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Abstract

In this article, we focus on association schemes with some properties derived from
the orbitals of a transitive permutation group G with a one-point stabilizer H satisfying
H < Ng(H) < Ng(Ng(H)) < G and |Ng(Ng(H))| = p* where p is a prime. By
a corollary of our main result we obtain some inequality which corresponds to the fact
G s No(Na(H))| < p+ 1.
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1 Introduction

Let G be a finite group with a subgroup H which satisfies
H < Ng(H) < Ng(Ng(H))<G and |Ng(Ng(H))| =p* 1.1

where p is a prime. In this article we focus on association schemes axiom-zing some
properties derived from the orbitals of the action of G on G/H.

We shall recall some terminologies to show that the definition of coherent configura-
tions is derived from properties of the binary relations obtained from a permutation group.
Let G be a permutation group of a finite set 2. Then G acts on {2 x €2 by its entry-wise
action, i.e.,

(o, B)" := (o, 8%) fora,f € Qandx € G.

We denote the set of orbits of the action of G on © x £ by Inv(G), which satisfies the
following conditions:
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(i) The diagonal relation 1 is a union of elements of Inv(G);
(ii) For each s € Inv(G) we have s* € Inv(G) where s* := {(a, ) | (8, @) € s};
(iii) For all s,¢,u € Inv(G) we have 0,0y = ) g ciyo, for ¢y € N uniquely deter-

mined by s, ¢, u where o, is the adjacency matrix of u, i.e., (04, )a,3 = 1if (o, ) € u
and (0y)a,p = 01if (o, ) & .

A coherent configuration is a pair (2, .S) of a finite set 2 and a partition .S of £ x 2 which
satisfies the conditions obtained from the above by replacing Inv(G) by S. We say that a
coherent configuration (£, S) is schurian if S = Inv(G) for some permutation group G
of Q, and it is homogeneous or an association scheme if 1o € S (see [2] and [3] for its
background).

Suppose that G' has a subgroup H which satisfies (1.1). Then |H| = p, |Ng(H)| = p?
and for each g € G we have the following:

(i) [HgH|/|H| € {1,p} and [Ng(H)gNg(H)|/|Na(H)| € {1,p};
(i) |HgH|/|H| =1lifand only if g € Ng(H);
(i) |[N¢(H)gNc(H)|/|INe(H)| = 1ifandonlyif g € No(Ne(H));
(iv) Ng(Ng(H)) is the smallest normal subgroup of G containing H.
Since G acts faithfully and transitively on the set of right cosets of H in G by its right

multiplication, it induces a schurian association scheme (£, S) where Q = {Hz | x € G}
and S = Inv(G) such that, for each s € S we have the following:

(i) ns € {1,p} where n, := ci?

(ii) Og(S) forms a group of order p where Oy(S) := {s € S | ns =1};

(iii) OY(S) = {s € S| ss*s = s} where O?(S) is the thin residue of S (see Section 2,
[9] or [10] for its definition).

The following is our main result:

Theorem 1.1. Let (2, S) be an association scheme with Qg (S) < OY(S) such that n, €
{1,p} for each s € S and nge(sy = p* where p is a prime. Then || < p*(p + 1).

In [4] they give a criterion on association schemes whose thin residue OY(.S) induces
the subschemes isomorphic to either

Cp2, CpxC, or Cpl0,.

Here we denote (G, Inv(G)) by G when G acts on itself by its right multiplication and we
denote the wreath product of one scheme (A, U) by another scheme (I, V) by (A, U)?
(T, V), ie.,

(A, UN(T,V) = (AxT,{lr@u|uecUU{v@U|veV\{lr}})
where

Ir@u:= {((5177)7 (6237)) ‘ (61762) cu,y e F} and
v@U = {((d1,71), (02,72)) | 01,02 € A, (y1,72) € v}
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For the case of O?(S) ~ C,2 we can apply the main result in [7] to conclude that (€2, 5)
is schurian. For the case of O?(S) ~ C,, x C,, we can say that |Q| < p?(p? + p+ 1) under
the assumption that ns = p for each s € S\ O%(S). For the case of O%(S) ~ C, 1 C,, we
had no progression for the last five years.

