
https://doi.org/10.31449/inf.v42i4.2027 Informatica 42 (2018) 577–585 577

Enhanced V-Model

Mustafa Seçkin Durmuş

Sadenco, Safe, Dependable Engineering and Consultancy, Antalya, Turkey

E-mail: msd@saden.co

İlker Üstoğlu

Yildiz Technical University, Department of Control and Automation Engineering, Istanbul, Turkey

E-mail: ustoglu@yildiz.edu.tr

Roman Yu. Tsarev

Siberian Federal University, Department of Informatics, Krasnoyarsk, Russia

E-mail: tsarev.sfu@mail.ru

Josef Börcsök

Kassel University, Computer Architecture and System Programming Department, Kassel, Germany

E-mail: j.boercsoek@uni-kassel.de

Keywords: Software development lifecycle, V-model, fault diagnosis, discrete event systems, EN 50128, fixed-block

railway signaling systems

Received: November 16, 2017

Typically, software development processes are time consuming, expensive, and rigorous, particularly for

safety-critical applications. Even if guidelines and recommendations are defined by sector-specific

functional safety standards, development process may not be completed because of excessive costs or

insufficient planning. The V-model is one of the most well-known software development lifecycle model.

In this study, the V-model lifecycle is modified by adding an intermediate step. The proposed modification

is realized by checking the fault diagnosability of each module. The proposed modification provides three

advantages: (1) it checks whether the constructed model covers all software requirements related with

faults; (2) it decreases costs by early detection of modeling deficiencies before the coding and testing

phases; and (3) it enables code simplicity in decision of fault occurrence.

Povzetek: Osnovnemu modelu V razvoja programskih sistemov je dodana izboljšava na osnovi možnosti

testiranja napak modulov.

1 Introduction
The concept known as Safety Integrity Level (SIL) is used

to quantify safety. The SIL is a degree of safety system

performance for a Safety Instrumented System (SIS),

which is an automatic system used to avoid accidents and

to reduce their impact both on humans and the

environment. A SIS has to execute one or more Safety

Instrumented Functions (SIFs) to maintain a safe state for

the equipment under control [1]. Bear in mind that, a safe

state is known as the state where the whole system is

prevented from falling into a dangerous situation. A SIF

has a designated SIL level depending on the ratio of risk

that needs to be decreased. IEC 61508, the standard for

functional safety of electrical/electronic/programmable-

electronic Safety Related System (SRSs), mentions that a

SIL should be designated to each SIF and defines the

safety integrity as the probability of a SRS adequately

performing the required safety functions under all the

stated conditions within a given period of time from the

lowest requirement level (SIL 1) to highest requirement

level (SIL 4).

The third part of IEC 61508 applies to any software

used to develop a safety-related system within the scope

of first and second parts of the standard, and establishes

the requirements for safety lifecycle phases. Industry and

domain specific implementations of IEC 61508 include

IEC 61511 for industrial processes, IEC 61513 for the

nuclear industry, and IEC 62061 for machinery etc.

A lifecycle model is defined in [2] as a model that de-

scribes stages in a software product development process.

The IEC 61508-4 standard discusses the term lifecycle in

the context of both safety lifecycle and software lifecycle.

The safety lifecycle includes the necessary activities

involved in the implementation of SRSs [3]. IEC 61508

states that a safety lifecycle for software development shall

be selected and specified during the safety-planning phase

in accordance with Clause 6 of IEC 61508-1. The safety

lifecycle includes the definition of scope, hazard and risk

analysis, determination of safety requirements,

installation, commissioning, validation, operation,

maintenance, repair, and decommissioning. On the other

hand, the software lifecycle includes the activities

occurring from the conception of the software to the

decommissioning of the software.

mailto:ustoglu@yildiz.edu.tr

578 Informatica 42 (2018) 577–585 M.S. Durmuş et al.

Numerous lifecycle models have been addressed in the

literature, such as the waterfall, spiral, iterative

development, and butterfly models [4-8]. However,

despite the availability of many lifecycle alternatives,

safety standards such as IEC 61508, EN 50126, EN 50128,

and IEC 62278 recommend using the V-model for

software development processes. The V-model lifecycle

has been applied to various domains such as the

automotive [9], aerospace [10], railways [11], and the

nuclear industry [12].

In this study, a Discrete Event System (DES)-based

fault diagnosis method is added to the V-model lifecycle

as an intermediate step between the module design and the

coding phases. A DES is a discrete-state, event-driven

system in which the state evolution of the system depends

totally on the occurrence of discrete events over time.

The main difference of the proposed enhancement is

its simplicity, when compared with the existing model

checking tools and techniques in the literature [13, 14].

