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Largo S.L. Murialdo 1, I-00146 Roma, Italy

Anita Pasotti
DICATAM - Sez. Matematica, Università degli Studi di Brescia,
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Abstract

In this paper, we present a complete solution to the existence problem for a cyclic
hamiltonian cycle system for the complete multipartite graph with an even number of parts
all of the same cardinality. We also give necessary and sufficient conditions for the system
to be symmetric as well.
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1 Introduction
Throughout this paper, Kv will denote the complete graph on v vertices and, if v is even,
Kv − I will denote the cocktail party graph of order v, namely the graph obtained from
Kv by removing a 1-factor I , that is, a set of v

2 pairwise disjoint edges. Also Km×n will
denote the complete multipartite graph with m parts of same cardinality n; if n = 1, we
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may identifyKm×1 withKm, while if n = 2,Km×2 is nothing but the cocktail party graph
K2m − I .

For any graph Γ we write V (Γ) for the set of its vertices and E(Γ) for the set of
its edges. We denote by C = (c0, c1, . . . , c`−1) the cycle of length ` whose edges are
[c0, c1], [c1, c2], . . . , [c`−1, c0]. An `-cycle system of a graph Γ is a set B of cycles of length
` whose edges partition E(Γ); clearly a graph may admit a cycle system only if the de-
gree of each vertex is even. For general background on cycle systems we refer to the
surveys [7, 8]. An `-cycle system B of Γ is said to be hamiltonian if ` = |V (Γ)|, and
it is said to be cyclic if we may identify V (Γ) with the cyclic group Zv , and if for any
C = (c0, c1, . . . , c`−1) ∈ B, we have also C + 1 = (c0 + 1, c1 + 1, . . . , c`−1 + 1) ∈ B.
The existence problem for cyclic cycle systems ofKv has generated a considerable amount
of interest. Many authors have contributed to give a complete answer in the case v ≡ 1 or
` (mod 2`) (see [10, 11, 19, 20, 21, 22, 26]). We point out in particular that the existence
problem of a cyclic hamiltonian cycle system (HCS, for short) for Kv has been solved by
Buratti and Del Fra in [11], and that for Kv − I it has been solved by Jordon and Morris
[17].

The existence problem for cycle systems of the complete multipartite graph has not
been solved yet, but we have many interesting recent results on this topic (see for instance
[4, 5, 24, 25]). Still, very little is known about the same problem with the additional con-
straint that the system be cyclic. We have a complete solution in the following very special
cases: the length of the cycles is equal to the cardinality of the parts [12]; the cycles are
hamiltonian and the parts have cardinality two [14, 17]. We have also some partial results
in [3].

Hamiltonian cycle systems of Km×n have been shown to exist ([18]) whenever the
degree of each vertex of the graph, that is (m − 1)n, is even; in this paper we start inves-
tigating the existence of cyclic hamiltonian cycle systems of Km×n, and completely solve
the problem when m is even.

We also consider the existence of a symmetric HCS for Km×n with n > 1, a concept
recently introduced by Schroeder in [23] generalizing the notion of symmetry given in [6]
for cocktail party graphs: in this definition, an HCS for Km×n is n-symmetric if each cycle
in the system is invariant under a fixed-point-free automorphism of order n. We will show
that the cycle systems we shall construct in will turn out to be symmetric in this sense.

The paper is organized as follows: after some preliminary notes in Section 2 on the
methods we shall use, in Section 3 we establish a necessary condition in the case n even
for the existence of a cyclic cycle system (not necessarily hamiltonian) of Km×n from
which we derive a necessary condition for the existence of a cyclic HCS of Km×n. Then
in Section 4 we give a complete solution to the existence problem of a cyclic HCS with
an even number of parts, proving that in this case the necessary condition we found is also
sufficient. The main result of this paper is the following.

Theorem 1.1. Let m be even; a cyclic and n-symmetric HCS for Km×n exists if and only
if

(a) n ≡ 0 (mod 4), or

(b) n ≡ m ≡ 2 (mod 4).

The proof of Theorem 1.1 will follow from the various results proved in Sections 3 and
4. First, in Corollary 3.4 we give the necessary condition for the existence of a cyclic HCS
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of Km×n. Then, in Proposition 4.2 we study the bipartite case, finally in Theorem 4.3 and
in Theorem 4.7 we deal with the case n ≡ 0 (mod 4), and n ≡ 2 (mod 4), respectively.

2 Preliminaries
The main results of this paper will be obtained by using the method of partial differences
introduced by Marco Buratti and used in many papers, see for instance [2, 9, 10, 11, 13,
14, 27]. Here we recall some definitions and results useful in the rest of the paper.