In [6] all association schemes of degree 27 are classified by computational enumeration,
and there are three pairs of non-isomorphic association schemes with O%(S) ~ C31C3
which are algebraic isomorphic. These examples had given an impression that we need
some complicated combinatorial argument to enumerate p-schemes (€2, S) with O?(S) ~
Cp1Cpand {ns | s € S\ OS)} = {p}. The following reduces our argument to the
p-schemes of degree p® where an association scheme (2, S) is called a p-scheme if |s| is a
power of p for each s € S

Corollary 1.2. For each p-scheme (2, S) with O%(S) ~ C, 1 C,, if ngy = p for each
s€ 9\ 0YS), then |Q| = p>.

In the proof of Theorem 1.1 the theory of coherent configurations plays an important
role through the thin residue extension which is a way of construction of coherent configu-
rations from association schemes (see [5, Theorem 2.1] or [8]) . The following is the kernel
of our paper:

Theorem 1.3. For each coherent configuration (2, S) whose fibers are isomorphic to Cp,
Cp, if |s| = p3 for each s € S with 0505 = 0, then either |Q] < p*(p + 1) or ss*s = s for
each s € S.

In Section 2 we prepare necessary terminologies on coherent configurations. In Sec-
tion 3 we prove our main results.

2 Preliminaries

Throughout this section, we assume that (2, .S) is a coherent configuration. An element of
Q and an element of S are called a point and a basis relation, respectively. Furthermore,
2] and |S| are called the degree and rank of (2, S), respectively. For all a, 8 € £ the
unique element in S containing («, 3) is denoted by (v, 8). For s € S and « € ) we set

as:={B €] (a,pB) € s}.

A subset A of Q is called a fiber of (2,5) if 1n € S. For each s € S, there exists a
unique pair (A, T") of fibers such that s C A x I'. For fibers A, T of (€2, S) we denote the
setof s € S with s C A x I' by Sa 1, and we set Sa := Sa a. Itis easily verified that
(A, Sa) is a homogeneous coherent configuration. Now we define the complex product on
the power set of S as follows: For all subsets 7" and U of S we set

TU :={se€ S|c, >0 forsomet €T anduc U}

where the singleton {¢} in the complex product is written without its parenthesis.
The following equations are frequently used without any mention:

Lemma 2.1. Let (£2,.S) be a coherent configuration. Then we have the following:
() Forallr,s € S, ifrs # 0, thenn.ng =Y, g chong;

(i) Forallr,s,t € Swe have |t|ct, = |r|cl, = |s|ci.;
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(i) Forallr,s € Swe have |{t € S|t € rs}| < ged(n,,ns).

nr = E Ty

teT

For T' C Sa 1 we set

Here we mention closed subsets, their subschemes and factor scheme according to the
terminologies given in [10]. Let (€2, S) be an association scheme and T C S. We say that
a non-empty subset 7" of S is closed if TT* C T where

T :={t"|teT},
equivalently | J,., ¢ is an equivalence relation on €2 whose equivalence classes are
{aT | a € O}

where oT := {f € Q| (o, 5) € t forsomet € T'}. Let T be a closed subset of S and
a € Q. It is well-known (see [9]) that

(Q,8)ar = (T, {tN(aT xaT) |t €T})
is an association scheme, called the subscheme of (€2, S) induced by o7, and that
(2,97 = (Q/T, ) T)
is also an association scheme where
QT :={aT |acQ}, ST ={s"|scS} and
s .= {(aT,BT) | (v,0) € s for some (7v,6) € oT x BT},

which is called the factor scheme of (2, .5) over T.

We say that a closed subset T is thin if n, = 1 for each ¢ € T, and Oy (S) is called the
thin radical of S, and the smallest closed subset 7" such that S//T is thin is called the thin
residue of S, which is denoted by O?(S).

3 Proof of the main theorem

Let (€2, S) be a coherent configuration whose distinct fibers are (1,5, ..., Q,,. For all
integers ¢, 7 with 1 <7, 7 < m we set

Sij = SQi,Qj and Si = Sii~

Throughout this section we assume that (€;,.5;) ~ C, 1 C), fori = 1,2,..., m where
p is a prime and C}, ! C,, is a unique non-thin p-scheme of degree p? up to isomorphism.