Because the fault diagnoser is built from the software

model itself and; since the modular approach is a must in

the Software Design Phase of the V-model in EN 50128

(recommended as mandatory) there is no need for any tool

to check the diagnosability of a simple software module

(component) model [15]. The remainder of this paper is

organized as follows. The V-model lifecycle and the

modified V-model lifecycle are explained in Sections 2

and 3, respectively. DES-based fault diagnosis is

introduced in Section 4, and conclusion section is given in

Section 5.

2 V-model lifecycle
Paul Rook introduced the V-model lifecycle in 1986 as a

guideline for software development processes [2]. The

primary aim of the V-model is to improve both the

efficiency of software development and the reliability of

the produced software. The V-model offers a systematic

roadmap from project initiation to product phase-out [2].

The V-model also defines the relationship between the

development and test activities; it implements verification

of each phase of the development process rather than

testing at the end of the project. The V-model, as defined

in IEC 61508-3, is shown in Figure 1.

Requirements

Specification

Software

Architecture

Software Sys.

Design

Module

Design

Coding

Module

Testing

Integration

Testing (module)

Testing for Integration

(components, subsystems)

Testing for

Validation

Output

Verification

Validation
Validated

Software

Figure 1: V-model software safety integrity and

development lifecycle [16].

Before initializing a software development process

according to the V-model, a software planning phase has

to be realized, wherein a software quality assurance plan,

software verification and software validation plans, and a

software maintenance plan are fully defined. Later, the

software requirements should be determined in

cooperation with both the customer and the stakeholders.

Using the selected software architectures (including

modeling methods), software modules are developed by

the designers. Each phase is verified immediately after

completion. Note that, the left side of the V-model in

Figure 1 represents the decomposition of the problem

from the business world to the technical world [17]. After

the coding phase, the right side of the V-model denotes the

testing phase of the developed software.

The number of person may expand in the development

process but this expansion shall be identified from the very

beginning of the project. In [2], the change of the total

number of software development teams are illustrated as

given in Figure 2. Additionally, the cost of detection of

faults in the different phases of V-model is given in Figure

3.

Project

Initiation

T
o
ta

l
N

u
m

b
e
r
 o

f

T
e
a
m

 M
e
m

b
e
r
s

Requirement

Specification
Structral

Design

Code and

Unit Test

Detailed

Design
Integration

and Test
Acceptance

Test

Figure 2: Software development teams [2].

Requirements
0.00

25.00

50.00

75.00

100.00

125.00

150.00

200.00

175.00

Design Code Development

Test

Acceptance

Test

Operation

R
e
la

ti
v
e
 C

o
st

 t
o
 F

ix
 F

a
u

lt

Phase in which Fault was Detected

%80~90 of faults

identified here

%~96 of faults

identified here

Figure 3: Software development teams [18].

The advantages and disadvantages of the V-model can

be summarized as follows [4, 5]:

Advantages

1. Facilitates greater control due to the standardization of

products in the process.

2. Cost estimation is relatively easy due to the

repeatability of the process.

3. Each phase has specific products.

4. Greater likelihood of success because of the early

development of test plans and documentation before

coding.

5. Provides a simple roadmap for the software

development process.

Enhanced V-Model Informatica 42 (2018) 577–585 579

Disadvantages

1. Low flexibility, expensive, and difficult to change

scope.

2. No early prototypes.

3. Addresses software development within a project

rather than a whole organization.

4. Too simple to precisely reflect the software

development process and may steer managers into a

false sense of security.

3 Modified V-model lifecycle
As mentioned in [19], and [20], the required workforce

and the cost of the development process of the software

increases towards the end with respect to the initial phases

of the development lifecycle. Therefore, the proposed

modification is realized on the left side of the V-model.

In the usual software development process according

to V-model, the fulfillment of the requirements are

checked by realizing the module tests after coding. By

checking the module diagnosability, one can decide if the

module fully covers the software requirements related

with faults or not (will be explained in section 4). This

intermediate phase can be considered as time consuming

and an extra workload. However, rather than turning back

again from the module testing phase to the module design

phase in the V-model, the proposed phase provides a final

inspection of modules before proceeding to the coding and

module testing phases. The proposed V-model is given in

Figure 4.

The proposed modification in Figure 4 has three

unique advantages:

a. It checks whether the constructed model covers all

software requirements related to faults: If the developed

software model (see Table A.2 and Table A.17 of [15]) is

not diagnosable, then the software model does not contain

all software requirements related with the faults.

b. It decreases costs through early detection of

modeling deficiencies before proceeding to coding and

testing phases: As can be seen from Figure 4, after

proceeding to the coding phase, the designer can only go

back to the module design phase at the end of the module

tests. Many studies showed that, it is 5 times more

expensive to fix a problem at the design stage than in the

course of initial requirements, 10 times more expensive to

fix it through the coding phase, 20 to 50 times more

expensive to fix it at acceptance testing and, 100 to 200

times more expensive to fix that error in the course of

actual operation [20-23].

c. It enables designers to write simple and more

readable code in decision of the faults: This will be

explained with a simple case study in the next section.

