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Frequently used problems of linear algebra, such as the solution of linear systems, triangular decomposition
and matrix multiplication, are computationally extensive. To increase the speed, those problems should
be solved with systolic structures, where many processors are used concurrently to compute the result.
Since two-dimensional array of processors is very consumptive, considering space and resources, it is
better to use one-dimensional array of processors. This leads to the operation reallocation and causes
unequal utilization of processors, but it is much easier to implement since there is only one linear array of

processors.

1 Introduction

Many scientific problems can be solved by linear algebraic
computations, but even some basic operations are compu-
tationally extensive. Computation time could be shortened
by synchronous data processing, which is enabled through
the systolic structure. Systolic solving is presented by the
processor structure, where data is flowing through the net
of specialized processors, which are locally connected and
work synchronically. This approach has some disadvan-
tages, while there is a lot of connections. It is difficult to
monitor all processors and to read data from them. Be-
sides, they are poorly utilized, since they mostly wait for
their data to compute. It is possible to compose the struc-
ture with higher utilization, time suitability and lower com-
plexity [3], which would remove the mentioned disadvan-
tages. To realize that, we can merge some processors, i.e.
one processor performs tasks of more processors, and we
can put them into one straight array, to reduce the num-
ber of connections and to make easier access to the pro-
cessors. This work presents the linearization of different
matrix transformation algorithms, such as elimination, de-
compositions and multiplication, and also some compar-
isons of two-dimensional and linear arrays are given.

2 Linear system of equations

Systolic arrays can be used to solve the system of linear
equations [2] in the form:

A.-z=Db.

Suitable triangular systolic array for realization of Gauss
elimination and various decompositions (QR and LU) [4, 9]
is presented in Fig. 1. Shapes () and [] represent two
types of processor (diagonal and inner), performing their

own instructions; diagonal operations are executed in di-
agonal processors and inner operations are executed inside
the structure. Inputs of the structure are matrix coefficients
(ai;) and at the end there are coefficients of the upper-
triangular matrix inside the structure and the coefficients of
the lower-triangular matrix on the outputs. Dotted square
represents a delay 7. According to the matrix size n X n
the number of required processors n* is:

. _nnt1)
2
Where n diagonal processors and (n* — n) inner proces-
sors are required.

Figure 1: Triangular systolic array (n=4)

Two-dimensional array in Fig. 1 can be transformed into
one-dimensional [11, 6] in several directions; horizontal
linear array (Fig. 2), vertical linear array (Fig. 4), diag-
onal linear array (Fig. 6) and interweaved linear array (Fig.

8). Symbol @ represents the processor that performs the
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tasks of processors ) and [ ]. Next, the operations of di-
agonal and inner processors are presented. All mentioned
operations [1] are executed in one systolic cycle (step), but
of course, more cycles are needed to finish a transforma-
tion, i.e. those operation are repeated (operations present
only the set of processor’s instructions).

Gauss elimination {5] and LU decomposition [7]:

% X

1. y="t
04: Y 7
Y

2.r=1x

1. x,=x;—y-r
2.r=x;

In such structure there is a similarity of Gauss elimina-
tion and LU decomposition (results of LU decomposition
are just transformed Gauss coefficients) [7].

QR decomposition [5]:
if x;=0, r=0 then
c=1,s=0
04: g else t=\/r2+x,-2 ,
)
c=rlt,
s=xft,r=t
X
X, ==8-r+c-X;
0;: (c.8) {c.8) o C i
r=c-r+s-X;
S

Input or output {c,s) of QR decomposition will be
treated as y in the following sections.

Because of the transformations the instruction sets of the
processors are changed as described in the following sec-
tions.

2.1 Horizontal array

Figure 2: Transformation into horizontal array

As presented in Fig. 2, processor 1 is mapped into pro-
cessor A; processors 2 and 5 into processor B, processors
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3, 6 and 8 into processor C; processors 4, 7, 9 and 10 into
processor D. So, processor A takes over the tasks of one
processor and performs operation og4, but processor D takes
over the tasks of four processors and performs operations
o4 and o;. They work in different modes:

-~ mode 1: operation o4 with one input z;,

— mode 2: operation 0; with two inputs (z;,y),

— mode 3: operation o; with one input ¥ and one input
from its output (z, to ;).

Each processor works in these modes:

processor A always in mode 1,

processor B in modes 2 and 1,

processor C in modes 2, 3 and 1,

processor D in modes 2, 3, 3 and 1,

additional processors would work in modes 2, 3, ... 3
and 1.

Occupation of processors is presented in Table 1.