For s € S we say that s is regular if ss*s = {s} and we denote by R the set of regular
elements in S.

Lemma 3.1. For each regular element s € S;; with ns = p we have
0505+ = p(ZtGOH(Si) o1) and o0y = p(ZteO@(SJ) o).

In particular, ss* = Og(S;) and s*s = Oy(S;).
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Proof. Notice that {1g,} C ss* C S; and ts = {s} for each ¢ € ss*. Since {t € 5, |
ts = {s}} is a closed subset of valency at most n, it follows from (£2;, S;) ~ C, ! C), that
s8* = Oy(S;), and hence for each ¢ € ss*

t _ .S —
Cogr = CoyMg= [Nyx = D.

This implies that 0505« = p(zteog(si) o¢). By the symmetric argument we have 04«0 =
p(Zteog(sj) o). O

Lemma 3.2. For each non-regular element s € S;; with ng = p we have
O0s0sx = PO1g, + Zuesi\Oe(Si) Oy and o0 = b1, + ZUESj\OG(Sj) Ou-

Proof. Notice that {t € S; | ts = {s}} = {lq,}, otherwise, s is regular or ny = p?, a
contradiction. This implies that the singletons ¢s with ¢t € Oy(S;) are distinct elements of
valency p. Since

== ne> Y nw=ptpt--+p=p
SES;; te0p(S;)

it follows that Oy (.S;)s = S;;.

We claim that S; \ Og(S;) C ss*. Letu € S; \ Op(S;). Then there exists t € Op(.5;)
such that u € tss* since u € S;;8* = Og(S;)ss*. This implies that u = t*u C t*(tss*) =
ss*.

By the claim with p? = nyng = Etesi Css+¢My and Css*lg, = Ms = P We have the
first statement, and the second statement is obtained by the symmetric argument. 0

For the remainder of this section we assume that n, = p for each s € |J,_; Si;.
Lemma 3.3. The set | J,_p s is an equivalence relation on Q.

Proof. Since 1g, € S; € Rfori=1,2,...,m,J,cp s is reflexive. Since s5*s = {s} is
equivalent to s*ss* = {s*}, [J,c 5 is symmetric.
Leta € €, B € Q; and v € Qp with (e, §),7(5,7) € R. Then we have

(e, y)r(a,v)* C (e, B)r(B,v)r(B,v) r(a, B)".

*

If one of r(«, 5), 7(B, ) is thin, then (o, y)r (e, y)*, and hence (o, y) € R. Now we as-
sume that both of them are non-thin. Since 7(5,v)r(5,7)* = 04(S;) = r(«, B)*r(e, B),
it follows that

r(a,y)r(e, )" € (e, B)r(a, B)* = Op(S5).

Applying Lemma 3.1 and 3.2 we obtain that r(cv, ) is regular, and hence  J, s is transi-
tive.

Lemma 3.4. The set |J,.y s is an equivalence relation on Q where N := ", S; U
(S\ R).
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Proof. Since 1o, € S; € N fori = 1,2,...,m, [J,cy s is reflexive. By Lemma 3.3,
Usc g is symmetric, so that | J, .y s is symmetric.

Leta € Q;, 8 € Q; and v € Q with r(a, 3),7(B,7) € N. Since |J;-, S; C R, it
follows from Lemma 3.3 that it suffices to show that

r(a,v) € S\ R
under the assumption that

T(a,ﬁ),?‘(ﬂ,’y) es \ R withi 75 k.

Suppose the contrary, i.e., (c,y) € R. Then, by Lemma 3.3, S;;, C R. Since
’I“(O@B)T(B,’}/) c Sik: c Ra

it follows that
OO(Si)T(aa ﬂ)r(ﬂa ’7) = r(a, B)r(ﬂa ’Y)
On the other hand, we have
Oy (Si)r(a, B)r(B,7) = Sijr(B,7) = Sik.
Thus, r(«, 8)r(8,v) = Sik. Since i # k, each element of S;;, has valency p, and hence,
05,05y = Z oy
UES;k
where s1 := r(a, 8) and s2 := r(,v). By Lemma 3.2,
p2 = <0810827US1082> = <U;10817US20-:2> = p2 +p(p - 1)7
a contradiction where ( , ) is the inner product defined by
(A, B) :=1/p*tr(AB*) forall A, B € Mq(C).
Therefore, US eN S is transitive. O

Lemma 3.5. We have either R =S or N = S.

