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Typically, software development processes are time consuming, expensive, and rigorous, particularly for 

safety-critical applications. Even if guidelines and recommendations are defined by sector-specific 

functional safety standards, development process may not be completed because of excessive costs or 

insufficient planning. The V-model is one of the most well-known software development lifecycle model. 

In this study, the V-model lifecycle is modified by adding an intermediate step. The proposed modification 

is realized by checking the fault diagnosability of each module. The proposed modification provides three 

advantages: (1) it checks whether the constructed model covers all software requirements related with 

faults; (2) it decreases costs by early detection of modeling deficiencies before the coding and testing 

phases; and (3) it enables code simplicity in decision of fault occurrence. 

Povzetek: Osnovnemu modelu V razvoja programskih sistemov je dodana izboljšava na osnovi možnosti 

testiranja napak modulov. 

1 Introduction 
The concept known as Safety Integrity Level (SIL) is used 

to quantify safety. The SIL is a degree of safety system 

performance for a Safety Instrumented System (SIS), 

which is an automatic system used to avoid accidents and 

to reduce their impact both on humans and the 

environment. A SIS has to execute one or more Safety 

Instrumented Functions (SIFs) to maintain a safe state for 

the equipment under control [1]. Bear in mind that, a safe 

state is known as the state where the whole system is 

prevented from falling into a dangerous situation. A SIF 

has a designated SIL level depending on the ratio of risk 

that needs to be decreased. IEC 61508, the standard for 

functional safety of electrical/electronic/programmable-

electronic Safety Related System (SRSs), mentions that a 

SIL should be designated to each SIF and defines the 

safety integrity as the probability of a SRS adequately 

performing the required safety functions under all the 

stated conditions within a given period of time from the 

lowest requirement level (SIL 1) to highest requirement 

level (SIL 4). 

The third part of IEC 61508 applies to any software 

used to develop a safety-related system within the scope 

of first and second parts of the standard, and establishes 

the requirements for safety lifecycle phases. Industry and 

domain specific implementations of IEC 61508 include 

IEC 61511 for industrial processes, IEC 61513 for the 

nuclear industry, and IEC 62061 for machinery etc. 

A lifecycle model is defined in [2] as a model that de-

scribes stages in a software product development process. 

The IEC 61508-4 standard discusses the term lifecycle in 

the context of both safety lifecycle and software lifecycle. 

The safety lifecycle includes the necessary activities 

involved in the implementation of SRSs [3]. IEC 61508 

states that a safety lifecycle for software development shall 

be selected and specified during the safety-planning phase 

in accordance with Clause 6 of IEC 61508-1. The safety 

lifecycle includes the definition of scope, hazard and risk 

analysis, determination of safety requirements, 

installation, commissioning, validation, operation, 

maintenance, repair, and decommissioning. On the other 

hand, the software lifecycle includes the activities 

occurring from the conception of the software to the 

decommissioning of the software. 
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Numerous lifecycle models have been addressed in the 

literature, such as the waterfall, spiral, iterative 

development, and butterfly models [4-8]. However, 

despite the availability of many lifecycle alternatives, 

safety standards such as IEC 61508, EN 50126, EN 50128, 

and IEC 62278 recommend using the V-model for 

software development processes. The V-model lifecycle 

has been applied to various domains such as the 

automotive [9], aerospace [10], railways [11], and the 

nuclear industry [12]. 

In this study, a Discrete Event System (DES)-based 

fault diagnosis method is added to the V-model lifecycle 

as an intermediate step between the module design and the 

coding phases. A DES is a discrete-state, event-driven 

system in which the state evolution of the system depends 

totally on the occurrence of discrete events over time. 

The main difference of the proposed enhancement is 

its simplicity, when compared with the existing model 

checking tools and techniques in the literature [13, 14]. 