4 DES-based fault diagnosis
An event is defined as an encountered specific action, i.e.,

an unplanned incident that occurred naturally or due to

numerous conditions that are encountered simultaneously

[24]. Events are classified as observable or unobservable

events in a DES.

A DES system is considered as diagnosable if it is

possible to identify, within a finite delay, occurrences of

precise unobservable events that are referred to as fault

Figure 4: Enhanced V-model (Y-Yes, N-No).

events [25]. In other words, a system is diagnosable if

the fault type is always identified within a uniformly

bounded number of transition firings after the occurrence

of the fault [26]. The diagnoser is obtained from the

system model itself and carries out diagnostics to observe

the system behavior. Diagnoser states involve fault

information, and occurrences of faults are identified

within a finite delay by examining these states [27].

Finite state machines and Petri nets are considered as

DES-based modeling methods and, these methods are also

highly recommended by functional safety standards (see

[15]).

4.1 Basic petri net (PN) definitions

A Petri net [28] is defined as;

()0, , , ,PN P T F W M= (1)

where

• P = {p1, p2, …, pk} is the finite set of places,

• T = {t1, t2, …, tz} is the finite set of transitions,

• F ⊆ (P T)  (T P) is the set of arcs,

• W: F → {1, 2, 3, …} is the weight function,

• M0: P → {0, 1, 2, 3, …} is the initial marking,

• P T = and P T  .

For a marking M, ()iM p n= represents the token

number of the ith place where it is equal to n [28].

Representation of a marking : {1, 2, 3, ...}M P→ can be

realized by a k-element vector, where k denotes the total

number of places.

Definition 1 [28]: If a PN has no self-loops, then it is

considered as pure and when all arc weights of a PN are

1, then it is said to be ordinary.

Definition 2 [28]:   0 1 1 2 1k k kM t M t M t M−  

means that, the marking Mk is reachable from the initial

marking M0 by the
1 2 kt t t transitions sequence. Note

Software

Planning Phase

Software

Development Phase

Software

Requirement Phase

Software Arch. &

Design Phase

Software Component

Design Phase

Software Component

Testing Phase

Software

Integration Phase

Software

Validation Phase

Software

Maintenance Phase

Software

Assessment Phase

N

Software Component

Implementation Phase
Construct the software

generic model

Construct the
diagnoser model

Is the Software
Generic Module

Diagnosable?

Y

580 Informatica 42 (2018) 577–585 M.S. Durmuş et al.

that,
0()R M denotes the set of all reachable markings from

M0.

Definition 3 [29]: A PN is said to be free from deadlocks

if it is possible to find at least one enabled transition at

every reachable marking.

The set of places, P is partitioned into a set of

observable places and a set of unobservable places (Po and

Puo). Likewise, the set of transitions, T is partitioned into

a set of observable transitions and a set of unobservable

transitions (To and Tuo). Thus, the partitioned sets for P and

T can be expressed as

 and

 and

uo o uo o

uo o uo o

P P P P P

T T T T T

=   =

=   =
 (2)

In addition, a subset TF of Tuo represents a faulty

transitions set. It is assumed that there are m different fault

types. Here,
1 2{ , , , }F mF F F = is the set of fault

types. TF is expressed as
1 2 mF F F FT T T T=    , where

i jF FT T = (if i ≠ j).

{ } 2 FN


 = is used to define the label set, where N

is used to represent the label “normal,” which specifies

that all fired transitions are not faulty, and 2 F represents

the power set of
F . In the remainder of this paper,

unobservable transitions and places are represented as

shown in Figure 5.

Unobservable transition and place

Observable transition and place

Figure 5: Representation of places and transitions.

4.2 Diagnosis of faults by using PN models

Since the system model contains unobservable places, it is

not always possible to distinguish some markings. Thus,

if
1 2() ()i iM p M p= for any

i op P , then it is denoted as

1 2M M . That is to say, M1 and M2 markings have the

same observations. As done in [30], the definition of the

quotient set
0

ˆ ()R M according to the equivalence relation

() is useful;
0 0 0

ˆ ˆ ˆ() : ()/ : { , ..., , ...}nR M R M M M= =

where
0 0

ˆM M . An observable marking or the

observation of a marking is represented by each member

of
0

ˆ ()R M . We assume the following two statements are

true for simplicity.

Assumption [25, 26]: Only deadlock free PNs are

considered and there does not exist an order of

unobservable transitions whose firing produces a cycle of

markings that have the same observation.

