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Abstract

In this article, we focus on association schemes with some properties derived from
the orbitals of a transitive permutation group G with a one-point stabilizer H satisfying
H < NG(H) < NG(NG(H)) E G and |NG(NG(H))| = p3 where p is a prime. By
a corollary of our main result we obtain some inequality which corresponds to the fact
|G : NG(NG(H))| ≤ p+ 1.
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1 Introduction
Let G be a finite group with a subgroup H which satisfies

H < NG(H) < NG(NG(H)) EG and |NG(NG(H))| = p3 (1.1)

where p is a prime. In this article we focus on association schemes axiom-zing some
properties derived from the orbitals of the action of G on G/H .

We shall recall some terminologies to show that the definition of coherent configura-
tions is derived from properties of the binary relations obtained from a permutation group.
Let G be a permutation group of a finite set Ω. Then G acts on Ω × Ω by its entry-wise
action, i.e.,

(α, β)x := (αx, βx) for α, β ∈ Ω and x ∈ G.

We denote the set of orbits of the action of G on Ω × Ω by Inv(G), which satisfies the
following conditions:
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(i) The diagonal relation 1Ω is a union of elements of Inv(G);

(ii) For each s ∈ Inv(G) we have s∗ ∈ Inv(G) where s∗ := {(α, β) | (β, α) ∈ s};
(iii) For all s, t, u ∈ Inv(G) we have σsσt =

∑
u∈S c

u
stσu for cust ∈ N uniquely deter-

mined by s, t, uwhere σu is the adjacency matrix of u, i.e., (σu)α,β = 1 if (α, β) ∈ u
and (σu)α,β = 0 if (α, β) 6∈ u.

A coherent configuration is a pair (Ω, S) of a finite set Ω and a partition S of Ω×Ω which
satisfies the conditions obtained from the above by replacing Inv(G) by S. We say that a
coherent configuration (Ω, S) is schurian if S = Inv(G) for some permutation group G
of Ω, and it is homogeneous or an association scheme if 1Ω ∈ S (see [2] and [3] for its
background).

Suppose that G has a subgroup H which satisfies (1.1). Then |H| = p, |NG(H)| = p2

and for each g ∈ G we have the following:

(i) |HgH|/|H| ∈ {1, p} and |NG(H)gNG(H)|/|NG(H)| ∈ {1, p};
(ii) |HgH|/|H| = 1 if and only if g ∈ NG(H);

(iii) |NG(H)gNG(H)|/|NG(H)| = 1 if and only if g ∈ NG(NG(H));

(iv) NG(NG(H)) is the smallest normal subgroup of G containing H .

Since G acts faithfully and transitively on the set of right cosets of H in G by its right
multiplication, it induces a schurian association scheme (Ω, S) where Ω = {Hx | x ∈ G}
and S = Inv(G) such that, for each s ∈ S we have the following:

(i) ns ∈ {1, p} where ns := c1Ω
ss∗ ;

(ii) Oθ(S) forms a group of order p where Oθ(S) := {s ∈ S | ns = 1};
(iii) Oθ(S) = {s ∈ S | ss∗s = s} where Oθ(S) is the thin residue of S (see Section 2,

[9] or [10] for its definition).

The following is our main result:

Theorem 1.1. Let (Ω, S) be an association scheme with Oθ(S) < Oθ(S) such that ns ∈
{1, p} for each s ∈ S and nOθ(S) = p2 where p is a prime. Then |Ω| ≤ p2(p+ 1).

In [4] they give a criterion on association schemes whose thin residue Oθ(S) induces
the subschemes isomorphic to either

Cp2 , Cp × Cp or Cp o Cp.

Here we denote (G, Inv(G)) by G when G acts on itself by its right multiplication and we
denote the wreath product of one scheme (∆, U) by another scheme (Γ, V ) by (∆, U) o
(Γ, V ), i.e.,

(∆, U) o (Γ, V ) := (∆× Γ, {1Γ ⊗ u | u ∈ U} ∪ {v ⊗ U | v ∈ V \ {1Γ}})

where

1Γ ⊗ u := {((δ1, γ), (δ2, γ)) | (δ1, δ2) ∈ u, γ ∈ Γ} and
v ⊗ U := {((δ1, γ1), (δ2, γ2)) | δ1, δ2 ∈ ∆, (γ1, γ2) ∈ v}.
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For the case of Oθ(S) ' Cp2 we can apply the main result in [7] to conclude that (Ω, S)
is schurian. For the case of Oθ(S) ' Cp×Cp we can say that |Ω| ≤ p2(p2 + p+ 1) under
the assumption that ns = p for each s ∈ S \Oθ(S). For the case of Oθ(S) ' Cp o Cp we
had no progression for the last five years.

In [6] all association schemes of degree 27 are classified by computational enumeration,
and there are three pairs of non-isomorphic association schemes with Oθ(S) ' C3 o C3

which are algebraic isomorphic. These examples had given an impression that we need
some complicated combinatorial argument to enumerate p-schemes (Ω, S) with Oθ(S) '
Cp o Cp and {ns | s ∈ S \ Oθ(S)} = {p}. The following reduces our argument to the
p-schemes of degree p3 where an association scheme (Ω, S) is called a p-scheme if |s| is a
power of p for each s ∈ S:

Corollary 1.2. For each p-scheme (Ω, S) with Oθ(S) ' Cp o Cp, if ns = p for each
s ∈ S \Oθ(S), then |Ω| = p3.