Definition 2.1. Let C = (c0, c1, . . . , c`−1) be an `-cycle with vertices in an abelian group
G and let d be the order of the stabilizer of C under the natural action of G, that is, d =
|{g ∈ G : C + g = C}|. The multisets

∆C = {±(ch+1 − ch) | 0 ≤ h < `},
∂C = {±(ch+1 − ch) | 0 ≤ h < `/d},

where the subscripts are taken modulo `, are called the list of differences from C and the
list of partial differences from C, respectively.

More generally, given a set B of `-cycles with vertices in G, by ∆B and ∂B one means
the union (counting multiplicities) of all multisets ∆C and ∂C respectively, where C ∈ B.

We recall the definition of a Cayley graph on a group G with connection set Ω, denoted
by Cay[G : Ω]. Let G be an additive group and let Ω ⊆ G \ {0} such that for every ω ∈ Ω
we also have −ω ∈ Ω. The Cayley graph Cay[G : Ω] is the graph whose vertices are the
elements of G and in which two vertices are adjacent if and only if their difference is an
element of Ω (an analogous definition can be given in multiplicative notation). Note that
Km×n can be interpreted as the Cayley graph Cay[Zmn : Zmn \mZmn], where bymZmn
we mean the subgroup of order n of Zmn. The vertices ofKm×n will be always understood
as elements of Zmn and the parts of Km×n are the cosets of mZmn in Zmn. We consider
the natural action of Zmn on the cycles of Km×n: given a cycle C = (c0, c1, . . . , c`−1) of
Km×n we defineC+t as the cycle (c0+t, c1+t, . . . , c`−1+t), where c0, c1, . . . , c`−1, t are
elements of Zmn. The stabilizer and the orbit of any cycle C of Km×n will be understood
with respect to this action and will be denoted by Stab(C) and Orb(C), respectively. A
cyclic HCS of Km×n is completely determined by a set of base cycles, namely, a complete
system of representatives for the orbits of its cycles under the action of Zmn. The next the-
orem, which is a consequence of the theory of partial differences, will play a fundamental
role in this paper.

Theorem 2.2. A set B of mn-cycles is a set of base cycles of a cyclic HCS of Km×n if and
only if ∂B = Zmn \mZmn.

In Example 2.4 we will show how to construct a cyclic HCS of K10×6 applying Theo-
rem 2.2.

For our purposes the following notation will be useful. Let c0, c1, . . . , cr−1, x be ele-
ments of an additive group G, with x of order d. The closed trail

[c0, c1, c2, . . . , cr−1,

c0 + x, c1 + x, c2 + x, . . . , cr−1 + x, . . . ,

c0 + (d− 1)x, c1 + (d− 1)x, c2 + (d− 1)x, . . . , cr−1 + (d− 1)x]
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will be denoted by
[c0, c1, . . . , cr−1]x.

For brevity, given P = [c0, c1, . . . , cr−1], we write [P ]x for the closed trail [c0, c1, . . . ,
cr−1]x. For instance in Z12 [0, 5, 1]9 represents the closed trail (a cycle in this case)
(0, 5, 1, 9, 2, 10, 6, 11, 7, 3, 8, 4).

Remark 2.3. Note that [c0, c1, . . . , cr−1]x is a (dr)-cycle if and only if the elements ci,
for i = 0, . . . , r − 1, belong to pairwise distinct cosets of the subgroup 〈x〉 in G. Also, if
C = [c0, c1, . . . , cr−1]x is a (dr)-cycle, then

∂C = {±(ci − ci−1) | i = 1, . . . , r − 1} ∪ {±(c0 + x− cr−1)}.

We point out that in the case of cyclic HCS of Km×n we have that dr = mn. Hence,
if the list ∂C has no repeated elements, the order of Stab(C) is d, and the length of the
Zmn-orbit of C is r.

Example 2.4. Here we present the construction of a cyclic HCS of K10×6. Consider the
following cycles with vertices in Z60:

C1 = [0, 19, 1, 17, 3, 15, 6, 14, 8, 12]10, C2 = [0, 29, 1, 28, 2, 27, 3, 26, 4, 25]10,

C3 = [0, 3]2, C4 = [0, 7]2, C5 = [0, 13]2, C6 = [0]17.

One can easily check that B = {C1, . . . , C6} is a set of hamiltonian cycles of K10×6 and
that:

∂C1 = ±{19, 18, 16, 14, 12, 9, 8, 6, 4, 2},
∂C2 = ±{29, 28, 27, 26, 25, 24, 23, 22, 21, 15},

∂C3 = ±{3, 1}, ∂C4 = ±{7, 5}, ∂C5 = ±{13, 11}, ∂C6 = ±{17}.

