasks are estimated in
hours, usually 1-16. Tasks with more than 16
hours are broken down later. Team's member
sign up for tasks, Team members shouldn’t sign
up for work prematurely (until actually starting
that task). Estimated work remaining is updated
daily, any team member can add, delete or
change the Sprint Backlog. Work for the Sprint
emerges, if the team believes that this become
too much, they can meet again with the Product
Owner.

 5. Product Burndown Chart
 The Product Burndown chart gives an indication

of how quickly the team are "Burning" through
the work and delivering Product Backlog re-
quirements. It is a useful tool for helping to plan
when to release or when to remove require-
ments from a release if progress is not rapid
enough.

Dynamic Relationships Management Journal, November 2013

Ron S. Kenett: Implementing SCRUM using Business Process Management and Pattern Analysis Methodologies

36

2.3.5 Scaling SCRUM in big projects

The primary way of scaling SCRUM to work with
large teams is to coordinate a "SCRUM of SCRUMs".
With this approach each SCRUM team proceeds as
normal but each team also contributes one person
who attends SCRUM of SCRUM meetings to coordi-
nate the work of multiple SCRUM teams. These
meetings are analogous to the Daily SCRUM Meet-
ing, but do not necessarily happen every day. In
many organizations, having a SCRUM of SCRUMs
meeting two or three times a week is sufficient.

Implementing SCRUM is basically an organiza-
tional change. Implementing such a change in a
large organization is a complex task that requires a
filed tested methodology. The next section de-
scribes, EKD, a Business Process Methodology that
has been used to transform major organizations
such as electricity supply companies (Rolland et al.,
1998, 1999). In particular, it describes the concept
of "patterns" as an approach to capture knowledge
and allow for organizational learning and re-use.
The following section shows how to implement
SCRUM in the context of a large organization using
EKD. The final section concludes with some discus-
sion and directions for future research.

3. BUSINESS PROCESS MANAGEMENT

3.1 An Introduction to Enterprise Knowledge

Development (EKD)

Enterprise Knowledge Development (EKD) was
developed in the FP4 ELEKTRA project supported by
the European Commission as a Business Process
Management methodology for large organizations
(http://crinfo.univ-paris1.fr/PROJETS/elektra.html).
It provides a controlled way of analysing and docu-
menting an enterprise, its objectives and support
systems. The approach represents an integrated set
of techniques and associated tools for the purpose
of dealing with situations of mapping business
processes and re-engineering of information sys-
tems. At the centre of the approach is the develop-
ment of enterprise knowledge models pertaining to
the situations being examined (Rolland et al., 1998,
1999). The definition of such models is carried out
using appropriate modelling techniques and tools.
The process followed in developing these models,

and subsequently using them, is the subject matter
of the guidance component. During the process of
developing these models, the participant parties en-
gage in tasks that involve deliberation and reason-

ing. The purpose is to provide a clear, unambiguous
picture of how enterprise processes function cur-
rently in an "as is" model or in a modified "should
be" model.

The EKD approach considers the concept of an
‘enterprise process’ as a composite of four key en-
terprise components: (a) the roles that are played
by enterprise actors in order to meet the process
goals; (b) the activities involved in each role; (c) the
objects that are involved together with their evolu-
tion from creation to extinction (within the context
of the enterprise process); and (d) the rules that de-
termine the process components. In other words,
an enterprise process may transcend any functional
divisions and presents a dynamic view of an enter-
prise system. Systems are composed of interfacing
or interdependent parts that work together to per-
form a useful function. System parts can be any
combination of things, including people, informa-
tion, software, equipment, products, or raw mate-
rial. In effect, operational models should describe
what a system does, what controls it, what it works
on, what it uses to perform its functions, and what
it produces.

Actor-role modelling is about representing the
organisational and behavioural aspects of an enter-
prise. This aspect of modelling is concerned with the
way that a business process is performed through
the involvement of enterprise actors in discharging
their responsibilities through their role in a process
and the interaction of their role with other roles
which collectively bring about the realisation of the
business processes. Through enterprise actor-role
modelling, EKD encourages the identification of the
key operational components which can be meas-
ured (activity duration, actor skills, resource costing
etc.). Such measurable components can then be
subjected to ‘what-if’ scenaria in order to evaluate
alternative designs for the operation of an enter-
prise. A high-level view of the association between
actors and their different roles is supported through
the actor-role diagram. The actor-role diagram de-
picts the actors of the enterprise and the roles that
they play. For each role involved in the model, infor-

Dynamic Relationships Management Journal, November 2013 37

mation is given about the responsibilities that are
assigned to the role in terms of the activities that
the role carries out and the enterprise resources
that the role requires. The diagram also presents the
dependencies that exist between the roles. An ad-
ditional element represented in this view is the goal
(or goals) that the role must satisfy. The actor-role
diagram can be used to get a ‘first-cut’ view of the
organisational aspects regarding the responsibilities
of individuals or groups in their involvement in the
operation of a business process.