A diagnoser is given for a PN [26, 27] by

()0, , , d d o dG Q q=  . (3)

The diagnoser given by (3) is an automaton where the

set of states are represented by
dQ Q , the set of events

are represented by
0

ˆ ()o oR M T =  , the notation

:d d o dQ Q  → represents the partial state transition

function, and the initial state is denoted by

0 0{(,)}.q M N= A diagnoser state qd is given as

1 1 2 2{(,),(,), ,(,)}d n nq M l M l M l= , which involves pairs

of a marking
0()iM R M and a label

il  . The state

set
dQ Q represents the reachable states from the initial

state q0 by using
d . Each observed event

o o 

represents an observation of a marking in
0

ˆ ()R M or an

observable transition in To. The state transition function

d is defined with the use of the label propagation

function and the range function.

The label propagation function associates a label

(faulty or normal) over a sequence of transitions. If the

sequence of transitions does not contain any faulty

transition, the resulting marking is labeled as normal (N).

Detailed explanation of the label propagation function, the

range function and the state transition function can be seen

from [25-27, 30, 31].

4.3 Obtaining diagnosability

A PN is diagnosable if, and only if, the states of the

diagnoser given by (3) shall be Fm-certain or does not

involve any Fm-indeterminate cycle for any fault type Fm.

Due to page restriction, the reader is referred [25-27] for

detailed explanation of DES-based fault diagnosis and the

proof of this theorem.

4.4 Railway point example

Trains can move from one track to another by the help of

railway points (rail switches or point machines) placed at

necessary locations. Points have two position indications,

i.e., Normal (Nr) and Reverse (Rev). At any railway point,

three main faults may occur. These faults are identified in

the V-model software requirements specification phase as

follows:

• F1: Point may not reach the desired position in a

predefined time (e.g., 5 sec) while moving from Nr to

Rev.

• F2: Point may not reach the desired position in a

predefined time while moving from Rev to Nr.

• F3: Both position indications may be received

simultaneously.

Examples of diagnosable and not diagnosable PN

models of a railway point are given in Figure 6 and Figure

7, respectively. The meanings of the transitions and places

of the models in Figure 6 and Figure 7 are given in Table

1 and Table 2, respectively. Note that the striped places

and transitions represent unobservable places (Puo) and

transitions (Tuo), whereas the other places (Po) and

transitions (To) are observable. M0 represents the initial

marking of the PN. The underlined numbers in the

diagnoser are used to represent the marking of an

unobservable place.

Enhanced V-Model Informatica 42 (2018) 577–585 581

Representation of the PN model in Figure 6 is as

follows:

 

 

 

PM_1 PM_2 PM_5 PM_6 PM_8 PM_10 PM_12

PM_3 PM_4 PM_7 PM_9 PM_11

PM_1 PM_2 PM_3 PM_4 PM_5 PM_6 PM_7 PM_8 PM_9 PM_10 PM_11 PM_12 PM_13 PM_14 PM_ 1 PM_ 2 PM_

, , , , , , ,

, , , , ,

, , , , , , , , , , , , , , , ,

o

uo

o uo f f f

P P P P P P P P

P P P P P P

T t t t t t t t t t t t t t t T t t t

=

=

= =  

() () ()(() () () ()

() () () () ()) ()

3

0 0 PM_1 0 PM_2 0 PM_3 0 PM_4 0 PM_5 0 PM_6 0 PM_7

0 PM_8 0 PM_9 0 PM_10 0 PM_11 0 PM_12

,

, , , , , , ,...

 ..., , , , , 0,0, 0, 0,1,0, 0,0, 0,0, 1,0 .

M M P M P M P M P M P M P M P

M P M P M P M P M P

=

=

 (4)

tPM_f2

PPM_4

PPM_2

PPM_1

•
PPM_3

PPM_1

PPM_4
PPM_2

PPM_5

PPM_6

tPM_f1

PPM_3

PPM_2

PPM_1

tPM_1

tPM_2

tPM_3

tPM_4

tPM_5

tPM_6

tPM_7

tPM_8

PPM_7 PPM_8

PPM_9 PPM_10

tPM_9

tPM_10

tPM_11

tPM_12

tPM_11

tPM_12

tPM_f3
PPM_11

PPM_12

tPM_13

tPM_14

•

0,0,0,0,1,0,0,0,0,0,1,0, N

M0

0,1,0,0,1,0,0,0,0,0,1,0, N

M1 + tPM_2

M2 + tPM_5

0,0,0,1,0,0,0,0,0,0,1,0, N

M3 + tPM_8

0,0,0,0,0,1,0,0,0,0,1,0, N

1,0,0,0,0,1,0,0,0,0,1,0, N

M4 + tPM_1

M5 + tPM_4

0,0,1,0,0,0,0,0,0,0,1,0, N

M
0
+

t P
M

_
7

0,0,0,0,0,0,0,1,0,0,1,0, F1

M6 + tPM_9

0,0,0,0,0,0,0,0,0,1,1,0, F2

M7 + tPM_10

0,0,0,0,0,0,0,0,0,0,0,1, F3

0,0,0,0,0,0,0,0,0,0,0,1, F3

M10

M10

Figure 6: PN model of a railway point and its diagnoser

(diagnosable).