Table 1: Processor occupation in horizontal array

A B C D
1 1
2 2
3 1 2
4 3 2
5 1 L 3
6 2 3
7 ! 2 1
8 3 2
17 1 3
18 3
19

)

L

L¥

.

[=]

Figure 3: Data inputs in horizontal array

Input values a1, a2, @13 and a4 are delayed for one 7,
and values aay, asq, a3 and ay4 are delayed for (n — 1)7
according to values a;1, @12, a1z and a4, where n is the
number of processors, as presented in Fig. 3.

2.2 Vertical array

As it can be seen in Fig. 4, processors 1, 2, 3 and 4 are
mapped into processor A; processors 5, 6 and 7 into pro-
cessor B; processors 8 and 9 into processor C; processor
10 into processor D. Processor A is the most loaded, while
processor D takes over the tasks of only one processor.
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Figure 4: Transformation into vertical array

Processors A, B and C perform operations o4 and oy,
while processor D performs only operations og4. They work
in different modes:

— mode 1: operation o4 with one input z;,

— mode 2: operation o; with one input z; and one input
from its output.(y to ).

Table 2: Processor occupation in vertical array

A B C D
1 1
2 2
3 2 1
4 12 2
5 1 2 1
6 2 2
7 2 1 1
8 2 2
17 2 1
18 2
19 1

Each processor works in these modes:

processor A in mode 1,2, 2 and 2,

processor B in mode 1, 2 and 2,

processor C in mode 1 and 2,

processor D always in mode 1,

additional processors would work in modes 1, 2, ...2
and 2.

Occupation of processors and their work modes are pre-
sented in Table 2. Values a1, a12, a13 and aq4 follow each
other without delay, values as1, ass, asz and apy are im-
mediate successors of values a1, a2, a13 and a4, as pre-
sented in Fig. 5.

When transformed into horizontal or vertical array, the
processors’ occupation and their instruction set are equal.
The only difference can be noticed in data inputs.

2.3 Diagonal array

Fig. 6 presents the diagonal contraction, where processors
1, 5, 8 and 10 are mapped into processor A; processors 2,
6 and 9 into processor B; processors 3 and 7 into processor
C; processor 4 into processor D. Even here the most loaded
is processor A and at least processor D, but all processors
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Figure 5: Data inputs in vertical array

Figure 6: Transformation into diagonal array

execute only one type of operations (processor A performs
only diagonal operations, the others only inner operations).

Processor occupation and their operations are presented
in Table 3.

Table 3: Processor occupation in diagonal array

A B C D

1 [2F]

2 od 0i

3| oa 0; 0;

4 od 0 0; 0
5 04 [ o; 0i
6} oa o0i 0

7 0d 0

8 Ood
14 [e¥] 0; 0;
15 04 oi
16 o4

Values a1, a12, a1z and ay4 are one 7 delayed and are
followed by values az1, as2, a2z and aq4. Values asq, aso,
a3z and agy, are delayed 2(n — 1)7, where n is the number
of processors, as presented in Fig. 7.

Contraction of the array in the direction of the other di-
agonal is not reasonable, while there would be too many
delays and inputs/outputs on each processor.
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Figure 7: Data inputs in diagonal array

2.4 Processor mirroring

To decrease the number of processors and to enhance the
performance of transformations, mirroring can be used.
The processor can be mirrored into another processor, so
that its tasks are executed while another processor would
be idle otherwise. The example of processor mirroring in
horizontal linear array is presented in Table 4. Processor A
is mapped into processor B, and merged processor A+B ex-
ecutes tasks of both processors. Similarly other mirrorings
can be used.

Table 4: Processor mirroring a)original array, b)array with
mapped processor

) |A B C D by | A+B C D
T |1 ] I

2 2 21 2

3 12 3 1 2

4 32 4 )
511 13 5 1 1 3
6 2 3 6| 2 3
7 1 2 1 7 1 201
8 32 8 302

2.5 Interweaved array

When there is an odd number of processors in the first line
of the triangular array, the interweaved method can be used,
as presented in Fig. 8 [11], where the isomorphic embed-
ding of the graph is employed. Processors in Fig. 8a are
mapped into processor array in Fig. 8b: processors 1, 6,
10, 13 and 15 are mapped into processor A; processors 2,
5,7, 11 and 14 into processor B; processors 3, 4, 8, 9 and
12 into processor C. All processors (A, B, C) are evenly
loaded, while each of them takes over the tasks of five pro-
Cessors.