A detailed view of the activities in which a role
is engaged is supported by the role-activity diagram.
This diagram describes in detail how the role per-
forms each of its responsibilities, in terms of activi-
ties undertaken and is based on the notation of the
RAD (role activity diagram) approach . An important
point to note is the distinction between the actor,
i.e. the physical enterprise entity, and the role, a no-
tion which expresses the responsibility of perform-
ing the various activities within the enterprise. Roles
are assigned to actors and summarise a set of skills
or capabilities necessary to fulfil a task or activity. A
role can be acted by a person or a group. A role can
be acted by person X on one day and person Y on
another day. The role is separate from the actors
that play the role. For example, a managing director
may play multiple roles such as ‘setting the budget’
‘approving expenses’, etc. A role is a collection of
components of either operational or structural na-
ture expressing responsibilities. Operational compo-

nents represent the activities that the role has to
perform. Structural components represent resource
objects that are required by one or more activities
being carried out by the role. These may be physical
or informational. The role can thus comprise behav-
ioural aspects of the organisational life as well as hi-
erarchical and social aspects. The notation for a role
and its goals is shown in Figure 3.

3.2 EKD Actor and Role Components

3.2.1 The Actor

It is essential to distinguish between the role
and the carrier of the role, i.e. the actor who at a
specific moment might play the role. The role exists
independently of what organisational entity is cho-
sen to play it; this particular choice can be changed
over time, as particular actors may change in carry-
ing the responsibilities of a role. A role should there-
fore be considered as a stable and accountable
concept, one that summarises a set of responsibili-
ties and the activities that are performed in order
to fulfil these responsibilities. An actor is the physi-
cal entity that personifies an instance of the role at
any given moment; an actor may play several roles
at the same time. In that sense, while the selection
of roles and their responsibilities can be considered
as a design choice, the selection of actors for playing
individual roles can be considered as an implemen-
tation strategy. In EKD, the notation for the actor
concept is the actor box (Figure 4).

Figure 3: The role box and its goals

3.2.2 The Actor-Role Relationship

The relationship between a role and the actor
that, at a particular time, incarnates this role is rep-
resented by the plays relationship which is shown
as an arrow (Figure 5). The arrow connects an actor
box with a role box and illustrates that the actor
plays the particular role.

3.2.3 The Role-Role Relationship

Roles are often dependent upon other roles in
order to perform the duties assigned to them. There
are two parties involved in the dependency: the re-

quester role, i.e. the one that needs something in
order to fulfil its responsibilities, and the provider

Figure 4: The actor box

Figure 5: The actor-plays-role arrow

Dynamic Relationships Management Journal, November 2013

Ron S. Kenett: Implementing SCRUM using Business Process Management and Pattern Analysis Methodologies

38

role, i.e. the one that can provide the missing com-
ponent.

This relation can be of various types:

Authorisation dependency: this denotes hierarchi-
cal dependencies that can exist between roles; the
provider role gives authorisation to the requester
role. For instance, in order to for changes to some
customer accounting data to be performed, an au-
thorisation of the responsible manager must be
given.

Goal dependency: this relationship reflects the fact
that the achievement of a goal that the role brings
about is dependent on the achievement of a goal of
another role. For instance, the goal of the customer
service provision to satisfy customers promptly de-
pends on satisfaction of the goal on immediate
availability of programmers expressed by the
human resource FTE numbers. Generation of arti-
facts or deliverables is also considered a goal.

Coordination dependency: this type of dependency
expresses the need for one role to wait for comple-
tion of another role’s responsibilities before it can
complete its own. For example, in order for the ma-
terial provision service to purchase material, an ap-
propriate invoice must first be prepared by the
accounting service.

Resource dependency: this illustrates the need for
one role to use a resource that can be provided by
another role. For instance, the construction service
requires material that is under the supervision of
the warehousing service.

The dependency relationships are represented
by the dependency arrow, as depicted in Figure 6.
The dependency arrow is accompanied by the initial
of the dependency type and superscripted by any
additional details on the dependency. The initials of
the dependency types are A for authorisation de-
pendency, R for resource dependency and C for ac-
tivity coordination dependency [the “ARC”
dependency]. The dependency arrow is directed
from the provider role towards the requester role.

3.2.4 Using the Notation

The role box consists of the name of the role
and its components, which are drawn within its
boundary. A sample role box and the actor that
plays the role is presented in Figure 7.

Figure 6: The dependency arrow

The dependency relations, is shown by drawing
a dependency arrow between the two role boxes. A
sample actor-role diagram comprising two roles,
their respective actors and a coordination depend-
ency is illustrated in Figure 8.