Because the fault diagnoser is built from the software 

model itself and; since the modular approach is a must in 

the Software Design Phase of the V-model in EN 50128 

(recommended as mandatory) there is no need for any tool 

to check the diagnosability of a simple software module 

(component) model [15]. The remainder of this paper is 

organized as follows. The V-model lifecycle and the 

modified V-model lifecycle are explained in Sections 2 

and 3, respectively. DES-based fault diagnosis is 

introduced in Section 4, and conclusion section is given in 

Section 5. 

2 V-model lifecycle 
Paul Rook introduced the V-model lifecycle in 1986 as a 

guideline for software development processes [2]. The 

primary aim of the V-model is to improve both the 

efficiency of software development and the reliability of 

the produced software. The V-model offers a systematic 

roadmap from project initiation to product phase-out [2]. 

The V-model also defines the relationship between the 

development and test activities; it implements verification 

of each phase of the development process rather than 

testing at the end of the project. The V-model, as defined 

in IEC 61508-3, is shown in Figure 1. 
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Figure 1: V-model software safety integrity and 

development lifecycle [16]. 

Before initializing a software development process 

according to the V-model, a software planning phase has 

to be realized, wherein a software quality assurance plan, 

software verification and software validation plans, and a 

software maintenance plan are fully defined. Later, the 

software requirements should be determined in 

cooperation with both the customer and the stakeholders. 

Using the selected software architectures (including 

modeling methods), software modules are developed by 

the designers. Each phase is verified immediately after 

completion. Note that, the left side of the V-model in 

Figure 1 represents the decomposition of the problem 

from the business world to the technical world [17]. After 

the coding phase, the right side of the V-model denotes the 

testing phase of the developed software.  

The number of person may expand in the development 

process but this expansion shall be identified from the very 

beginning of the project. In [2], the change of the total 

number of software development teams are illustrated as 

given in Figure 2. Additionally, the cost of detection of 

faults in the different phases of V-model is given in Figure 

3. 
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Figure 2: Software development teams [2]. 
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Figure 3: Software development teams [18]. 

The advantages and disadvantages of the V-model can 

be summarized as follows [4, 5]: 

 

Advantages 

1. Facilitates greater control due to the standardization of 

products in the process. 

2. Cost estimation is relatively easy due to the 

repeatability of the process. 

3. Each phase has specific products. 

4. Greater likelihood of success because of the early 

development of test plans and documentation before 

coding. 

5. Provides a simple roadmap for the software 

development process. 
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Disadvantages 

1. Low flexibility, expensive, and difficult to change 

scope. 

2. No early prototypes. 

3. Addresses software development within a project 

rather than a whole organization. 

4. Too simple to precisely reflect the software 

development process and may steer managers into a 

false sense of security. 

3 Modified V-model lifecycle 
As mentioned in [19], and [20], the required workforce 

and the cost of the development process of the software 

increases towards the end with respect to the initial phases 

of the development lifecycle. Therefore, the proposed 

modification is realized on the left side of the V-model. 

 

In the usual software development process according 

to V-model, the fulfillment of the requirements are 

checked by realizing the module tests after coding. By 

checking the module diagnosability, one can decide if the 

module fully covers the software requirements related 

with faults or not (will be explained in section 4). This 

intermediate phase can be considered as time consuming 

and an extra workload. However, rather than turning back 

again from the module testing phase to the module design 

phase in the V-model, the proposed phase provides a final 

inspection of modules before proceeding to the coding and 

module testing phases. The proposed V-model is given in 

Figure 4. 

The proposed modification in Figure 4 has three 

unique advantages: 

a. It checks whether the constructed model covers all 

software requirements related to faults: If the developed 

software model (see Table A.2 and Table A.17 of [15]) is 

not diagnosable, then the software model does not contain 

all software requirements related with the faults. 

b. It decreases costs through early detection of 

modeling deficiencies before proceeding to coding and 

testing phases: As can be seen from Figure 4, after 

proceeding to the coding phase, the designer can only go 

back to the module design phase at the end of the module 

tests. Many studies showed that, it is 5 times more 

expensive to fix a problem at the design stage than in the 

course of initial requirements, 10 times more expensive to 

fix it through the coding phase, 20 to 50 times more 

expensive to fix it at acceptance testing and, 100 to 200 

times more expensive to fix that error in the course of 

actual operation [20-23]. 

c. It enables designers to write simple and more 

readable code in decision of the faults: This will be 

explained with a simple case study in the next section. 