Three different fault types given in Figure 6 are

1 2 3{ , , }F F F F = , where
1 PM_ 1{ }F fT t= ,

2 PM_ 2{ }F fT t= ,

and
3 PM_ 3{ }F fT t= . The rectangles are used to diminish the

complexity of the PN model. Each rectangle represents the

label of the related place.

The diagnoser illustrated in Figure 6 is built from the

PN model of railway point. A rectangle is used to denote

each state and each state contains a pair of place markings

and an attached label, normal (N) or fault. In other words,

in parts of the diagnoser, a marking immediately after an

observed event is detected precisely.

In accordance with the definition of the diagnoser in

(3), a label which represents an observable transition or

the observation of a marking is attached to all diagnoser

state transitions.

In this study, with a slight abuse of notation, labels

containing the observation of a marking or a pair of the

observation of a marking and an observable transition are

attached to all state transitions of the diagnoser.

Place Definition Transition Definition

PPM_1
Nr position

requested
tPM_1

Point Nr

position

request

PPM_2
Rev position

requested
tPM_2

Point Rev

position

request

PPM_3
Point is moving

to Nr

tPM_3

(tPM_6)

Request

ignored

PPM_4
Point is moving

to Rev
tPM_4 Point left Rev

PPM_5 Point is in Nr tPM_5 Point left Nr

PPM_6 Point is in Rev
tPM_7

(tPM_8)

Point reached

to Nr (Rev)

PPM_7
Fault type F1

has occurred

tPM_9

(tPM_10)

Filter time has

expired

PPM_8
Point is faulty

(F1)

tPM_11

(tPM_12)

Nr (Rev)

position

request

PPM_9
Fault type F2

has occurred

tPM_13

(tPM_14)

Point moved to

Nr (Rev) and

the fault

acknowledged

PPM_10
Point is faulty

(F2)
tPM_f1

Point

indication fault

PPM_11
Unobservable

fault restriction
tPM_f2

Point

indication fault

PPM_12
Point is faulty

(F3)
tPM_f3

Point position

fault

Table 1: Definition of transitions and places in the

models given in Figure 6.

For example, at
0M̂ in Figure 6, the event label

10M̂

represents that the observable marking
10M̂ is observed

by firing the unobservable transition tPM_f3. Similarly, the

diagnoser state changes by firing the unobservable

transition tPM_f3. Similarly, the diagnoser state changes

from {((0,0,0,0,1,0,0,0,0,0,1,0,),)},N to

{((0,1,0,0,1,0,0,0,0,0,1,0),)},N as a function of firing the

observable transition tPM_2 with the observation
1M̂ of the

resulting marking. According to the definition given in

Section 4.3, since all states are Fm-certain and there is no

Fm-indeterminate cycle in the diagnoser, the PN model is

diagnosable.

Representation of the PN model in Figure 7 is as

follows:

582 Informatica 42 (2018) 577–585 M.S. Durmuş et al.

   

   

() () () ()(() () ())

PM_1 PM_2 PM_3 PM_4 PM_5 PM_6 PM_7

PM_1 PM_2 PM_3 PM_4 PM_5 PM_6 PM_7 PM_8 PM_ 1 PM_ 2 PM_ 3

0 0 PM_1 0 PM_2 0 PM_3 0 PM_4 0 PM_5 0 PM_6 0 PM_7

, , , , , , ,

, , , , , , , , , , ,

, , , , , ,

 0,0,1,0

o uo

o uo f f f

P P P P P P P P P

T t t t t t t t t T t t t

M M P M P M P M P M P M P M P

= =

= =

=

= (),0,0, 0 .

 (5)

PPM_3 PPM_4

PPM_1

PPM_2

tPM_1

tPM_2

tPM_3

tPM_4

tPM_5

tPM_6

•
PPM_5

tPM_f3

PPM_6
tPM_7 tPM_8

tPM_f2

tPM_f1

tPM_9

PPM_7

0,0,1,0,0,0,0, N

M0

M1 + tPM_2

0,1,0,0,0,0,0, N

M2 + tPM_4

0,0,0,1,0,0,0, N

M3 + tPM_1

1,0,0,0,0,0,0, N

M
P

M
_
0
+

t P
M

_
3

MPM_4

MPM_4

0,0,0,0,0,1,0, F3

0,0,0,0,0,1,0, F3

0,0,0,0,0,0,1, F1 0,0,0,0,1,0,0, F1

MPM_5

M6 + tPM_9

MPM_5
0,0,0,0,0,0,1, F2 0,0,0,0,1,0,0, F2

M6 + tPM_9

F1 or F2 ???