3.2.5 Guidelines for the Actor-Role Diagram

 1. An actor cannot exist without playing any role,
i.e. at any moment every actor within the or-
ganisation should be assigned at least one role.

 2. If more than one dependencies are identified
between roles, multiple arrows are drawn, each
annotated by the respective dependency type
and details.

3.2.6 Examples of Actor-Role Diagrams

A number of examples in this section demon-
strate the concepts (and the use of the notation) for
actor-role modelling.

Figure 7: A sample of actor-role relationship

Figure 8: A sample actor role diagram

Dynamic Relationships Management Journal, November 2013 39

The actor-role diagram of Figure 9 represents a
situation of two actors each playing a different role
with different goals and the dependency of the “ser-
vice customer” role on “supervise local support”
role. The former requires the latter in order to per-
form certain activities. This kind of dependency
shows the structural relationship between the two
roles as being one of authorisation (indicated by the
“A” on the dependency line).

Activity Refinement

Apart from sequential execution of activities, one
can also have parallel execution of more than one
activities. Moreover, selection can be made be-
tween two or more activities , according to whether
a condition is satisfied or not. These controls over
activities are called part refinement and case refine-

ment, respectively, and they are illustrated in Figure
11 Part refinement and case refinement.

In part refinement two or more parallel activity
sequences are initiated with circles, while in case re-
finement the alternative activity sequences are ini-
tiated with triangles, which also indicate the value
of the criterion that determines which of the alter-
natives is executed. With respect to 11, in the left
part activities A2 and A3 are executed in parallel
after activity A1; in the right part one of the two ac-
tivities is selected according to the answer to the
question posed.

3.3 EKD Role-Activity Diagram

3.3.1 Basic Concepts and Notation

The Role

The concept of a role is also used in the role-activity
diagram. In this case, however, it is used to group to-
gether the details of the activities being carried out
within the enterprise, including information on their
order of execution and their interdependencies.

Activity Sequence

The activities that a role performs are represented
as sequences of nodes. Nodes are drawn as black
squares, which are connected with a straight vertical
line. These primitives are illustrated in Figure 10.

Figure 9: An example actor-role diagram with

“authorisation” dependencies

Figure 10: Activity sequence components

Role interaction

At some point during an activity sequence a role
may need to interact with another role. This means
that both roles will be involved in activities that
make their respective actors communicate in vari-
ous ways. The notation for this interaction is repre-
sented as a horizontal line connecting the two
activities across the boundaries of the roles, as
shown in Figure 12.

Figure 11: Part refinement and case refinement

Figure 12: Role interaction

Dynamic Relationships Management Journal, November 2013

Ron S. Kenett: Implementing SCRUM using Business Process Management and Pattern Analysis Methodologies

40

The level of detail of the interaction is not spec-
ified, nor is the duration of the interaction. Depend-
ing on the case, an interaction can be decomposed
into smaller, more detailed activities and interac-
tions, or it can be represented as a single interac-
tion. This choice, however, is left to the model
designer and is related to the importance of the spe-
cific interaction in the overall model.

3.3.2 Using the notation

The activities of which a role consists are re-
fined in this level. The role box now contains a se-
quence of activities, possibly refined according to
one of the refinement schemes previously pre-
sented, as illustrated in Figure 13.

covered within a particular domain with the purpose
of being useful in many similar situations. A pattern
is useful if it can be used in different contexts.

3.4.1 The Notion of Pattern

Alexander defines a pattern as describing “a
problem which occurs over and over again in our en-
vironment and then describes the core of the solu-
tion to that problem, in such a way that you can use
this solution a million times over, without ever doing
it the same way twice" in (see Alexander, 1979,
http://www.c2.com/cgi/wiki?TimelessWayOfBuild-
ing). Here, the emphasis is put on the fact that a pat-
tern describes a recurrent problem and it is defined
with its associate core solution. According to Alexan-
der, what repeats itself is a fabric of relationships.
For example, when a statistical consultant is first ap-
proached by a customer and gets a first look at
some data, or a detailed description of it, the statis-
tical consultant is initiating a basic investigation to
understand the context of the problem. This exam-
ple represents a structural pattern which is repeat-
able in many different settings; for example in a
troubleshooting assignment in manufacturing, or a
market research study. Aligned to this structural pat-
tern, there is a pattern of events which is also re-
peatable, in our example the basic investigation
preceding the statistical analysis takes place time
and time again within a company.

It is important to note that a pattern relates a
problem to a solution.