4 DES-based fault diagnosis 
An event is defined as an encountered specific action, i.e., 

an unplanned incident that occurred naturally or due to 

numerous conditions that are encountered simultaneously 

[24]. Events are classified as observable or unobservable 

events in a DES. 

A DES system is considered as diagnosable if it is 

possible to identify, within a finite delay, occurrences of 

precise unobservable events that are referred to as fault  

Figure 4: Enhanced V-model (Y-Yes, N-No). 

events [25]. In other words, a system is diagnosable if 

the fault type is always identified within a uniformly 

bounded number of transition firings after the occurrence 

of the fault [26]. The diagnoser is obtained from the 

system model itself and carries out diagnostics to observe 

the system behavior. Diagnoser states involve fault 

information, and occurrences of faults are identified 

within a finite delay by examining these states [27]. 

Finite state machines and Petri nets are considered as 

DES-based modeling methods and, these methods are also 

highly recommended by functional safety standards (see 

[15]). 

4.1 Basic petri net (PN) definitions 

A Petri net [28] is defined as; 

( )0, , , ,PN P T F W M=  (1) 

where 

• P = {p1, p2, …, pk} is the finite set of places, 

• T = {t1, t2, …, tz} is the finite set of transitions, 

• F ⊆ (P T)   (T P) is the set of arcs, 

• W: F → {1, 2, 3, …} is the weight function, 

• M0: P → {0, 1, 2, 3, …} is the initial marking, 

• P T =  and P T  . 

For a marking M, ( )iM p n=  represents the token 

number of the ith place where it is equal to n [28]. 

Representation of a marking : {1,  2,  3,  ...}M P→  can be 

realized by a k-element vector, where k denotes the total 

number of places. 

Definition 1 [28]: If a PN has no self-loops, then it is 

considered as pure and when all arc weights of a PN are 

1, then it is said to be ordinary. 

Definition 2 [28]:   0 1 1 2 1k k kM t M t M t M−    

means that, the marking Mk is reachable from the initial 

marking M0 by the 
1 2 kt t t  transitions sequence. Note 
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that, 
0( )R M  denotes the set of all reachable markings from 

M0. 

Definition 3 [29]: A PN is said to be free from deadlocks 

if it is possible to find at least one enabled transition at 

every reachable marking. 

The set of places, P is partitioned into a set of 

observable places and a set of unobservable places (Po and 

Puo). Likewise, the set of transitions, T is partitioned into 

a set of observable transitions and a set of unobservable 

transitions (To and Tuo). Thus, the partitioned sets for P and 

T can be expressed as 

 

 and 

 and 

uo o uo o

uo o uo o

P P P P P

T T T T T

=   =

=   =
 (2) 

 

In addition, a subset TF of Tuo represents a faulty 

transitions set. It is assumed that there are m different fault 

types. Here, 
1 2{ ,  ,  ,  }F mF F F = is the set of fault 

types. TF is expressed as 
1 2 mF F F FT T T T=    , where 

i jF FT T =  (if i ≠ j).  

{ } 2 FN


 =  is used to define the label set, where N 

is used to represent the label “normal,” which specifies 

that all fired transitions are not faulty, and 2 F  represents 

the power set of 
F . In the remainder of this paper, 

unobservable transitions and places are represented as 

shown in Figure 5. 

 

Unobservable transition and place

Observable transition and place

 

Figure 5: Representation of places and transitions. 

