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Abstract

The paper deals with a study on the thermal convection in a fluid saturated porous medium confined in a vertical oriented toroidal
loop heated from below and cooled from above, subjected to a vertically uniform temperature gradient. In fact, Sano, O., Journal of
the Physical Society of Japan (1987 and 1988) studied such a configuration for clear fluids. We take the steady heat conduction state
under a constant vertical temperature gradient (-k) as a fundamental solution.  A cylindrical system of co-ordinates (r, �, s) is
considered for the loop of 2�R length and cross sectional diameter 2a, where the ratio a/R is assumed to be very small. We expand all
quantities in terms of double Fourier series in � and �, where � = s/R. First-order perturbed fields from steady heat conduction state
are examined and various plots are given: isotherms in ring and meridian plane, stream lines and velocities. Finally, an attempt is
made in order to identify other fundamental solutions: S-type (cellular thermal convection) and A-types (coaxial flow, bidirectional
flow and antisymmetric cellular flow).

Introduction

Thermal convection in a vertically oriented torus has
various applications in engineering and nature, like
cooling systems in nuclear engineering, solar heaters
geothermal engineering, etc. Several papers considered
this configuration, in Newtonian fluids, see for instance
[1] and [2].

On the other hand, natural convection in porous media
is of interest in many applications and recent books by
Nield and Bejan [3] and Ingham and Pop [4-5] present a
comprehensive account of the available information in
the field. For example, natural convection in a horizontal
porous annulus is well documented in the literature, a
whole chapter in the reference [5] being dedicated to this
theme. However, studies on thermal convection in
toroidal configurations filled with fluid-saturated porous
media seem to be scarce in the open literature. One
example is the work [6] where it is investigated the
natural convection and its stability in a toroidal
thermosyphon filled with a porous medium. The onset of
the thermal convection in that configuration was studied
using a one-dimensional model.

We remark at this point that the stability of flows in
porous media differs considerably from that of

Newtonian fluids, due to the very specific changes in the
hydraulic and thermal properties.

The objective of the present paper is to study the
steady thermal convection in a vertical torus filled with a
fluid-saturated porous medium. The fluid in the porous
medium is considered incompressible and obeying the
Boussinesq law. The loop is heated from below and
cooled from above and it is subjected to a vertically
uniform temperature gradient

Mathematical formulation

We consider a thermal convection in a vertical torus
heated from below and cooled from above. We denote the
cross sectional diameter of the torus by 2a and its loop
length by 2�R, where the ratio a/R is assumed to be very
small. The x and z axis are taken in the plane of the
generator of the torus, with the z axis in the opposite
direction of the gravity, see Fig. 1. The reference system
(r, �, s) is also introduced, where s is the distance
measured counterclockwise from the bottom, along the
generator, while r and � are polar co-ordinates of the
cross section. The direction � = 0 is chosen so that it
always coincides with the direction from the generator to
the outer edge of the torus in the ring xz plane.
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We analyse the fluid motion through the porous
medium on the basis of the following assumptions:

� the flow is steady, laminar and incompressible;
� the liquid and solid matrix are in thermal

equilibrium;
� properties of the fluid and of porous matrix are

constant except for the density of the fluid which
depends on the temperature according to the
Boussinesq approximation.

The governing equations for the velocity v,
temperature T and pressure p are

0��� v (1)

� �zgTpK ev ����

�

�� 0
(2)

TT 2
�����v (3)

where �0 is the density of the fluid at the reference
temperature �0, g is the gravitational acceleration, ez is an
upward unit vector, �, �, � and K are the dynamic
viscosity of the fluid, thermal expansion coefficient,
thermal diffusivity and permeability of the porous
medium, respectively. We take the steady state as heat
conduction under a constant vertical temperature gradient
(-k), which is in fact a fundamental solution

kzTT �� 0 (4)

2
000 2

1 kgzgzpp ������

(5)

The perturbed fields 'v , 'T  and 'p  satisfy the
following equations, which are correct to the first order

0' ��� v (6)

� �zgTpK ev ''' 0����

�

��

(7)

'' 2Tkvz ���
(8)

The boundary conditions are

0'' �� Tv , at r = a (9)