3.4.2 Pattern Template

A pattern is more than just a description of
some thing in the world. A pattern should also be a
‘rule’ about when and how to create that thing.
Therefore, a set of desirable properties for a pattern
may be the following:

A pattern should be made explicit and precise
so that it can be used time and time again. A pattern
is explicit and precise if:

• It defines the problem (e.g. ‘we want to improve
yield in a manufacturing process’) together with
the forces that influence the problem and that
must be resolved (e.g. ‘managers have no sense

3.3.3 Guidelines for the Role-Activity Diagram

Dependencies identified at the actor-role level
model are represented as interactions at the role-ac-
tivity level; indeed, interdependencies between roles
are translated into specific activities at this level,
which constitute the interface between the roles.

3.4 An Overview of Patterns

The software development community is a use-
ful source of examples of pattern use, in particular
by those advocating and practising object-oriented
approaches and re-use. What these efforts have in
common is in their attempt to exploit knowledge
about best practice in some domain. Best practice
knowledge is constructed in ‘patterns’ that are sub-
sequently used as the starting point in the program-
ming, design or analysis endeavours. Patterns
therefore, are not invented but rather they are dis-

Figure 13: A role-activity diagram

Dynamic Relationships Management Journal, November 2013 41

for data variability’, ‘collaboration of production
personnel must be achieved’ etc.). Forces refer to
any goals and constraints (synergistic or conflict-
ing) that characterise the problem.

• It defines a concrete solution (e.g. ‘how should
basic problem investigations be done’). The solu-
tion represents a resolution of all the forces char-
acterising the problem.

• It defines its context (e.g. ‘the pattern makes
sense in a situation that involves the initial inter-
action between the statistical consultant and his
customer’). A context refers to a recurring set of
situations in which the pattern applies.

A pattern should be visualisable and should be
identifiable, so that it can be interpreted equally
well by all who might share the pattern. In this sense
“visualisation” may take the form of ‘statements in
natural language’, ‘drawings’ conceptual models’
and so on.

In the literature there are many different pro-
posals for the description of those desirable prop-
erties (Alexander, 1979; Coplien, 1994; Rumbaugh,
1995). One general example is the pattern template
presented in Table 1.

There exists a growing collection of document -
ed patterns, even if these as yet mainly consist of
software patterns, for example:

Software development patterns:

• http://hillside.net/patterns/

• http://www.cmcrossroads.com/bradapp/docs/

patterns-intro.html

• http://c2.com/cgi-bin/wiki?JimCoplien

The Process Patterns Resource Page:

• http://www.ambysoft.com/processPatterns

Page.html

OrganizationalPatterns:

• http://www.bell-labs.com/cgi-user/

OrgPatterns/OrgPatterns?Organizational

Patterns

• http://people.dsv.su.se/~js/ekp/ekp.html

• http://crinfo.univ-paris1.fr/EKD-CMMRoad

Map/index.html

Antipatterns Repository:

• http://c2.com/cgi/wiki?AntiPatterns/

Anti-patterns are defined as telling you how to
go from a problem to a bad solution, telling you how
to go from a bad solution to a good solution or,
something that looks like a good idea, but which
backfires badly when applied. Recognising "bad"
business practice may provide knowledge or impe-
tus for identifying and describing the relevant good
practice.

4. EKD, PATTERNS AND SCRUM

This section revisits the SCRUM components
using the EKD description of patterns. Some exam-
ples are used to describe the basic elements of a
SCRUM patterns repository, how it can be popu-
lated, maintained and used.

4.1 SCRUM, EKD and Pattern Description

SCRUM patterns consist of SCRUM activities,
roles and artifacts. Figure 14 lists key SCRUM activ-
ities. After describing these elements using EKD no-

Name: it should be short and as descriptive as possible

Examples: one or several diagrams/drawings illustrating the use
of the pattern,

Context: it focuses on the situation where the pattern is ap-
plicable,

Problem: it is a description of the major forces/benefits of the
pattern as well as its applicability constraints

Solution: it details the way to solve the problem, it is com-
posed of static relationships as well as dynamic ones
describing how to construct an artefact according to
the pattern. Variants are often proposed along with
specific guidelines for adjusting the solution with re-
gards to special circumstances. Sometimes, the solu-
tion requires the use of other patterns.

Table 1: A Pattern Template with instructions

The structure of the pattern includes informa-
tion describing the pattern, examples of use along
with information describing the relationships that
the pattern has with other patterns and so on.