The method is similar to processor mirroring, but it oc-
cupies processors almost completely and evenly. Instead

G. Papact al.

=) W {}3

-

O~ ®
K
C
Figure 8: Transformation into interweaved array

of n = 5 processors only n* = = 3 are needed,
which are fully utilized. Processor A performs operations
04, while B and C perform operations o;. Processors occu-
pation and their operations are presented in Table §.

(n+1
2

Table 5: Occupation of interweaved array
c

A B
1 Od
2 0d 0;
3 04 0 0;
4 04 0; 0;
5 04 0; 0;
6 0d 0; 0;
7 04 04 ai
8 04 0; 0;
9 04 0; 0
10 0d 0; 0
27 0d 0; 0;
28 od 04
29 Od

Values a11, a2, @13, a14 and a1 5 are delayed one 7, val-
ues as1, A2z, G23, G4 and ass are delayed (n* + 1)1, ac-
cording to values ai1, @12, @13, a14 and ays, as presented
in Fig. 9.

3 Matrix multiplication

Systolic arrays can be also used when performing matrix
multiplication [2] of the form
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Figure 9: Data inputs in interweaved array

Square array of processors for multiplication of two
square matrices is presented in Fig. 9 [8]. Inputs of the
structure are coefficients (a;; in by;) of the matrices and at _ o )
the end of the process there are coefficients c¢;; inside the Figure 11: Transformation into horizontal array
structure. According to the matrix size n X n the number
of required processors n* is:

Occupation of the processors is presented in Table 6,
n o=n. where numbers represent the processor of the adequate
(square) array that would be used in that moment.

b«
b.’“
b42 b24 . . -
ut by, by Table 6: Processor occupation in horizontal array
g [ A B C D
™ ig( 1 1
b 2|5 2
319 6 3
4113 1w 7 4
8148158128y 5 1 4 11 8
6{ 5 2 15 12
719 6 3 16
17 4 11 8
18 15 12
19 16

Due to the processor merging the data inputs are changed
as presented in Fig. 12.

Figure 10: Square systolic array (n=4)

All processors in the square array in Fig. 10 perform the
same operations [8]:

X
lLx,=x; x;+r

2.r=x,

x, 843853859813 8,; 85,8y, 8, 8,435 8393y

3.1 Horizontal array Figure 12: Data inputs in horizontal array

Horizontal array is obtained when all processors of the
first column are merged into processor A, processors of
the second ‘column into processor B, etc, as presented in
Fig. 11. Processors perform the same operations, as before
the transformation, beside that, there is an additional input ~ Vertical array is made when we merge the processors of
from one of its outputs. the first row into processor A, processors of the second

3.2 Vertical array
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row into processor B, etc, as presented in Fig. 13. Proces-
sors perform the same operations as when they were trans-
formed into horizontal array.

Figure 13: Transformation into vertical array

Occupation of processors is presented in Table 7 and
changed data inputs are presented in Fig. 14.

Table 7: Processor occupation in vertical array

A B C D
1 1
272 5
3 3 6 9
4| 4 7 10 13
5 1 8 11 14
6 2 5 12 15
7 3 6 9 16
17 8 11 14
18 1215
19 16

oo oUoTCUOoO oo
S

S

Figure 14: Data inputs in vertical array

Actually there is no significant difference between hor-
izontal and vertical transformation, since all processors in
two-dimensional array perform the same operations. Thus,
it is insignificant what the contraction direction is, however
we can choose which coefficients are delayed when enter-
ing the array.
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3.3 Diagonal array

Figure 15: Diagonal transformation (n=4, n*=4)

Due to the square array structure, diagonal transforma-
tion is a bit more complicated. According to the merging
process, there can be different linear solutions, but only
some typical will be presented in this paper.

If there is an even number of processors (e.g., n=4) in a
two-dimensional array, we can choose between two possi-
bilities.

In the first one, as presented in Fig. 15, the processor
array is transformed as follows: processors 9, 13 and 14
are merged into processor A, processors 1, 5, 10, 11 and
15 are merged into processor B, processors 2, 6, 7, 12 and
16 are merged into processor C and processors 3, 4 and 8
are merged into processor D. So there is even number of
processor (n*=4) in linear processor array.

Table 8 represents the occupation of the processors,
while data inputs are set as presented in Fig. 16.

In the second case, there is an odd number of proces-
sors (e.g., n*=5) in the linear array. According to Fig. 15,
processors are merged as follows: processors 9, 13 and 14
are merged into processor A, processors 5,10 and 15 are
merged into processor B, processors 1, 6, 11 and 16 are
merged into processor C, processors 2, 7 and 12 are merged
into processor D and processors 3, 4 and 8 are merged into
processor E. )

Processor occupation is shown in Table 9, while Fig. 17
presents the data inputs.