Introducing the non-dimensional quantities

xx
a
1* � , '* vv

�

�

a ,
��

Kp
p

'
* � ,

ka
TT '* �

(10)

equations (1-3) become

0** ��� v (11)

zRaTp ev **** ���� (12)

*** Tvz ���
(13)

where (3-4) have been used. Further,
� ���� /2gKakRa �  is the Rayleigh number. The

boundary conditions, in dimensionless form, read

0** �� Tv , at r* = 1 (14)

Expressed in terms of the (r, �� s) coordinate system,
where the velocity components are u*, v* and w* and
dropping the asterisks for convenience, the governing
equations are
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w
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r
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Nomenclature

a half cross-sectional diameter of the torus � thermal expansion coefficient
k vertical temperature   gradient � polar co-ordinate
K permeability of the porous medium � dynamic viscosity of the fluid
g acceleration of gravity � kinematic viscosity of the fluid
p pressure � density of the fluid
r polar co-ordinate � = s/R
Ra Rayleigh number
(u, v¸w) components of the velocity Subscripts
s distance measured counterclockwise

from the bottom
0 reference conditions

T temperature
z vertical Cartesian co-ordinate Superscripts

B base solution for symmetric modes
Greek symbols ‘ perturbed quantities

	 thermal diffusivity * non-dimensional quantities
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 is the

Laplacean and rs /�� . Collecting the zeroth order of
a/R (<<1), equations (15)-(19) become
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, so that

these expressions are the same as those given in terms of
a straight circular cylindrical coordinate systems, except
that directions of vz and ez change at different positions
along the generator. We confine our attention to the
steady thermal convection, which corresponds to
neutrally stable states at some particular critical Rayleigh
numbers.

Some fundamental solutions for symmetric modes

In this paper we are mainly interested in the analysis of
symmetric modes which are caused by experimentally
uncontrollable small disturbances under symmetric
boundary conditions. The procedure is similar with that
used by Sano in [1-2], by expanding all relevant
quantities in terms of  double Fourier series in � and �

� � � � � � � �� ��

�

�

�

0,
,,, ,,,,

nm
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��� nm coscos ,

(25)
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�
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���

1,0
, sincos

nm
nm nmrww

Results for symmetric modes

   Due to the fact that temperature distributions with m =
0 and n = 0 do not lead to physically realizable symmetric
convection in a vertically oriented torus, we focus on the
simplest situation, represented by 1,1T , 2,1w , 2,1p , 2,1u
and 2,1v  series. By truncating these series at the lowest
order, we have
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Tw
(29)

1,12,1 2
TRaw �

(30)

02,12,12,12,11,1 ����� pwvuT , at r = 1 (31)

The solution of the set of equations (26-30) is obtained,
after some algebra, in the form

� � � �rkBNrkAJT nn 111,1 �� (32a)

� � � �� �� rkJrkJA
r
ccu nn 202

2
12,1 �����

� � � �� �� nnn krkNrkNB 20 ��

(32b)

� � � �� �rkBNrkAJ
rRr

ccv nn 112
2

12,1
4

����

(32c)

� � � �� �rkBNrkAJkw nnn 11
2

2,1 2 ��
(32d)

� � � �� �rkBNrkAJ
Rr

crcp nn 112
2

12,1
4

����

(32b)

where Jn are Bessel functions of the first kind of nth
order, Nn are Bessel functions of the second kind and nth
order, c1, c2, A and B are constants and 4/2/1Rakn � .
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Imposing the boundary conditions (31), the solutions (32)
can be expressed in the form

��� 2coscosBuu , ��� 2cossinBvv ,
��� 2sincosBww , ��� 2coscosBpp ,
��� coscosBTT

(33)

where
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The solution is valid for 2
14 lkRa � , where k1l (l = 1, 2,

3, …) are the zeroes of J1, whilst A is a undetermined
constant. The first zero of J1 is k1l  = 3.831706, so that the
critical Rayleigh number is Ra1 = 58.72788.