Dynamic Relationships Management Journal, November 2013

Ron S. Kenett: Implementing SCRUM using Business Process Management and Pattern Analysis Methodologies

42

tation (see for example Figure 15 and 16) the elici-
tation and organisation of patterns in a pattern
repository is discussed.

progress as provided in traditional development. It
feels risky to do so; there is no guarantee that the
team will deliver. Often, by the time systems are de-
livered, it is obsolete or it requires major changes.
The problem is that input from the environment isFigure 14: High level view of SCRUM activities

A sample Sprint pattern:

Context: You are a software developer or a coach
managing a software development team where there
is a high percentage of discovery, creativity or testing
involved. Sprints are applicable for building systems,
both new and existing, that allow partitioning of
work, with clean interfacing, components or objects.
We want every person on the team to understand
the problem fully and to be aware of all the steps in
development. This limits the size of the team and of
the system developed. Trust is a core value in
SCRUM, and especially important for the success of
Sprints, so SelfSelectingTeams is a plus. During a
sprint, we optimize communications and maximize
information sharing in DailySCRUM. Each Sprint

takes a pre-allocated amount of work from the Back-
log. The team commits to it. As a rule nothing is
added externally during a sprint. External additions
are added to the global backlog. Issues resulting from
the Sprint can also be added to the Backlog. A Sprint
ends with a Demonstration of new functionality.

Problem: We want to balance the need of develop-
ers to work undisturbed and the need for manage-
ment and the customer to see real progress.

Forces: For many people – project managers, cus-
tomers, it is difficult to give up control and proof of

mostly collected at the start of the
project, while the user learns most
using the system or intermediate
releases.

Solution: Give the developers the
space to be creative, and to learn
exploring the design space, doing
their actual work, undisturbed by
outside interruptions, free to adapt
their way of working using oppor-
tunities and insights. At the same
time keep the management and
stakeholders confident by showing
real progress instead of documents
and report produced as proof. Do
this in short cycles, Sprints, where
part of the Backlog is allocated to

a small team. In a Sprint, during a period of approx-
imately 30 days, an agreed amount of work will be
performed, to create a deliverable. During Sprint-

Planning a Backlog is assigned to Sprints by priority
and by approximation of what can be accomplished
during a month. Chunks of low cohesion and high
coupling are selected. Focus is on enabling, rather
than micromanagement. During the Sprint outside
chaos is not allowed in the increment. The team, as
they proceed, may change course and their way of
working. By buffering them from the outside, we
allow them to focus on the work at hand and on de-
livering the best they can and the best way they can,
using their skill, experience and creativity. Each
Sprint produces a visible and usable deliverable.
This is demonstrated in DemoAfterSprint. An incre-
ment can be either intermediate or shippable, but
it should stand on its own. The goal of a Sprint is to
complete as much quality software as possible and
to ensure real progress, not paper milestones as
alibi. Sprints set up a safe environment and time
slots where developers can work undisturbed by
outside requests or opportunities. They also offer a
pre-allocated piece of work that the customer, man-
agement and the user can trust to get a useful de-
liverable such as a working piece of code at the end

Dynamic Relationships Management Journal, November 2013 43

of the Sprint. The team focuses on the right things
to do, management working on eliminating what
stands in the way of doing in better.

Rationale: Developers need time to work undis-
turbed, they need support for logistics and
management and users need to stay con-
vinced that real progress is made.

Examples: ABC has have been using
Sprints since January 2006 on a number of
end-user-projects and for the develop-
ment of a framework for database, docu-
ment management and workflow. The
Backlog is divided in Sprints that last
about a month. At the end of each Sprint

a working Smalltalk image is delivered
with integration of all current applications.
The team meets daily in DailySCRUM

Meetings and Backlog is allocated after the De-

moAfterSprint in a monthly meeting with the steer-
ing committee.

Figure 15 presents the actor role diagram of the
Product Owner and System Architect. It indicates

that Product Owners need to be coordinated by the
System Architect at the product architecture level.

Figure 15: The Product Owner and System

Architect actor role diagram

Figure 16: The Sprint role activity diagram

Running a Sprint requires coordination be-
tween the Product Owner and the SCRUM Master.
Figure 16 presents a role activity diagram for the
role of the SCRUM Master, Product Owner and
Sprint Team, in the context of a Sprint.

Dynamic Relationships Management Journal, November 2013

Ron S. Kenett: Implementing SCRUM using Business Process Management and Pattern Analysis Methodologies

44

4.2 Defining SCRUM Patterns

When defining patterns, one needs to continu-
ally keep in mind two aspects. These are 1) how we
propose to introduce and implement the pattern in
the organisation and 2) the importance and rele-
vance of issues being presented. Without these clar-
ifying these two points for each pattern, they will be
of no use. The purpose of the process of defining
patterns is to produce a description of reusable
components. This process is mainly concerned by
(1) identifying potential reusable knowledge and (2)
constructing the reusable component embedding
this knowledge.

4.2.1 Identifying Reusable Knowledge

This activity is essential to the process of defin-
ing reusable components. There are two problems
to be considered, namely: identifying the sources of
knowledge that shall be used as the starting point
for defining reusable knowledge and selecting the
techniques that shall be used for extracting the
reusable knowledge. Two types of technique have
been proposed so far. One is based on the study of
wide variety of existing products whereas the sec-
ond is based domain oriented meta modelling ap-
proaches. The latter focuses on the definition of
specific concepts for describing domain knowledge.