But when there is an odd number of processors (n=>5) in
the two-dimensional array, the linear array consists of odd
number of processors(n*=5) . The situation is presented in
Table 10.

Here processors 11, 16, 21, 22 and 23 are merged into
processor A, processors 6, 12, 17, 18 and 24 into processor
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Table 8: Processor occupation (n=4, n*=4)

A B C D
1 1
2 5 2
3 9 1 6 3
4 13 5 2 4
5 9 1 6 3
6 10 2
7 14 5 7
8 13 1 6 8
9 9 10 2 4
10 14 5 7 3
11 13 1] 6 8
12 9 10 12 4
13 15 7 3
14 11 16
15 14 10 12 8
16 13 15 7 4
17 14 11 16 8
1§ 15 12
19 il 16
20 15 12
21 16

Figure 16: Data inputs (n=4, n*=4)

B, processors 1, 7, 13, 19 and 25 into processor C, proces-
sors 2, 8,9, 14 and 20 into processor D and processors 3,
4,5, 10 and 15 into processor E.

Data inputs have to be set according to the new processor
utilization, as presented in Fig. 18.

4 Conclusions

According to the results, there are important differences
when transforming original triangular array in different di-
rections and with different mirrorings. The difference is
in execution time, processor utilization and complexity of
processor’s operations. Table 11 represents characteristics
of n = 4 and n = 5 arrays. Different transformations
are considered (horizontal, vertical, diagonal, interweaved)
and different mirrorings (processor A mirrored into proces-
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Table 9: Processor occupation (n=4, n*=5)

A B C D E
1 1

2 51 2
39 5 6 2 3
4 13 10 1 7 4
519 s 6 2 3
6|t 10 1 7 8
7013 s 0 2 4
8 9 6 3
9| 14 1 8
w01 15 6 12 4
mwlo 1w 16 7 3
12 14 15 11 12 8
B3 10 16 7 4
414 15 11 128
15 15 16 12

16 16

Figure 17: Data inputs (n=4, n*=5)

sor B, processors A and B mirrored into processor C, ...).
Number of steps is the number of systolic cycles needed to
perform the algorithm. Number of processors is the num-
ber of needed processors, and utilization is their use accor-
ding to the number of steps (min and max utilization repre-
sent smallest and largest utilization of a single processor).

As it can be seen in Table 11 and Fig. 19, mirroring
improves the differences between the smallest and largest
processor utilization in the array.

Table and figure show these conclusions:

— The number of steps, to execute the algorithm, in-
creases with the transformation, but the number of
processors decreases significantly, while their utiliza-
tion is increased.

— When transforming triangular arrays with even num-
ber of processors in the first row of the array, the best
transformation is diagonal one with mirroring. Diag-
onal transformation is the best even if there is no mir-
roring.
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Table 10: Processor occupation (n=>5, n*=53)
A D E

B

1

2 6 1 2

311 6 1 2 3
4 | 11 6 7 2 3
5116 12 1 8 4
6 | 11 6 7 2 3
7 16 12 1 8 4

8 | 21 17 7 9 5
9 (1 6 13 2 3
10| 16 12 7 8 4
1} 21 17 13 9 5
12122 18 14 10
13 11 3
14116 12 7 8 4
15 | 21 17 13 9 5
16122 18 19 14 10
17 | 23 15
18 | 16 12 8 4
19 | 21 17 13 9 5
20 [ 22 18 19 14 10
21123 24 13 20 15
22 | 21 17 19 9 5
23 | 22 18 25 14 10
24123 24 19 20 15
25 122 18 25 14 10
26023 24 19 20 15
27 123 24 25 20 15
28 24 25 20
29 25

— When transforming triangular arrays with odd num-
ber of processors in the first row of the array, the best
transformation is interweaved, while it offers largest
utilization and needs only a few processors.

—~ When transforming square arrays any transformation
is better than initial array. Since all processors per-
form the same operations it is irrelevant in which di-
rection we contract the array, but horizontal or vertical
arrays are much simpler to implement than diagonal.

— Processor utilization can be even higher if there are
consecutive multiplication computations used one af-
ter another.

— In all untransformed arrays the number of steps is de-
fined as 3n— 2 and the number of processors is L";L)
in triangular and n? in square arrays, where n x n is
the size of matrix.

— In transformed arrays the number of steps is defined
as n? + n — 1 and the number of processors is 7.

In some common problems there are very big matrices,
e.g., 250 x 250, which lead to the large number of pro-
cessors required. Therefore in those cases it is appropriate
to use also some other techniques with even fewer number
of processors [5, 10].
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