Proof. Suppose R # S. Let a, 5 € Q with r(«, 5) € R. Since R # S, there exists v €
with r(a, ) € N. Notice that r(5,v) € RUN. By Lemma 3.3, »(8,v) € N, and hence,
by Lemma 3.4,

m
r(a,8) e RNN = USZ"
i=1
Since «, § € € are arbitrarily taken, it follows that
m
R=[]JS; and N=3. m
i=1
Lemma 3.6. Suppose that S = N and sy € Sij,s2 € S, and s3 € Sy, with dis-
tinct 4,5, k. Then 05,05, = 0g, (ZtEOQ(Sk) aot) for some non-negative integers a;
With 34 c0,(s0) @ = Po 2 o1c0,(5k) ai = 2p — 1 and for each u € Og(Sk) \ {1, }
tc0p(Sy) Uty =P — 1.
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Prooﬁ Sl.nce 51592 Q. Sij = $30¢(Sk), 05,05, = ZtEOQ(Sk)atJSSt for some non-
negative integers a;. Since 05, = 05,0+ and

2
P =Ng Ng, = E AtNszt = P E G,

t€0g(Sk) tOg(S;)
it remains to show the last two equalities on a; with t € Oy (S;). Expanding 03,07 05,05,
by two ways we obtain from Lemma 3.2 that
(20> = p)org, + (P —=p) D>, w+@ -2 Y, o
t€00(5;)\{1a;} u€S;\0p(S;)
= Z at0; 0,0, Z a40y.
t€0p(Sk) teO0y(Sk)
Therefore, we conclude from Lemma 3.2 that
p Y, a=2"-p and p Y  @mam=p°—p
t€O0g(Sk) teO0p(Sk)
for each u € Op(Sk) withu # 1q,. O

For the remainder of this section we assume that
S =N.

Fori=1,2,...,m we take o; € §; and we define ¢; € S; such that t; € Og(S1)\ {10, }
and for ¢ = 2,3,...,m, t; is a unique element in Oy (S;) with r(a1t1, a;t;) = r(a, ;).
Then C, acts semi-regularly on €2 such that

QxCp—Q,  (Bi,t) - Bit],
where C,, = (t) and f3; is an arbitrary element in ;.

Lemma 3.7. The above action acts semi-regularly on ) as an automorphism of (2, S).

Proof. Since C), acts regularly on each of geometric coset of Og(S;) fori =1,2,...,m,
the action is semi-regular on 2. By the definition of {¢;}, it is straightforward to show
that r(aq, ;) is fixed by the action on © x €2, and hence each element of U;”:Q Si; U
S;1 is also fixed since S1; = Og(S1)7(cm, ). Let s € S;;with 2 < 4, j. Notice that
(e, 1)r(ou, ¢yj) is a proper subset of S;; by Lemma 3.6. This implies that s is obtained
as the intersection of some of t¥7(a;, ay)r(ay, a;) with 0 < k < p — 1, and hence s is
fixed. O

For each i = 1,2,...,m we take {oyr, | kK = 1,2,...,m} to be a complete set of
representatives with respect to the equivalence relation UtGOQ (s;)ton Q.