4.2 Diagnosis of faults by using PN models 

Since the system model contains unobservable places, it is 

not always possible to distinguish some markings. Thus, 

if 
1 2( ) ( )i iM p M p=  for any 

i op P , then it is denoted as

1 2M M . That is to say, M1 and M2 markings have the 

same observations. As done in [30], the definition of the 

quotient set 
0

ˆ ( )R M  according to the equivalence relation 

( )  is useful; 
0 0 0

ˆ ˆ ˆ( ) : ( )/ : { ,  ...,  ,  ...}nR M R M M M= =  

where 
0 0

ˆM M . An observable marking or the 

observation of a marking is represented by each member 

of 
0

ˆ ( )R M . We assume the following two statements are 

true for simplicity. 

Assumption [25, 26]: Only deadlock free PNs are 

considered and there does not exist an order of 

unobservable transitions whose firing produces a cycle of 

markings that have the same observation. 

A diagnoser is given for a PN [26, 27] by 

 

( )0,  ,  ,  d d o dG Q q=  . (3) 

 

The diagnoser given by (3) is an automaton where the 

set of states are represented by 
dQ Q , the set of events 

are represented by 
0

ˆ ( )o oR M T =  , the notation 

:d d o dQ Q  →  represents the partial state transition 

function, and the initial state is denoted by 

0 0{( , )}.q M N=  A diagnoser state qd is given as 

1 1 2 2{( , ),( , ), ,( , )}d n nq M l M l M l= , which involves pairs 

of a marking 
0( )iM R M  and a label 

il  . The state 

set 
dQ Q  represents the reachable states from the initial 

state q0 by using 
d . Each observed event 

o o   

represents an observation of a marking in 
0

ˆ ( )R M  or an 

observable transition in To. The state transition function 

d  is defined with the use of the label propagation 

function and the range function. 

The label propagation function associates a label 

(faulty or normal) over a sequence of transitions. If the 

sequence of transitions does not contain any faulty 

transition, the resulting marking is labeled as normal (N). 

Detailed explanation of the label propagation function, the 

range function and the state transition function can be seen 

from [25-27, 30, 31]. 

4.3 Obtaining diagnosability 

A PN is diagnosable if, and only if, the states of the 

diagnoser given by (3) shall be Fm-certain or does not 

involve any Fm-indeterminate cycle for any fault type Fm. 

Due to page restriction, the reader is referred [25-27] for 

detailed explanation of DES-based fault diagnosis and the 

proof of this theorem. 

4.4 Railway point example 

Trains can move from one track to another by the help of 

railway points (rail switches or point machines) placed at 

necessary locations. Points have two position indications, 

i.e., Normal (Nr) and Reverse (Rev). At any railway point, 

three main faults may occur. These faults are identified in 

the V-model software requirements specification phase as 

follows: 

 

• F1: Point may not reach the desired position in a 

predefined time (e.g., 5 sec) while moving from Nr to 

Rev. 

• F2: Point may not reach the desired position in a 

predefined time while moving from Rev to Nr. 

• F3: Both position indications may be received 

simultaneously. 

 

Examples of diagnosable and not diagnosable PN 

models of a railway point are given in Figure 6 and Figure 

7, respectively. The meanings of the transitions and places 

of the models in Figure 6 and Figure 7 are given in Table 

1 and Table 2, respectively. Note that the striped places 

and transitions represent unobservable places (Puo) and 

transitions (Tuo), whereas the other places (Po) and 

transitions (To) are observable. M0 represents the initial 

marking of the PN. The underlined numbers in the 

diagnoser are used to represent the marking of an 

unobservable place. 
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Representation of the PN model in Figure 6 is as 

follows: 
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Figure 6: PN model of a railway point and its diagnoser 

(diagnosable). 

Three different fault types given in Figure 6 are 

1 2 3{ ,  ,  }F F F F = , where 
1 PM_ 1{ }F fT t= , 

2 PM_ 2{ }F fT t= , 

and
3 PM_ 3{ }F fT t= . The rectangles are used to diminish the 

complexity of the PN model. Each rectangle represents the 

label of the related place. 