4.2.2 Constructing Reusable Components

This activity mainly concerns the problems of
specifying and organising reusable components. The
specification of reusable components is based on
techniques that facilitate reuse such as, abstraction,
genericity and inheritance. These techniques try to
balance the degree of reusability of the components
with the effort that shall be made while effectively
reusing the component. The organisation of the
reusable components is driven towards the facilita-
tion of the search and the retrieval of reusable com-
ponents.

4.2.3 SCRUM Patterns Elicitation

The following four-step procedure is proposed
to define patterns. By “define” we mean the discov-
ery, selection and demarcation of the relevant pat-
terns. The stages are:

 1. Collect candidates

 2. Evaluate suitability

 3. Derive structure

 4. Validation

To minimise redundancy, it is not necessary to
provide a full description of all patterns as provided
for in the pattern template, already at stage one.
The degree of detail should be increased as one
moves through the stages. A scorecard for each can-
didate pattern should be completed (see Table 2).

Part of Pattern Stage Formal signature Informal signature Responsible actor Other

1. Collect candidates
Problem
Solution
Context

Project Management Initial EKD Model

2. Evaluate suitability Initial draft

Name
Forces
Rationale
Consequences

Domain experts
Thesaurus, initial
guidelines

3. Derive structure,
context and
relationships

Verb
Object
Source
Result
Manner

Related patterns
Related documents
Contributing authors
Hyperlinks
Annotation
Version

Knowledge engineer

4. Validation
All attributes fully
validated

All attributes fully
validated

Project Management,
Domain experts

Complete guidelines

Table 2: Stages in defining patterns

Dynamic Relationships Management Journal, November 2013 45

For each stage, the various stakeholders need
to play specific roles, see Table 3.

tential patterns may be compared in a systematic
way according to commonly accepted criteria, so as
to enable a satisfactorily informed decision.

A commonly recurring problem is the trade-off
which is often made between, having "easily organ-
ised knowledge" which is inherently incomplete so
as to be structured as compared to knowledge
which reflects reality, which is often not easily struc-
tured or even understood. The choice is then, where
on a knowledge continuum you wish to place your-
self. Our approach tends to be somewhere between
highly structured and unrealistic knowledge at one
end and unstructured but realistic knowledge, in the
half of the continuum towards the unstructured. In
practical terms this means that when defining pat-
terns it is more important that these reflect real
problems and solutions rather than flashy and tech-
nically brilliant presentations.

Knowledge, expressed by generic patterns,
should facilitate the creativity process by reducing
the need to "reinvent the wheel" when facing new
problems and situations. The essence of the use of
patterns is that they are applied to recurring prob-
lems. A pattern is of no use if it aims to solve a prob-

Role Tasks

Project
Management

Overall responsibility:
• Initiate definition procedure
• Facilitate communication between analysts

and domain experts.

Knowledge
engineer

• Provide EKD and Pattern methodological
support.

• Ensure structure and consistency with
objectives, and method.

Domain
experts

• Provide domain knowledge
• Ensure validity.

Table 3: Roles, tasks and actors for the stages in

defining patterns

4.3 SCRUM Pattern Repository and Reuse

In order to make the SCRUM generic knowl-
edge easy to organise and access for the benefit of
the organization one needs to systematise and
structure the knowledge and experience gained in
different parts of the company. The knowledge en-
gineer's task is to provide a framework where po-

Figure 17: The SCRUM Pattern indexing organisation (adapted from ELEKTRA project)

Dynamic Relationships Management Journal, November 2013

Ron S. Kenett: Implementing SCRUM using Business Process Management and Pattern Analysis Methodologies

46

Criteria Sub-criteria High Value Medium Value Low Value

Usefulness

Degree of triviality

The degree to which the pattern
addresses a problem which is of
little importance because the
problem or solution is obvious.

The pattern is concerned with
issues that are or most likely will
be of concern to other parts of
the company.

While the pattern deals with a
pertinent problem, the solution is
already well known.

The pattern is concerned with a
problem which does warrant the
creation of a pattern since it is so
trivial with the proposed solution
being obvious to domain experts.

Grade of implementability

Extent that pattern is thought to
be practical and implementable.
Is change compatible with
business strategy. Have trade-offs
been taken into account

The pattern is useful in that it
prescribes practical, easy to
understand and implement
solutions.

The pattern may be of some use
despite some practical problems
in implementation and some
difficulty in understanding the
solution.

The pattern is not usable. The
solution is impractical and
difficult to understand. The
pattern only proposes "paper-
based" change rather than real
change

Degree of confidentiality The pattern does not disclose any
confidential business
information.

Some information may be able to
be used by other projects.

The pattern discloses sensitive
project information.

Quality

Degree of complexity

The number of factors and the
their relationships.