Hence ∂B = Z60 \ 10Z60. So, in view of Theorem 2.2, we can conclude that B is a set of
base cycles of a cyclic HCS of K10×6.
Explicitly the required system consists of the following 27 cycles:

{C1 + i, C2 + i | i = 0, . . . , 9} ∪ {C3 + i, C4 + i, C5 + i | i = 0, 1} ∪ {C6}.

An HCS of the complete graph Kv , v odd, is said to be symmetric if there is an invo-
lutory permutation φ of the vertices of Kv fixing all its cycles; in the case v is even, an
HCS of the cocktail party graph Kv − I is symmetric if all its cycles are fixed by the invo-
lution switching all pairs of endpoints of the edges of I . This definition is due to Akiyama,
Kobayashi and Nakamura [1] in the case v odd, and to Brualdi and Schroeder [6] in the case
v even. Symmetric hamiltonian cycle systems always exist in the odd case: an example is
the well-known Walecki construction, and more generally, any 1-rotational HCS is clearly
symmetric (an HCS is called 1-rotational if it has an automorphism group G acting sharply
transitively on all but one vertex). It was recently proved that the number of nonisomorphic
1-rotational HCSs of order v = 2n+ 1 > 9 is bounded below by 2d3n/4e ([16]), so that in
the case v odd symmetric HCSs are quite common.

In the case v even we have the following result.
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Theorem 2.5 (Brualdi and Schroeder [6]). A symmetric HCS of Kv − I exists if and only
if v2 ≡ 1 or 2 (mod 4).

In [14], the authors study the case of an HCS ofKv which is both cyclic and symmetric;
their result in the case v even is that there exists a cyclic and symmetric HCS of Kv for all
values for which a cyclic HCS exists, that is, for v

2 ≡ 1 or 2 (mod 4) and v
2 not a prime

power.
Very recently Michael Schroeder [23] studied hamiltonian cycle systems for a graph Γ

in which each cycle is fixed by a fixed-point-free automorphism φ of Γ of order n > 2, so
that V (Γ) = mn for some m; we shall call such an HCS n-symmetric.
To admit an n-symmetric HCS, Γ must be a subgraph of Km×n, and in [23] the existence
problem of an n-symmetric HCS for Km×n is completely solved in the following result.

Theorem 2.6 (Schroeder [23]). Let m ≥ 2 and n ≥ 1 be integers such that (m − 1)n is
even. An n-symmetric HCS for Km×n always exists except when we have, simultaneously,
n ≡ 2 (mod 4) and m ≡ 0 or 3 (mod 4).

Note that we shall see the same non-existence condition later on in Corollary 3.4. It
makes sense therefore to study, as done in [14] for the cocktail party graph, hamiltonian
cycle systems for the complete multipartite graph that are both cyclic and symmetric. As
noted above,Km×n is the Cayley graph Cay[Zmn : Zmn\mZmn]. Let γ be the morphism
x 7→ x + 1 (mod mn) and set φ = γm. We have the following condition for a cycle in a
cyclic cycle system to be φ-invariant.

Lemma 2.7. A cycle C in a cyclic HCS of Km×n is φ-invariant if and only if n divides
|Stab(C)| - or equivalently, if |Orb(C)| divides mn

n = m.

Example 2.8. Let us consider once more the cycles we used in Example 2.4; we can easily
see that the cycle system is also 6-symmetric, since the length of the orbit is 10 for cycles
C1 and C2, 2 for cycles C3, C4, C5 and 1 for C6.

3 Non-existence results
In this section we shall present some non-existence results for cycle systems of the complete
multipartite graph Km×n; the methods used here will be closely related to those used in
[15], where the case of the cocktail party graph is considered. The results will concern
general cycle systems; we will then apply these results to the hamiltonian case.

The following lemma is an immediate generalization of Lemma 2.1 of [15], hence we
omit the proof.

Lemma 3.1. Let C = (c0, c1, . . . , c`−1) be a cycle belonging to a cyclic cycle system of
Km×n and let d be the order of Stab(C). ThenOrb(C) is an `-cycle system of Cay[Zmn :
{±(ci−1 − ci) | 1 ≤ i ≤ `

d}].

The next result generalizes Theorem 2.2 of [15].

Proposition 3.2. Let n be an even integer. The number of cycle orbits of odd length in a
cyclic cycle decomposition of Km×n has the same parity of m(m−1)n2

8 .
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Proof. Let B be a cyclic cycle system of Km×n. For every `-cycle C = (c0, c1, . . . , c`−1)
of B set

σ(C) =

`/d∑
i=1

(ci−1 − ci) = (c0 − c1) + (c1 − c2) + . . .+ (c`/d−1 − c`/d) = c0 − c`/d,

where d is the order of Stab(C). It is easy to see that c`/d = c0 + ρ where ρ is an element
of Zmn of order d and hence we have

σ(C) =
mnx

d
with gcd(x, d) = 1.