The diagnoser illustrated in Figure 6 is built from the 

PN model of railway point. A rectangle is used to denote 

each state and each state contains a pair of place markings 

and an attached label, normal (N) or fault. In other words, 

in parts of the diagnoser, a marking immediately after an 

observed event is detected precisely. 

In accordance with the definition of the diagnoser in 

(3), a label which represents an observable transition or 

the observation of a marking is attached to all diagnoser 

state transitions. 

In this study, with a slight abuse of notation, labels 

containing the observation of a marking or a pair of the 

observation of a marking and an observable transition are 

attached to all state transitions of the diagnoser. 

 

Place Definition Transition Definition 
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Nr position 
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tPM_1 

Point Nr 

position 

request 

PPM_2 
Rev position 

requested 
tPM_2 

Point Rev 

position 
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PPM_3 
Point is moving 

to Nr 

tPM_3 

(tPM_6) 

Request 
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PPM_4 
Point is moving 

to Rev 
tPM_4 Point left Rev 

PPM_5 Point is in Nr tPM_5 Point left Nr 
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to Nr (Rev) 
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Fault type F1 
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Nr (Rev) 

position 

request 

PPM_9 
Fault type F2 

has occurred 

tPM_13 

(tPM_14) 

Point moved to 

Nr (Rev) and 

the fault 

acknowledged 

PPM_10 
Point is faulty 

(F2) 
tPM_f1 

Point 

indication fault 

PPM_11 
Unobservable 

fault restriction 
tPM_f2 

Point 

indication fault 

PPM_12 
Point is faulty 

(F3) 
tPM_f3 

Point position 

fault 

Table 1: Definition of transitions and places in the 

models given in Figure 6. 

For example, at 
0M̂  in Figure 6, the event label 

10M̂  

represents that the observable marking 
10M̂  is observed 

by firing the unobservable transition tPM_f3. Similarly, the 

diagnoser state changes by firing the unobservable 

transition tPM_f3. Similarly, the diagnoser state changes 

from {((0,0,0,0,1,0,0,0,0,0,1,0,), )},N  to

{((0,1,0,0,1,0,0,0,0,0,1,0), )},N  as a function of firing the 

observable transition tPM_2 with the observation 
1M̂  of the 

resulting marking. According to the definition given in 

Section 4.3, since all states are Fm-certain and there is no 

Fm-indeterminate cycle in the diagnoser, the PN model is 

diagnosable. 

Representation of the PN model in Figure 7 is as 

follows: 
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Figure 7: PN model of a railway point and its diagnoser 

(not diagnosable). 

The diagnoser given in Figure 7 is not diagnosable 

because it is not possible to distinguish the fault type after 

observing the marking 
5M̂ . In this case, the PN model will 

identify only one of the faults (F1 or F2) while the obtained 

code from this PN model is running. Therefore, the 

designers should revise the PN model before proceeding 

to the coding phase; otherwise, this deficiency will result 

in an unsuccessful test case in the module testing phase. 

4.5 Railway signal example 

An example PN model of a Two-Aspect Signal (TAS) 

and its diagnoser is given in Figure 8. TAS is generally 

used in railway depot areas and has two signal color 

indications (red means stop and green means proceed). 

The meanings of the transitions and places of the model in 

Figure 8 are given in Table 3. It is assumed that two 

different faults may occur in TAS which are F1: Both 

signal aspects are lit at the same time; and F2: No signals 

are lit. 