The pattern addresses only a few
manageable main concepts and
ideas.

The pattern is complex but may
still be useful in that the
complexity is needed.

The large number of factors that
affect the implementation of the
solution minimises the chances
that the solution can be
implemented.

Addition of Value

The local and global benefits
accruing to the business with the
implementation

The consequences of a successful
implementation are great value
to the project directly affected as
well as other projects

The local and global benefits are
unclear, difficult to determine or
marginal.

There are no local or global
benefits or there is a conflict
between these so that in total no
value is added

Level of genericity

Abstraction level of the problem
that the pattern addresses

The pattern addresses a problem
that is general enough for all the
company.

The pattern addresses a problem
that applies only to part of the
company.

The pattern addresses a problem
that is only relevant to the
project in which it was
discovered.

Grade of understandability

Visualisable and identifiable
The pattern is easy for decision-
makers, domain experts and
those to be affected, to
comprehend.

The pattern is only partially
understandable to decision-
makers, domain experts and
those to be affected.

The pattern is incomprehensible
to stakeholders

External compatibility

The extent to which the pattern
could be used by other
companies

The pattern has taken into
account differences in national,
and organisational cultures and
ways of working amongst
identified future external users of
the pattern.

The pattern has partially takes
into account differences in
national, and organisational
cultures and ways of working
amongst identified future
external users of the pattern.

The pattern does not take into
account differences in national,
and organisational cultures and
ways of working amongst
identified future external users of
the pattern.

Cost

Level of experience in their use The pattern has been
implemented within the
company.

The pattern has been partially or
sporadically used.

The pattern has never been
implemented.

Economic feasibility of the

proposed solutions

Proposed solution is relatively
easy to implement.
Organisational support exists in
terms of sufficient resources as
well as managerial support. The
solution is politically and socially
acceptable .

Proposed solution is difficult but
feasible to implement.
Organisational support is
lukewarm. Resources are
available but may not be
sufficient. There may exist
political and social difficulties in
making the pattern feasible.

Proposed solution is not feasible.
Organisational support will be
difficult to obtain. The resources
will not be made available. The
existing difficult social and/or
political climate would make an
implementation impossible.

Table 4: Pattern evaluation criteria

Dynamic Relationships Management Journal, November 2013 47

lem that is extremely unlikely to occur within the
foreseeable future for those businesses that are en-
visaged to have access to the patterns.

To enhance reuse, patterns need to be evalu-
ated and assessed periodically. Table 4 presents a
set of criteria that can be used to classify a pattern
on a High-Medium-Low scale. The criteria focus on
usefulness, quality and cost. Obviously each organ-
isation should develop it’s own criteria, in line with
it's strategy and organizational culture.

Using patterns is an approach describing re-
peatable solutions to recognisable problems. In this
context, both the problem and the solution must be
uniquely identifiable and accessible. The pattern
usage framework must therefore make the distinc-
tion between product or artifact patterns and
process patterns, and includes an indexing schema
for accessing them. The patterns typology aims to
distinguish between the way to solve a problem and
the elements that will be used for the solution,
while the indexing hierarchy characterise each pat-
tern by the problem that it addresses through the
usage perspective and the knowledge perspective.
The template in Table 1 represents the usage per-
spective and the EKD modelling presents the knowl-
edge perspective. In order to enable reuse and
pattern retrieved a signature is required in either a
formal or informal format. An example of how this
SCRUM patterns can be indexed and used in prac-
tice by specific projects within the enterprise is il-
lustrated in Figure 17 which has been adapted from
the ELEKTRA project. An example of an electronic
patterns repository based on EKD is available in
http://crinfo.univ-paris1.fr/EKD-CMMRoadMap/
index.html.

5. SUMMARY AND CONCLUSIONS

Implementing agile development in general
and SCRUM in particular in a large organization is a
major challenge (Nerur, 2005; Tan & Teo, 2007). If
this approach is considered a strategic initiative by
the enterprise, one needs to formalize the approach
by creating both a common language and a reuse
repository of knowledge and experience. This paper
presents a framework for applying EKD, a general
Business Process Management description language

to map SCRUM patterns. By creating an organiza-
tion-wide accessible SCRUM pattern repository, we
are providing the infrastructure for company-wide
implementation of agile development. Such a repos-
itory provides both storage and updating features
that are critical for expanding SCRUM implementa-
tion beyond local islands of excellence. The gains
achieved by this approach include improved knowl-
edge management and increased efficiencies and
competency model clarifications. The practical im-
plications of integrating EKD and SCRUM are re-
flected by better communication between various
role functions and increased accountability as a re-
sult of better defined job descriptions.