Since n is even, we have that σ(C) is even if and only if d is a divisor of mn2 ; on the other
hand, since the length of Orb(C) is mn

d , also |Orb(C)| is even if and only if d is a divisor
of mn2 . For any cycle C ∈ B, we thus have that

σ(C) ≡ |Orb(C)| (mod 2). (3.1)

Let S = {C1, . . . , Cs} be a set of base cycles of B, that is, a complete system of represen-
tatives for the orbits of the cycles of B, so that we have

B = Orb(C1) ∪Orb(C2) ∪ . . . ∪Orb(Cs).

By Lemma 3.1, the cycles of Orb(Ci) form a cycle system of Cay[Zmn : ∂Ci]. Hence it
follows that

Cay[Zmn : Zmn \mZmn] =
s
∪
i=1

Cay[Zmn : ∂Ci] = Cay [Zmn : ∂S]

so that we obtain
∂S = Zmn \mZmn. (3.2)

Note that ∂Ci is a disjoint union of the set of summands of σ(Ci) and the set of their
additive inverses. Hence, by (3.2), it follows that Zmn \mZmn is a disjoint union of the
set of all summands of the sum

∑s
i=1 σ(Ci) and the set of their additive inverses. Then,

considering that additive inverses elements have the same parity and that Zmn \mZmn =
±({1, 2, . . . , mn2 − 1} \ {m, 2m, . . . , (n2 − 1)m}) we can write:

s∑
i=1

σ(Ci) ≡
mn
2 −1∑
i=1

i−m
n
2−1∑
i=1

i (mod 2)

and then
s∑
i=1

σ(Ci) ≡
m(m− 1)n2

8
(mod 2).

From (3.1) we have

s∑
i=1

|Orb(Ci)| ≡
m(m− 1)n2

8
(mod 2).

Hence the number of cycles Ci of S whose orbit has odd length has the same parity as
m(m−1)n2

8 , and the assertion follows.
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Now we are ready to prove the main non-existence result. In the following given a
positive integer x by |x|2 we will denote the largest e for which 2e divides x.

Theorem 3.3. Let n be an even integer. A cyclic `-cycle system of Km×n cannot exist in
each of the following cases:

(a) m ≡ 0 (mod 4) and |`|2 = |m|2 + 2|n|2 − 1;

(b) m ≡ 1 (mod 4) and |`|2 = |m− 1|2 + 2|n|2 − 1;

(c) m ≡ 2, 3 (mod 4), n ≡ 2 (mod 4) and ` 6≡ 0 (mod 4); or

(d) m ≡ 2, 3 (mod 4), n ≡ 0 (mod 4) and |`|2 = 2|n|2.

Proof. If B is an `-cycle system of Km×n, then |B| = |E(Km×n)|/` = mn2(m− 1)/2`.
Hence the number of cycle orbits of odd length of a cyclic `-cycle system of Km×n has
the same parity as mn2(m − 1)/2`. By Proposition 3.2, we have that mn2(m − 1)/2` ≡
mn2(m − 1)/8 (mod 2). Now the conclusion can be easily proved distinguishing four
cases according to the congruence class of m modulo 4.

If the cycles of the system are hamiltonian, that is if ` = mn, we obtain the following
corollary.

Corollary 3.4. Let n be an even integer. A cyclic HCS of Km×n cannot exist if both
m ≡ 0, 3 (mod 4) and n ≡ 2 (mod 4).

4 Existence of a cyclic and symmetric HCS of Km×n, m even
In this section we present direct constructions of a cyclic and symmetric HCS of the com-
plete multipartite graph with an even number of parts. Since (m− 1)n must be even, if m
is even then n is even too; the condition in Corollary 3.4 tells us that when n ≡ 2 (mod 4),
m should also be congruent to 2 modulo 4. If these two requirements are met, we will show
that a cyclic and symmetric HCS of Km×n always exists, and therefore we prove Theorem
1.1.

As observed in the Introduction, Km×2 = K2m − I is the cocktail party graph; thus
we can suppose n > 2, since for n = 2 we can rely on the following result.

Theorem 4.1 (Jordon, Morris [17]; Buratti, Merola [14]). For an even integer v ≥ 4 there
exists a cyclic and symmetric HCS ofKv− I if and only if v ≡ 2, 4 (mod 8) and v 6= 2pα,
where p is an odd prime and α ≥ 1.

We start by considering the complete bipartite graph.

Proposition 4.2. For any even integer n there exists a cyclic and n-symmetric HCS of
K2×n.