 

 

 

Place Definition Transition Definition 

PPM_1 
Point is 

moving to Nr 

tPM_1 

(tPM_2) 

Movement 

request is 

received for 

Nr (Rev) 

position 

PPM_2 

Point is 

moving to 

Rev 

tPM_3 

(tPM_4) 

Point reached 

to Nr (Rev) 

PPM_3 

Point 

position is 

Nr 

tPM_5 

(tPM_6) 

Point request 

to Nr (Rev) 

PPM_4 

Point 

position is 

Rev 

tPM_7 

(tPM_8) 

Point moved 

to Nr (Rev) 

and the fault 

acknowledged 

PPM_5 

Fault type F1 

or F2 has 

occurred 

tPM_9 
Filter time has 

expired 

PPM_6 
Point is 

faulty (F3) 

tPM_f1 

(tPM_f2) 

Point 

indication 

fault 

PPM_7 

Point is 

moving from 

one position 

to another 

tPM_f3 
Point position 

fault 

Table 2: Definition of transitions and places in the 

models given in Figure 7. 
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Figure 8: PN model of TAS and its diagnoser. 

Place Definition Transition Definition 

PS2_1 Signal is red tS2_1 
Turn signal to 

green 
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PS2_2 Signal is green tS2_2
 Turn signal to 

red 

PS2_3 
Fault type F1 

has occurred 
tS2_3

 

Signal turned 

to red and the 

fault 

acknowledged 

PS2_4 
Fault type F2 

has occurred 
tS2_4

 

Signal turned 

to red and the 

fault 

acknowledged 

PS2_F1 

Unobservable 

fault 

restriction 

tS2_f1 
Point aspect 

fault 

PS2_F2 

Unobservable 

fault 

restriction 

tS2_f2 

Point 

indication 

fault 

Table 3: Definition of transitions and places in the 

models given in Figure 8. 

To compare the simplicity in decision of the faults 

with and without a diagnoser, an example Programmable 

Logic Controller (PLC) code snippet of TAS model is 

shown in Figure 9 and Figure 10, respectively. 

As can be seen from Figure 9 and Figure 10, decision 

of fault occurrence with a diagnoser is simpler than 

without a diagnoser. For the PLC code given in Figure 9, 

the diagnoser compares the actual states of the PN model 

with predefined faulty states. When the faulty state of the 

diagnoser is fully matched with the marking of the actual 

PN states, the diagnoser sets the corresponding fault label. 

Faulty states of the 

diagnoser given in Fig. 6
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Figure 9: Diagnoser block of TAS and decision of fault 

occurrence. 

Decision of the faults

 

Figure 10: Decision of fault for TAS without diagnoser. 

Moreover, since the V-model is modified by adding 

an additional step, we also defined a new task for the 

organizational structure of the software development 

team. The Diagnoser designer (DDes) is added to the 

preferred organizational structure of the enhanced V-

model as given in Figure 11 (PM: Project Manager, RQM: 

Requirement Manager, Des: Designer, IMP: Implementer, 

VER: Verifier, VAL: Validator, DDes: Diagnoser 

Designer, ASR: Assessor). The original organizational 

structure can be seen from EN 50128 [15]. 

RQM, Des, IMP INT, TST VAL

PM ASR

VER, DDes

SIL3 & SIL4

shall report to the Project Manager

can report to the Project Manager

shall not report to the Project Manager

can be the same person

can be the same organization

 

Figure 11: Recommended organizational structure for the 

enhanced V-model for SIL3&SIL4 software. 

5 Conclusion 
Faults in a safety-critical system may cause severe harm 

to humans. Therefore, the development steps of software 

for such safety-critical systems must be executed very 

carefully. Designers, developers, and engineers must 

consider the recommendations of both the international 

safety standards and the national rules to satisfy the 

required safety level and fulfill requirements. 

Although enhancing the V-model with DES-based 

fault diagnosis is time consuming, however, the 

advantages of this intermediate step are threefold: (1) it 

checks whether the developed model fulfills all software 

requirements related to the faults; (2) decision of faults 

with a diagnoser is simpler than without a diagnoser; and 

(3) an early check of the models is possible before 
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proceeding to the coding and testing phase because the V-

model leads developers from the module testing phase to 

the module design phase rather than the coding phase. 

On the other hand, when costs and work hours are 

considered, adding such an intermediate step to the V-

model can result in considerable benefits to both project 

management and product development departments. 
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