Figure 7: PN model of a railway point and its diagnoser

(not diagnosable).

The diagnoser given in Figure 7 is not diagnosable

because it is not possible to distinguish the fault type after

observing the marking
5M̂ . In this case, the PN model will

identify only one of the faults (F1 or F2) while the obtained

code from this PN model is running. Therefore, the

designers should revise the PN model before proceeding

to the coding phase; otherwise, this deficiency will result

in an unsuccessful test case in the module testing phase.

4.5 Railway signal example

An example PN model of a Two-Aspect Signal (TAS)

and its diagnoser is given in Figure 8. TAS is generally

used in railway depot areas and has two signal color

indications (red means stop and green means proceed).

The meanings of the transitions and places of the model in

Figure 8 are given in Table 3. It is assumed that two

different faults may occur in TAS which are F1: Both

signal aspects are lit at the same time; and F2: No signals

are lit.

Place Definition Transition Definition

PPM_1
Point is

moving to Nr

tPM_1

(tPM_2)

Movement

request is

received for

Nr (Rev)

position

PPM_2

Point is

moving to

Rev

tPM_3

(tPM_4)

Point reached

to Nr (Rev)

PPM_3

Point

position is

Nr

tPM_5

(tPM_6)

Point request

to Nr (Rev)

PPM_4

Point

position is

Rev

tPM_7

(tPM_8)

Point moved

to Nr (Rev)

and the fault

acknowledged

PPM_5

Fault type F1

or F2 has

occurred

tPM_9
Filter time has

expired

PPM_6
Point is

faulty (F3)

tPM_f1

(tPM_f2)

Point

indication

fault

PPM_7

Point is

moving from

one position

to another

tPM_f3
Point position

fault

Table 2: Definition of transitions and places in the

models given in Figure 7.

PS2_1

tS2_1

tS2_2

tS2_3

•

•

PS2_F1

•

PS2_2

PS2_3

tS2_f2

tS2_4
PS2_F2

PS2_4

1,0,0,0,1,1, N

M0

M1 + tS2_1

0,1,0,0,1,1, N

0,0,1,0,0,1, F1

0,0,0,1,1,0, F2

tS2_f1

M
S

2
_
f1

M
S

2
_

f2

MS2_f1

M
S

2
_

f2

M
0

 +
 t

S
2

_
2

Figure 8: PN model of TAS and its diagnoser.

Place Definition Transition Definition

PS2_1 Signal is red tS2_1
Turn signal to

green

Enhanced V-Model Informatica 42 (2018) 577–585 583

PS2_2 Signal is green tS2_2
 Turn signal to

red

PS2_3
Fault type F1

has occurred
tS2_3

Signal turned

to red and the

fault

acknowledged

PS2_4
Fault type F2

has occurred
tS2_4

Signal turned

to red and the

fault

acknowledged

PS2_F1

Unobservable

fault

restriction

tS2_f1
Point aspect

fault

PS2_F2

Unobservable

fault

restriction

tS2_f2

Point

indication

fault

Table 3: Definition of transitions and places in the

models given in Figure 8.

To compare the simplicity in decision of the faults

with and without a diagnoser, an example Programmable

Logic Controller (PLC) code snippet of TAS model is

shown in Figure 9 and Figure 10, respectively.

As can be seen from Figure 9 and Figure 10, decision

of fault occurrence with a diagnoser is simpler than

without a diagnoser. For the PLC code given in Figure 9,

the diagnoser compares the actual states of the PN model

with predefined faulty states. When the faulty state of the

diagnoser is fully matched with the marking of the actual

PN states, the diagnoser sets the corresponding fault label.

Faulty states of the

diagnoser given in Fig. 6

S
ta

te
s

o
f

th
e

P
N

S
ta

te
s

o
f

th
e

d
ia

g
n

o
se

r

C
o

m
p

ariso
n

 resu
lt =

 0

N
o

 F
a

u
lt in

 th
e sy

stem

S
ta

te
s

o
f

th
e

P
N

S
ta

te
s

o
f

th
e

d
ia

g
n

o
se

r

PS2_1 PS2_2 PS2_3 PS2_4

0 0 0 0

0 0 0 1

PS2_1 PS2_2 PS2_3 PS2_4

C
o

m
p

ariso
n

 resu
şt =

 1

F
a

u
lt typ

e F
2 h

as o
ccu

rred

Figure 9: Diagnoser block of TAS and decision of fault

occurrence.

Decision of the faults

Figure 10: Decision of fault for TAS without diagnoser.

Moreover, since the V-model is modified by adding

an additional step, we also defined a new task for the

organizational structure of the software development

team. The Diagnoser designer (DDes) is added to the

preferred organizational structure of the enhanced V-

model as given in Figure 11 (PM: Project Manager, RQM:

Requirement Manager, Des: Designer, IMP: Implementer,

VER: Verifier, VAL: Validator, DDes: Diagnoser

Designer, ASR: Assessor). The original organizational

structure can be seen from EN 50128 [15].