The approach described in this work can also
be applied to user groups and networks of small
software developers who share an interest in better
and faster software development practices. Specifi-
cally this can applied to communities developing
open source software and help mitigates risks in
such environments (Franch et al., 2013)

In summary, the challenge of introducing struc-
tural changes in how organizations work is generi-
cally complex. The improvement of software and
system development units is particularly challenging
because of the abstract characteristics of the
processes that require skills, experience, innovation
and creative capabilities. Attempts to regulate such
processes using standards like ISO 9000 are usually
inefficient. On the other hand, addressing the prob-
lems of software and system development with a
paradigm shift, like agile development, has proven
effective (GAO, 2012). In order to deploy agile meth-
ods, the paper proposes an integration of SCRUM
activities, Business Process Management (BPM) and
Enterprise Knowledge Development (EKD) methods.
This integrated approach is demonstrated with a
real life case study. In particular, it is shown how to
combine the elicitation and management of organi-
zational patterns, as a basic element of knowledge
management supporting this transformation.

Process improvement in system and software
development processes is a critical element in the
competitive position of local and global organiza-
tions in this business area. Future research in these
directions includes studies of how the experience of
ABC Inc. can be replicated and adapted and how or-

Dynamic Relationships Management Journal, November 2013

Ron S. Kenett: Implementing SCRUM using Business Process Management and Pattern Analysis Methodologies

48

ganizational behavior and management experts can
make further contributions to organizations strug-
gling to meet such challenges.

Acknowledgement: The author wishes to ac-
knowledge the constructive comments of two ref-
ereed that helped improve the paper.

REFERENCES

Alexander, C. (1979). The Timeless Way of Building. New
York: Oxford University Press.

April, A., Huffman Hayes, J., Abran, A., & Dumke, R.
(2005). Software maintenance maturity model
(smmm): the software maintenance process model.
J. Softw. Maint. Evol., 17 (3): 197-223.

Bach, J. (October, 1995). The Challenge of "Good Enough"
Software, American Programmer.

Berntsson-Svensson, R., & Aurum, A. (2006). Successful
software project and products: An empirical investi-
gation. Proceedings of ISESE ’06, ACM/IEEE interna-

tional symposium on International symposium on

empirical software engineering. New York, NY, USA:
ACM Press: 144-153.

Cohn, M., & Ford, D. (2003). Introducing an Agile Process
to an Organization. IEEE Computer Society,
http://www.mountaingoatsoftware.com/system/
article/file/10/IntroducingAnAgileProcess.pdf

Coplien, J. (1994). Borland Software Craftsmanship: A
New Look at Process, Quality and Productivity. Pro-

ceedings of the 5th Annual Borland International Con-

ference, Orlando, Florida.
Franch, X. (2013). Managing Risk in Open Source Soft-

ware Adoption, ICSOFT2013, 8th International Joint

Conference on Software technologies, Reykjavik, Ice-

land, http://riscoss.sites.ow2.org/bin/download/
Events/WebHome/ICSOFT-EA_2013_78_PROCS.pdf

GAO 12-681(2012). Effective Practices and Federal Chal-

lenges in Applying Agile Methods, http://www.gao.
gov/products/GAO-12-681.

Kenett, R., & Baker, E. (1999). Software Process Quality:

Management and Control. New York: M. Dekker.
Kenett, R., & Baker, E. (2010). Process Improvement and

CMMI for Systems and Software: Planning, Implemen-

tation, and Management, Taylor and Francis, Auer-
bach Publications.

Nerur, S. & Mahapatra, R. (2005). Challenges of Migrating
to Agile Methodologies. Communications of the ACM

48 (5): 72-78.
Rolland, C., Nurcan, S., & Grosz, G. (1998). A unified

framework for modelling co-operative design proces -
ses and co-operative business processes, in the Pro-

ceedings of the 31st Annual International Conference

on System Sciences, Big Island, Hawaii, USA.
Rolland, C., Nurcan, S., & Grosz, G. (1999). Enterprise

Knowledge Development: the process view. Infor -

mation and Management Journal, Elsevier 36 (3):

165-184.
Rumbaugh, J. (1995). What Is a Method. Journal of Object

Oriented Programming.

Schwaber, K., & Beedle, M. (2001). Agile Software Devel-

opment with Scrum, Prentice Hall.
Stare, A. (2013). Agile project management – a future ap-

proach to the management of projects?. Dynamic Re-

lationship Management Journal, 1 (2): 43-53.
Takeuchi, H., & Nonaka, I. (1986). The New Product De-

velopment Game. Harvard Business Review, 69 (6):
96-104.

Takeuchi, H., & Nonaka, I. (1995). The Knowledge Creat-

ing Company: How Japanese Companies Create the

Dynamics of Innovation, Oxford University Press.
Tan, C. H., & Teo, H. H. (2007). Training Future Software

Developers to Acquire Agile Development Skills. Com-

munications of the ACM 50 (12): 97-98.