Lemma 3.8. For each s € S;; withi # jand all k,1 = 1,2, ..., p there exists a unique
h(8)w € Zy, such that r(aihaﬂth(s)kl) = 5. Moreover, if s1 € S;; and t* € Og(Sy) with
s1 = st then h(s1)p = h(8)p + aforall k,1=1,2,... ,m.
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Proof. Since Oy (S;) acts regularly on S;; by its right multiplication, the first statement
holds. The second statement is obtained by a direct computation. O

Lemma 3.9. For each s € S;; withi # jand all k,1 =1,2,...,p we have
s N (ix06(S;) x a;;00(5;)) = {(aurty, ajlt?) |b—a=h(s)u}
Proof. Notice that
raint], aith) = () r(qn, aj)t] = r(ou, a)th ™
Since 7 (o, oyt (*)4) = s by Lemma 3.8, it follows that r(cvit{, ovjith) = s if and only
ifb—a=h(s)i. O
Proposition 3.10. For each s € S;; with i # j the matrix (h(s)k1) € Mpxp(Zy) satisfies
that, for all distinct k1, ko € {1,2,...,p},
{h(8)ky 1 —P(S)kou | 1=1,2,...,p} = Z,.

In other word the matrix is a generalized Hadamard matrix of degree p over Z,, equiv-
alently, the matrix (£"*)%) € M, ,(C) is a complex Hadamard matrix of Butson type
(p, p) where £ is a primitive p-th root of unity.

Proof. Notice that, for all distinct k, [, by Lemma 3.9,
{v € Q| r(aut!,v) =rlaqatd,) = s}
equals

P
U {ajrtf | ¢ —a = h(s)kr,c — b= h(s)i}.
r=1

Since the upper one is a singleton by Lemma 3.2, there exists a unique r € {1,2,...,p}
such that b — a = h(s)k, — h(s);.. Since a and b are arbitrarily taken, the first statement
holds.

The second statement holds since Zf;ol x" is the minimal polynomial of £ over Q. [

We shall write the matrix (£(*)x) as H(s). For s € S;; with i # 7, the restriction of
o5 to §; x €, can be viewed as a (p x p)-matrix whose (k, [)-entry is the matrix Ph(s)“
where P; is the permutation matrix corresponding to the mapping 3; — S;t; where we may
assume that P; = P;, say P, forall4,j = 1,2,...,m by Lemma 3.7. Notice that H (s) is

obtained from (Ph(s)’“) by sending P 1o §h S

Proposition 3.11. For all s1 € S;j, s2 € Sji and s3 € Sy, with distinct 1, j, k we have
H(s1)H(s2) = aH(s3) for some o € Cwith |a| = /p.

Proof. By Lemma 3.6, H (s1)H (s2) = H(s3)(3."—, a;£") for some a; € Z where a; =
¢yi - Thus, it suffices to show that (3P, ai€¥)|? = p. By Lemma 3.6, the left hand side
equals

p—1p—1 p—1p—1

ZZGZCLJ§L i _Za +Zza]a’l+j€ = 2])_1) (p—l)(—l) =p. O

1=0 j=0 =1 j=0
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Corollary 3.12. Let s; := r(a1,«;) fori = 2,3, ..., mand B; denote the basis consisting
of the rows of H(s;), i = 2,3,...,m, and By be the standard basis. Then {B1,Ba, ...,
B, } is a mutually unbiased bases for CP, and m < p + 1.

Proof. The first statement is an immediate consequence of Proposition 3.10, and the second
statement follows from a well-known fact that the number of mutually unbiased bases for
C™isatmostn + 1 (see [1]). O

Proof of Theorem 1.3. Suppose that R # S. Then N = S and the theorem follows from
Corollary 3.12. O

Proof of Theorem 1.1. Since nge(sy = p? and Oy(S) < 0Y(S), it follows from [5, The-
orem 2.1] (or see [8]) that the thin residue extension of (£2,.5) is a coherent configuration
with all fibers isomorphic to C,, ¢ C,, such that each basic relation out of the fibers has
valency p.

We claim that S = N. Otherwise, S = R, which implies that (ss* | s € S) has valency
p. Since O%(S) = (ss* | s € S) (see [9]), it contradicts that O%(S) has valency p?.

By the claim, S = N. Since the number of fibers of the thin residue extension of (€2, .5)

equals [Q2/O%(S)|, the theorem follows from Theorem 1.3. O
Proof of Corollary 1.2. Since (9, S) is a p-scheme and O?(S) ~ C), x C,,, |2] is a power
of p greater than p2. By Theorem 1.1, |2] < (p + 1)p?, and hence, || = p3. O
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