RQM, Des, IMP INT, TST VAL

PM ASR

VER, DDes

SIL3 & SIL4

shall report to the Project Manager

can report to the Project Manager

shall not report to the Project Manager

can be the same person

can be the same organization

Figure 11: Recommended organizational structure for the

enhanced V-model for SIL3&SIL4 software.

5 Conclusion
Faults in a safety-critical system may cause severe harm

to humans. Therefore, the development steps of software

for such safety-critical systems must be executed very

carefully. Designers, developers, and engineers must

consider the recommendations of both the international

safety standards and the national rules to satisfy the

required safety level and fulfill requirements.

Although enhancing the V-model with DES-based

fault diagnosis is time consuming, however, the

advantages of this intermediate step are threefold: (1) it

checks whether the developed model fulfills all software

requirements related to the faults; (2) decision of faults

with a diagnoser is simpler than without a diagnoser; and

(3) an early check of the models is possible before

584 Informatica 42 (2018) 577–585 M.S. Durmuş et al.

proceeding to the coding and testing phase because the V-

model leads developers from the module testing phase to

the module design phase rather than the coding phase.

On the other hand, when costs and work hours are

considered, adding such an intermediate step to the V-

model can result in considerable benefits to both project

management and product development departments.

Acknowledgement

The authors are thankful to Enago (www.enago.com) for

the review of the English language of the paper.

References
[1] IEC61508 (2010). Functional safety of

electrical/electronic/programmable electronic

safety-related systems, Parts 1–7. International

Electrotechnical Commission.

[2] Rook P (1986). Controlling Software Projects.

Software Engineering Journal, 1, pp. 7-16.

https://doi.org/10.1049/sej.1986.0003

[3] IEC 61508-4 (2010). Functional safety of

electrical/electronic/programmable electronic

safety-related systems, Part 4: Definitions and

Abbreviations. International Electrotechnical

Commission.

[4] Munassar NM, Govardhan A (2010). A Comparison

Between Five Models of Software Engineering.

International Journal of Computer Science Issues, 7,

pp. 94-101.

[5] Krishna ST, Sreekanth S, Perumal K, Kumar Reddy

KR (2012). Explore 10 Different Types of Software

Development Process Models. International Journal

of Computer Science and Information Technologies,

3:4580-4584.

[6] Royce WW (1970). Managing the Development of

Large Software Systems: Concepts ad Techniques.

Proceedings Wescon, pp. 1-9.

[7] Boehm BW (1988). A Spiral Model of Software

Development and Enhancement. Computer, 21, pp.

61-72.

https://doi.org/10.1109/2.59

[8] Lehman MM (1980). Programs, Life Cycles, and

Laws of Software Evolution. Proceedings of the

IEEE, 68, pp. 1060-1076.

https://doi.org/10.1109/PROC.1980.11805

[9] Rahman RA, Pulm U, Stetter R (2007). Systematic

Mechatronic Design of a Piezo-Electric Brake. 16th

International Conference on Engineering Design,

28-31 July, Paris, France, pp. 1-12.

[10] Märtin L, Schatalov M, Hagner M, Goltz U,

Maibaum O (2013). A Methodology for Model-

Based Development and Automated Verification of

Software for Aerospace Systems. IEEE Aerospace

Conference, 2-9 March, Big Sky, MT, USA, pp. 1-

19.

https://doi.org/10.1109/AERO.2013.6496950

[11] Scippacercola F, Pietrantuono R, Russo R, Zentai A

(2015). Model-Driven Engineering of a Railway

Interlocking System. 3rd Int Conf on Model-Driven

Eng and Soft Development, 2-9 September, Angers,

France, pp pp. 509-519.

https://doi.org/10.1007/978-3-319-27869-8_22

[12] SSG-39 (2016). Design of Instrumentation and

Control Systems for Nuclear Power Plants. IAEA

Safety Standards Series.

[13] Kwiatkowska M, Norman G, Parker D (2002).

PRISM: Probabilistic Symbolic Model Checker.

Field T, Harrison PG, Bradley J, Harder U (ed)

Computer Performance Evaluation: Modeling

Techniques and Tools, Lecture Notes in Computer

Science, Springer, Berlin, Heidelberg, pp. 200-204.

https://doi.org/10.1007/3-540-46029-2_13

[14] Holzmann GJ (2003). Spin model checker, the:

primer and reference manual. Addison-Wesley.

[15] BS EN 50128 (2011). Railway Applications-

Communication, Signalling and processing systems:

Software for railway control and protection systems.

International Electrotechnical Commission.