Proof. For n = 2` we need a set B of base cycles such that ∂B = ±{1, 3, . . . , 2` − 1}.
Let us first assume ` even. For i = 0, 1, . . . , `/2 − 1 consider the cycle Ci = [0, 4i +
3]2. We have ∂Ci = ±{4i + 1, 4i + 3}, and thus B = {C0, C1, . . . , C`/2−1} is a set of
hamiltonian cycles of K2×n such that ∂B = Z2n \ 2Z2n. Now assume that ` is odd. For
i = 0, 1, . . . , b`/2c − 1 take Ci = [0, 4i + 3]2 as above, and add the cycle C ′ = [0]2`−1.
Now B = {C0, C1, . . . , Cb`/2c−1, C

′} is a set of base cycles for a cyclic HCS of K2×n.
This cycle system is also n-symmetric by Lemma 2.7 since each cycle belongs to an orbit
of length 1 or 2.
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Now we tackle the case n ≡ 0 (mod 4).

Theorem 4.3. Let m be an even integer and n ≡ 0 (mod 4). Then there exists a cyclic
and n-symmetric HCS of Km×n.

Proof. We may assumem ≥ 4, since ifm = 2, the statement follows from Proposition 4.2.
We shall first give a construction for m a power of 2. Let m = 2a and n = 4t with a > 1
and t ≥ 1. We will build a set of a · t base cycles. For all b = 1, . . . , a and i = 0, . . . , t− 1
consider the following path:

Pi,b = [0, 2mi+ (2b+1 − 1), 1, 2mi+ (2b+1 − 2), 2, 2mi+ (2b+1 − 3), . . . ,

(2b−1 − 1), 2mi+ (2b+1 − 2b−1)].

Note that the elements of Pi,b are pairwise distinct modulo 2b: hence Ai,b = [Pi,b]2b is a
hamiltonian cycle of Km×n. It is straightforward to check that

∂Ai,b = ±({2mi+ 2b−1} ∪ {2mi+ (2b + 1), 2mi+ (2b + 2), . . . , 2mi+ (2b+1 − 1)}).

Thus ∪(∂Ai,b) = Zmn \mZmn, and the existence of a cyclic HCS of Km×n follows from
Theorem 2.2.

Now assume m = 2am with a ≥ 1 and m > 1 odd. Take n = 4t with t ≥ 1. We start
constructing for all i = 0, . . . , t− 1 the following paths:

Pi,j =

{
[0, 2mi+ (4j − 1)] if j = 1, . . . , m−12

[0, 2mi+ (4j + 1)] if j = m+1
2 , . . . ,m− 1

. (4.1)

Since 2mi+ (4j− 1) and 2mi+ (4j + 1) are odd, Ai,j = [Pi,j ]2 is a hamiltonian cycle of
Km×n for any i, j. Clearly ∂Ai,j = ±{2mi+(4j−3), 2mi+(4j−1)} for j = 1, . . . , m−12

and ∂Ai,j = ±{2mi+ (4j− 1), 2mi+ (4j+ 1)} for j = m+1
2 , . . . ,m− 1. Hence for any

fixed i we have
m−1
∪
j=1

∂Ai,j = ±
(
{2mi+ 1, 2mi+ 3, 2mi+ 5, . . . , 2mi+ (2m− 3)}∪

{2mi+ (2m+ 1), 2mi+ (2m+ 3), 2mi+ (2m+ 5), . . . , 2mi+ (4m− 3)}
)
.

Now for i = 0, . . . , t− 1 consider the paths

Qi,1 = [0, 2mi+ (4m− 1), 1, 2mi+ (4m− 3), 3, . . . ,m− 2, 2mi+ 3m, (4.2)
m+ 1, 2mi+ (3m− 1),m+ 3, 2mi+ (3m− 3), . . . , 2m− 2,

2mi+ (2m+ 2)];

and finally, if a ≥ 2, for all b = 2, . . . , a consider also

Qi,b = [0, 2mi+ (2b+1m− 1), 1, 2mi+ (2b+1m− 2), 2, . . . , (2b−1m− 1),

2mi+ (2b+1m− 2b−1m)].

Notice that the elements of Qi,b are pairwise distinct modulo 2bm and hence Bi,b =
[Qi,b]2bm is a hamiltonian cycle of Km×n for any i = 0, . . . , t − 1 and b = 1, . . . , a.
Also,

∂Bi,1 = ±({2mi+ 2, 2mi+ 4, 2mi+ 6, . . . , 2mi+ 2m− 2} ∪
{2mi+ 2m+ 2, 2mi+ 2m+ 4, 2mi+ 2m+ 6, . . . , 2mi+ 4m− 2} ∪
{2mi+ 2m− 1, 2mi+ 4m− 1})
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and for b = 2, . . . , a

∂Bi,b = ±({2mi+ 2b−1m} ∪ {2mi+ (2bm+ 1), 2mi+ (2bm+ 2), . . . ,

2mi+ (2b+1m− 1)}).