Fig. 2 shows the isotherms in the ring plane  (xz-plane),
T = TB(r)cos� = const. Next, in Fig. 3 there are plotted the
temperature distributions in the meridian plane  (� = 0, or
� = �). The streamlines in the ring plane (xz-plane) are
represented in Fig. 4. We notice that in the xz-plane v =
(u, 0, w), so the flow is assumed as two-dimensional.
Such a plot for clear fluids, based on the same
assumption, can be found in Sano [1]. We can use here
the same argument as there: such as a stream function
gives good qualitative patterns for the flow in the loop
with small a/R, when the w component exceeds the others
in the most part of the porous medium. Finally, Fig. 5
shows the (u, v) velocity fields, in vector representation,
in the meridian plane  (� = 0 or � = �).

All the previous results belong to the so-called S-type
modes, specifically denoted by 2

1S . Type S has also

cellular thermal convection at 2
12 lkRa � , denoted by 1

1S
and is defined by

��� coscos5.0 Buu ,
��� cossin5.0 Bvv , ��� sincosBww ,
��� coscos5.0 Bpp , �� cosBTT

(35)

Some fundamental solutions for antisymmetric modes

There are several types of antisymmetric modes, as for
clear fluids, see [2]. Let us begin with the A-type modes,
characterized by

� � � � � � � �� ��

�

�

�

0,
,,, ,,,,

nm
nmnmnm rurprTupT

��� nm sincos ,

� ��

�

��

���

1,0
, sinsin

nm
nm nmrvv ,

� ��

�

��

���

1,0
, coscos

nm
nm nmrww

(36)

This type include a family of coaxial flow along the
loop at 2

02 lkRa � , which is denoted as in [2] by 0
0A .

The distribution of the relevant quantities in this case is

0�� vu , � �rkJAkw ll 00
2
0� ,

� � �� sin00 rkAJT l

(37)

where l  = 1, 2, …
Another A-type of solution corresponds to a

bidirectional flow at 2
12 lkRa � , denoted by 0

1A . In this
case,

0�� vu , �� cosBww ,
��� sincosBTT

(38)

At 2
14 lkRa � , where l  = 1, 2, …, we obtain an

antisymmetric cellular flow, called 2
1A . Now the

distributions are

��� 2sincosBuu ,
��� 2sinsinBvv , ���� 2coscosBww ,
��� 2sincosBpp , ��� sincosBTT

(39)

Other fundamental solutions

By inverting the sine and cosine terms in � for S- and
A-mode types, we can obtain other fundamental
solutions, see also Sano [2], for clear fluids.

The S~ -type is obtained from (25) as follows
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�
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�

0,
,,, ,,,,

nm
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(40)
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The A~ -type is obtained from (25) in the form

� � � � � � � �� ��
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1,0
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nm
nm nmrww

(41)

The fundamental solutions are readily obtained from
their counterparts in S- and A-modes, according to the
basic rule stated above (inverting the sine and cosine
terms in �). For example, the fundamental solution for

2
1

~A -type flow is obtained from (39) as

��� 2sinsinBuu ,
��� 2sincosBvv , ���� 2cossinBww ,
��� 2sinsinBpp , ��� sinsinBTT .

(42)

Conclusion

An analysis of steady thermal convection in a vertical
torus filled with fluid-saturated porous medium was
presented in this paper. Many similarities were found
between this physical case and that of vertical torus filled
with Newtonian fluid [1-2].

Taking the steady state as heat conduction under a
constant vertical temperature gradient, all the perturbed
quantities have been expanded in double Fourier series
but only the lowest order terms have been retained in the
analysis. The main reason in doing so was to keep close

the procedure to that one used in clear fluids [1-2], in
order to facilitate (qualitative) comparisons, and this line
of study gave fruitful results.

It is worth to check the influence of higher modes,
given by increasing of the truncated terms in the Fourier
expansions. A further step is the superposition of the
antisymmetric modes, which can be performed similarly
as in [2]. The results of these tasks will be presented
elsewhere.
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Fig. 1. Sketch of the physical problem.

Fig. 2 Isotherms in the ring plane (xz-plane).
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Fig. 3 Isotherms in the meridian plane  (� = 0 or � = �).

Fig. 4 Streamlines in the ring plane (xz-plane).
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Fig. 5. (u, v) velocity fields in the meridian plane  (� = 0 or � = �).
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