[16] IEC 61508-3 (2010). Functional safety of

electrical/electronic/programmable electronic

safety-related systems, Part 3: Software

Requirements. International Electrotechnical

Commission.

[17] Ratcliffe A (2011). SAS Software Development with

the V-Model. 3SAS Global Forum, Coder's Corner,

4-7 April, Las Vegas, Nevada, USA, pp. 1-9.

[18] Brat GP (2017). Reducing V&V Cost of Flight

Critical Systems: Myth or Reality? AIAA Information

Systems, AIAA SciTech Forum, American Institute of

Aeronautics and Astronautics, 9-13 January,

Grapevine, Texas, USA, pp. 1-10.

[19] Boehm BW (1984). Verifying and Validating

Software Requirements and Design Specifications.

IEEE Software, 1, pp. 75-88.

https://doi.org/10.1109/MS.1984.233702

[20] Boehm BW (1984). Software Engineering

Economics. IEEE Transactions on Software

Engineering, SE-10, pp. 4-21.

https://doi.org/10.1109/TSE.1984.5010193

[21] Boehm BW (1987). Industrial Software Metrics: A

Top Ten List. IEEE Software, 4, pp. 264-271.

[22] Haskins B, Stecklein J, Dick B, Moroney G, Lovell

R, Dabney J (2004). Error Cost Escalation Through

the Project Life Cycle. 14th Annual Int Symp, Int

Council on Systems Engineering, 19-24 June,

Toulouse, France, pp. 1723-1737.

https://doi.org/10.1002/j.2334-5837.2004.tb00608.x

[23] Schneider GM, Martin J, Tsai WT (1992). An

Experimental Study of Fault Detection in User

Requirements Documents. IACM Transactions on

Software Engineering and Methodology, 1, pp. 188-

204.

https://doi.org/10.1145/128894.128897

[24] Cassandras CG, Lafortune S (2008). Introduction to

Discrete Event Systems. Springer, New York.

https://doi.org/10.1007/978-0-387-68612-7

[25] Sampath M, Sengupta R, Lafortune S,

Sinnamohideen K, Teneketzis D (1995).

Diagnosability of discrete-event systems. IEEE

Trans on Automatic Control, 40, pp. 1555-1575.

https://doi.org/10.1049/sej.1986.0003
https://doi.org/10.1109/2.59
https://doi.org/10.1109/PROC.1980.11805
https://doi.org/10.1109/AERO.2013.6496950
https://doi.org/10.1007/978-3-319-27869-8_22
https://doi.org/10.1007/3-540-46029-2_13
https://doi.org/10.1109/MS.1984.233702
https://doi.org/10.1109/TSE.1984.5010193
https://doi.org/10.1002/j.2334-5837.2004.tb00608.x
https://doi.org/10.1145/128894.128897
https://doi.org/10.1007/978-0-387-68612-7

Enhanced V-Model Informatica 42 (2018) 577–585 585

https://doi.org/10.1109/9.412626

[26] Ushio T, Onishi I, Okuda K (1998). Fault detection

based on Petri net models with faulty behaviours.

International Conference on Systems, Man, and

Cybernetics, 11-14 October, San Diego, CA, USA,

pp. 113-118.

[27] Sampath M, Sengupta R, Lafortune S,

Sinnamohideen K, Teneketzis D (1996). Failure

diagnosis using discrete-event models. IEEE

Transactions on Control Systems Technology, 4, pp.

105-124.

https://doi.org/10.1109/87.486338

[28] Murata T (1989). Petri nets: Properties, analysis and

applications. Proceedings of the IEEE, 77, pp. 541-

580.

https://doi.org/10.1109/5.24143

[29] Li ZW, Zhou MC, Wu NQ (2008). A survey and

comparison of Petri net-based deadlock prevention

policies for flexible manufacturing systems. IEEE

Trans on Systems, Man, and Cybernetics, Part C:

Applications and Reviews, 38, pp. 173–188.

https://doi.org/10.1109/TSMCC.2007.913920

[30] Chung SL (2005). Diagnosing PN-based models

with partial observable transitions. International

Journal of Computer Integrated Manufacturing, 18,

pp. 158-169.

https://doi.org/10.1080/0951192052000288206

[31] Durmuş MS, Takai S, Söylemez MT (2014). Fault

Diagnosis in Fixed-Block Railway Signaling

Systems: A Discrete Event Systems Approach. IEEJ

Transactions on Electrical and Electronic

Engineering, 9, pp. 523-531.

https://doi.org/10.1002/tee.22001

https://doi.org/10.1109/9.412626
https://doi.org/10.1109/87.486338
https://doi.org/10.1109/5.24143
https://doi.org/10.1109/TSMCC.2007.913920
https://doi.org/10.1080/0951192052000288206
https://doi.org/10.1002/tee.22001

586 Informatica 42 (2018) 577–585 M.S. Durmuş et al.