It turns out that for every fixed i we have

a
∪
b=1

∂Bi,b = ±
(
{2mi+ 2, 2mi+ 4, 2mi+ 6, . . . , 2mi+ 4m}∪

{2mi+ (4m+ 1), 2mi+ (4m+ 2), 2mi+ (4m+ 3), . . . , 2mi+ (m− 1)}∪

{2mi+ (m+ 1), 2mi+ (m+ 2), 2mi+ (m+ 3), . . . , 2mi+ (2m− 1)}
)
.

Let B = {Ai,j | 0 ≤ i < t, 1 ≤ j < m} ∪ {Bi,b | 0 ≤ i < t, 1 ≤ b ≤ a}. From what we
have seen above, for every fixed i we have(
m−1
∪
j=1

∂Ai,j

)
∪
(

a
∪
b=1

∂Bi,b

)
= ±

(
{2mi+ 1, 2mi+ 2, 2mi+ 3, . . . , 2mi+ (m− 1)}∪

{2mi+ (m+ 1), 2mi+ (m+ 2), 2mi+ (m+ 3), . . . , 2mi+ (2m− 1)}
)

and so ∂B = Zmn \mZmn. We conclude that B is a set of base cycles of a cyclic HCS of
Km×n.

It is easily seen from Lemma 2.7 that these cycle systems are also n-symmetric, since
in all cases the length of the orbit of each cycle divides m.

Example 4.4. Following the proof of Theorem 4.3 we give here the construction of a set
of base cycles of a cyclic and 4-symmetric HCS of K18×4. In the notation of the Theorem,
a = 1, m = 9 and t = 1. Take the following cycles:

A0,1 = [0, 3]2, A0,2 = [0, 7]2, A0,3 = [0, 11]2, A0,4 = [0, 15]2,

A0,5 = [0, 21]2, A0,6 = [0, 25]2, A0,7 = [0, 29]2, A0,8 = [0, 33]2,

B0,1 = [0, 35, 1, 33, 3, 31, 5, 29, 7, 27, 10, 26, 12, 24, 14, 22, 16, 20]18.

We have
8
∪
j=1

∂A0,j = ± ({1, 3, 5, . . . , 15} ∪ {19, 21, 23, . . . , 33})

and
∂B0,1 = ± ({2, 4, 6, . . . , 16} ∪ {20, 22, 24, . . . , 34} ∪ {17, 35}) .

So, given B = {A0,1, A0,2, . . . , A0,8, B0,1}, we have ∂B = Z72 \ 18Z72.

Now, we give the construction of a set of base cycles of a cyclic and 8-symmetric HCS
of K72×8. Notice that m = 9 as before, but a = 3 and t = 1, so we need to construct a
larger number of cycles. For i = 0 we take

A0,1 = [0, 3]2, A0,2 = [0, 7]2, A0,3 = [0, 11]2, A0,4 = [0, 15]2,

A0,5 = [0, 21]2, A0,6 = [0, 25]2, A0,7 = [0, 29]2, A0,8 = [0, 33]2,
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B0,1 = [0, 35, 1, 33, 3, 31, 5, 29, 7, 27, 10, 26, 12, 24, 14, 22, 16, 20]18,

B0,2 = [0, 71, 1, 70, 2, 69, 3, 68, . . . , 17, 54]36,

B0,3 = [0, 143, 1, 142, 2, 141, 3, 140, . . . , 35, 108]72.

We have(
8
∪
j=1

∂A0,j

)
∪
(

3
∪
b=1

∂B0,b

)
= ± ({1, 2, 3, . . . , 71} ∪ {73, 74, 75, . . . , 143}) .

Furthermore, for i = 1:

A1,1 = [0, 147]2, A1,2 = [0, 151]2, A1,3 = [0, 155]2, A1,4 = [0, 159]2,

A1,5 = [0, 165]2, A1,6 = [0, 169]2, A1,7 = [0, 173]2, A1,8 = [0, 177]2,

B1,1 = [0, 179, 1, 177, 3, 175, 5, 173, 7, 171, 10, 170, 12, 168, 14, 166, 16, 164]18,

B1,2 = [0, 215, 1, 214, 2, 213, 3, 212, . . . , 17, 198]36,

B1,3 = [0, 287, 1, 286, 2, 285, 3, 284, . . . , 35, 252]72.

We have(
8
∪
j=1

∂A1,j

)
∪
(

3
∪
b=1

∂B1,b

)
= ±({145, 146, 147, . . . , 215}∪{217, 218, 219, . . . , 287}).

So, given B = {Ai,j | i = 0, 1, j = 1, . . . , 8} ∪ {Bi,b | i = 0, 1, b = 1, 2, 3}, we have
∂B = Z576 \ 72Z576.

The following definition and lemma are instrumental in proving Theorem 4.7, where
we shall settle the case n ≡ 2 (mod 4).

Definition 4.5. For all positive integers s, d and all odd integers w ≥ 3, set

S(s, d, w) =

{
s+ id | 0 ≤ i ≤ w − 3

2

}
and

ϕ(s, d, w) = |{x ∈ S(s, d, w) : gcd(x,w) = 1}| .

Lemma 4.6. Assume gcd(s, d, w) = 1. If 3 - s when w = 3, then ϕ(s, d, w) > 0.

Proof. Ifw = 3 then ϕ(s, d, 3) = 1, since S(s, d, 3) = {s} and 3 - s. Suppose noww ≥ 5.
The assertion is trivial for gcd(s, w) = 1, since s ∈ S(s, d, w). If gcd(s, w) 6= 1, consider
the set T = {p prime : p | w, p - s} and let x =

∏
p∈T

p (with the usual convention that

x = 1 if T = ∅). Since w ≥ 5 and x < w, we have that s + dx ∈ S(s, d, w): we claim
that that gcd(s + dx,w) = 1. Note that no prime factor of gcd(s, w) divides d, otherwise
we would have gcd(s, d, w) 6= 1. Let p be any prime divisor of w. By definition of x, p
divides either s or x, but not both. So, we have that p divides one summand of s + dx but
not both: thus s+ dx is coprime with w.
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Theorem 4.7. Letm,n be integers withm,n ≡ 2 (mod 4). Then there exists a cyclic and
n-symmetric HCS of Km×n.

Proof. In view of Propositions 4.2 and Theorem 4.1 we may assume m = 2m > 2 and
n = 4t+ 2 > 2. Using the notation of Definition 4.5 take

s =

{
3m+ 2 if m ≡ 2 (mod 8)
3m− 2 if m ≡ 6 (mod 8)

,

d = 4m andw = n
2 . Now Lemma 4.6 guarantees that the set S(3m±2, 4m, n2 ) contains an

element ν = s+ 2mκ coprime with n
2 , where 0 ≤ κ ≤ n−6

4 . It is useful for the following
to observe that gcd(ν,mn) = 1, as gcd(3m± 2,m) = 1.

For all i = 0, . . . , κ consider the paths Qi,1 as in (4.2) and, if κ ≥ 1, for all i =
0, . . . , κ − 1 consider the paths Pi,j as in (4.1). As we have seen in Theorem 4.3, Ai,j =
[Pi,j ]2 and Bi = [Qi,1]m are hamiltonian cycles of Km×n for any i, j.

If t ≥ κ+ 2, for all i = κ+ 1, . . . , t− 1, take also the following paths:

P̃i,j =

{
[0, (2i+ 1)m+ (4j − 1)] if j = 1, . . . , m−12

[0, (2i+ 1)m+ (4j + 1)] if j = m+1
2 , . . . ,m− 1

;

Q̃i = [0, (2i+ 1)m+ (4m− 1), 1, (2i+ 1)m+ (4m− 3), 3, . . . ,m− 2,

(2i+ 1)m+ 3m,m+ 1, (2i+ 1)m+ (3m− 1),m+ 3,

(2i+ 1)m+ (3m− 3), . . . , 2m− 2, (2i+ 1)m+ (2m+ 2)].

We define

u =

{
3m+1

4 if m ≡ 2 (mod 8)
3m−1

4 if m ≡ 6 (mod 8)

and take the paths:

R̃j =

{
[0, 2mκ+ (4j − 1)] if j = 1, . . . , m−12

[0, 2mκ+ (4j + 1)] if j = m+1
2 , . . . ,m− 1 and j 6= u

;

S̃ = [0, (2κ+ 1)m+ (4m− 1), 1, (2κ+ 1)m+ (4m− 2), 2, . . . ,

m− 1, (2κ+ 1)m+ 3m].

Now set Ci,j = [P̃i,j ]2, Di = [Q̃i]m, Ej = [R̃j ]2, F = [S̃]m and G = [0]ν : these are all
hamiltonian cycles of Km×n, and we have that for j = 1, . . . , m−12

∂Ci,j = ±{(2i+ 1)m+ (4j − 3), (2i+ 1)m+ (4j − 1)}

and for j = m+1
2 , . . . ,m− 1

∂Ci,j = ±{(2i+ 1)m+ (4j − 1), (2i+ 1)m+ (4j + 1)}.

Also,

∂Di = ±({(2i+ 1)m+ 2, (2i+ 1)m+ 4, (2i+ 1)m+ 6, . . . , (2i+ 1)m+

+2m− 2} ∪ {(2i+ 1)m+ 2m+ 2, (2i+ 1)m+ 2m+ 4, . . . , (2i+ 1)m+

+4m− 2} ∪ {(2i+ 1)m+ 2m− 1, (2i+ 1)m+ 4m− 1});
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moreover, for j = 1, . . . , m−12

∂Ej = ±{2mκ+ (4j − 3), 2mκ+ (4j − 1)}

and for j = m+1
2 , . . . ,m− 1 with j 6= u

∂Ej = ±{2mκ+ (4j − 1), 2mκ+ (4j + 1)}.

Finally,

∂F = ±({(2κ+ 2)m+ 1, (2κ+ 2)m+ 2, . . . , (2κ+ 3)m− 1} ∪ {2mκ+ 3m})

and ∂G = ±{ν}.
Let B = {Ai,j | 0 ≤ i < κ, 1 ≤ j < m} ∪ {Bi | 0 ≤ i ≤ κ} ∪ {Ci,j | κ < i < t, 1 ≤

j < m} ∪ {Di | κ < i < t} ∪ {Ej | 1 ≤ j < m, j 6= u} ∪ {F,G}. It is routine to check
that ∂B = Zmn \mZmn, hence we conclude that B is a set of base cycles of a cyclic HCS
of Km×n. Once more, it is easily checked using Lemma 2.7 that this cycle system is also
n-symmetric, since in all cases the length of the orbit of each cycle divides m.

We point out that the base cycles used in Example 2.4 were constructed following the
proof of Theorem 4.7. In particular, according to the notation of the theorem we have

C1 = B0, C2 = F, C3 = E1, C4 = E2, C5 = E3, C6 = G.

Example 4.8. Here we present a set of base cycles of a cyclic and 14-symmetric HCS of
K6×14. In the notation of Theorem 4.7, m = t = 3 and we choose κ = 1 and ν = 19
which is coprime with 6 · 14. Following the proof of the theorem we have to take the
following cycles:

A0,1 = [0, 3]2, A0,2 = [0, 9]2, B0 = [0, 11, 1, 9, 4, 8]6, B1 = [0, 23, 1, 21, 4, 20]6,

C2,1 = [0, 33]2, C2,2 = [0, 39]2, D2 = [0, 41, 1, 39, 4, 38]6, E1 = [0, 15]2,

F = [0, 29, 1, 28, 2, 27]6, G = [0]19.

It follows that

∂{A0,1, A0,2} = ±{1, 3, 7, 9}, ∂{B0, B1} = ±{2, 4, 5, 8, 10, 11, 14, 16, 17, 20, 22, 23},

∂{C2,1, C2,2} = ±{31, 33, 37, 39}, ∂D2 = ±{32, 34, 35, 38, 40, 41},

∂E1 = ±{13, 15}, ∂F = ±{21, 25, 26, 27, 28, 29}, ∂G = ±{19}.

So, letting B be the set of the constructed cycles, we have ∂B = Z84 \ 6Z84.
Now, we give a set of base cycles of a cyclic and 10-symmetric HCS of K10×10. In the

notation of Theorem 4.7, m = 5, t = 2 and we choose κ = 1 and ν = 37 which is coprime
with 100. We have to take the following cycles:

A0,1 = [0, 3]2, A0,2 = [0, 7]2, A0,3 = [0, 13]2, A0,4 = [0, 17]2,

B0 = [0, 19, 1, 17, 3, 15, 6, 14, 8, 12]10, B1 = [0, 39, 1, 37, 3, 35, 6, 34, 8, 32]10,

E1 = [0, 23]2, E2 = [0, 27]2, E3 = [0, 33]2,
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F = [0, 49, 1, 48, 2, 47, 3, 46, 4, 45]10, G = [0]37.

We have:
4
∪
i=1

∂A0,i = ±{1, 3, 5, 7, 11, 13, 15, 17},

∂{B0, B1} = ±{2, 4, 6, 8, 9, 12, 14, 16, 18, 19, 22, 24, 26, 28, 29, 32, 34, 36, 38, 39},

3
∪
j=1

∂Ej = ±{21, 23, 25, 27, 31, 33},

∂F = ±{35, 41, 42, 43, 44, 45, 46, 47, 48, 49}, ∂G = ±{37}.

Hence, letting B be the set of the constructed cycles, we have ∂B = Z100 \ 10Z100.
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