In the proof of Theorem 1.1 the theory of coherent configurations plays an important
role through the thin residue extension which is a way of construction of coherent configu-
rations from association schemes (see [5, Theorem 2.1] or [8]) . The following is the kernel
of our paper:

Theorem 1.3. For each coherent configuration (Ω, S) whose fibers are isomorphic to Cp o
Cp, if |s| = p3 for each s ∈ S with σsσs = 0, then either |Ω| ≤ p2(p+ 1) or ss∗s = s for
each s ∈ S.

In Section 2 we prepare necessary terminologies on coherent configurations. In Sec-
tion 3 we prove our main results.

2 Preliminaries
Throughout this section, we assume that (Ω, S) is a coherent configuration. An element of
Ω and an element of S are called a point and a basis relation, respectively. Furthermore,
|Ω| and |S| are called the degree and rank of (Ω, S), respectively. For all α, β ∈ Ω the
unique element in S containing (α, β) is denoted by r(α, β). For s ∈ S and α ∈ Ω we set

αs := {β ∈ Ω | (α, β) ∈ s}.

A subset ∆ of Ω is called a fiber of (Ω, S) if 1∆ ∈ S. For each s ∈ S, there exists a
unique pair (∆,Γ) of fibers such that s ⊆ ∆× Γ. For fibers ∆,Γ of (Ω, S) we denote the
set of s ∈ S with s ⊆ ∆ × Γ by S∆,Γ, and we set S∆ := S∆,∆. It is easily verified that
(∆, S∆) is a homogeneous coherent configuration. Now we define the complex product on
the power set of S as follows: For all subsets T and U of S we set

TU := {s ∈ S | cstu > 0 for some t ∈ T and u ∈ U}

where the singleton {t} in the complex product is written without its parenthesis.
The following equations are frequently used without any mention:

Lemma 2.1. Let (Ω, S) be a coherent configuration. Then we have the following:

(i) For all r, s ∈ S, if rs 6= ∅, then nrns =
∑
t∈S c

t
rsnt;

(ii) For all r, s, t ∈ S we have |t|ct∗rs = |r|cr∗st = |s|cs∗tr ;
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(iii) For all r, s ∈ S we have |{t ∈ S | t ∈ rs}| ≤ gcd(nr, ns).

For T ⊆ S∆,Γ we set
nT :=

∑
t∈T

nt.

Here we mention closed subsets, their subschemes and factor scheme according to the
terminologies given in [10]. Let (Ω, S) be an association scheme and T ⊆ S. We say that
a non-empty subset T of S is closed if TT ∗ ⊆ T where

T ∗ := {t∗ | t ∈ T},

equivalently
⋃
t∈T t is an equivalence relation on Ω whose equivalence classes are

{αT | α ∈ Ω}

where αT := {β ∈ Ω | (α, β) ∈ t for some t ∈ T}. Let T be a closed subset of S and
α ∈ Ω. It is well-known (see [9]) that

(Ω, S)αT := (αT, {t ∩ (αT × αT ) | t ∈ T})

is an association scheme, called the subscheme of (Ω, S) induced by αT , and that

(Ω, S)T := (Ω/T, S//T )

is also an association scheme where

Ω/T := {αT | α ∈ Ω}, S//T = {sT | s ∈ S} and

sT := {(αT, βT ) | (γ, δ) ∈ s for some (γ, δ) ∈ αT × βT},

which is called the factor scheme of (Ω, S) over T .
We say that a closed subset T is thin if nt = 1 for each t ∈ T , and Oθ(S) is called the

thin radical of S, and the smallest closed subset T such that S//T is thin is called the thin
residue of S, which is denoted by Oθ(S).

3 Proof of the main theorem
Let (Ω, S) be a coherent configuration whose distinct fibers are Ω1,Ω2, . . . ,Ωm. For all
integers i, j with 1 ≤ i, j ≤ m we set

Sij := SΩi,Ωj and Si := Sii.

Throughout this section we assume that (Ωi, Si) ' Cp o Cp for i = 1, 2, . . . ,m where
p is a prime and Cp o Cp is a unique non-thin p-scheme of degree p2 up to isomorphism.

For s ∈ S we say that s is regular if ss∗s = {s} and we denote by R the set of regular
elements in S.

Lemma 3.1. For each regular element s ∈ Sij with ns = p we have

σsσs∗ = p(
∑
t∈Oθ(Si)

σt) and σs∗σs = p(
∑
t∈Oθ(Sj)

σt).

In particular, ss∗ = Oθ(Si) and s∗s = Oθ(Sj).
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Proof. Notice that {1Ωi} ( ss∗ ⊂ Si and ts = {s} for each t ∈ ss∗. Since {t ∈ Si |
ts = {s}} is a closed subset of valency at most ns, it follows from (Ωi, Si) ' Cp oCp that
ss∗ = Oθ(Si), and hence for each t ∈ ss∗

ctss∗ = csstns∗/nt∗ = p.

This implies that σsσs∗ = p(
∑
t∈Oθ(Si)

σt). By the symmetric argument we have σs∗σs =

p(
∑
t∈Oθ(Sj)

σt).

Lemma 3.2. For each non-regular element s ∈ Sij with ns = p we have

σsσs∗ = pσ1Ωi
+
∑
u∈Si\Oθ(Si)

σu and σs∗σs = pσ1Ωj
+

∑
u∈Sj\Oθ(Sj)

σu.

Proof. Notice that {t ∈ Si | ts = {s}} = {1Ωi}, otherwise, s is regular or ns = p2, a
contradiction. This implies that the singletons ts with t ∈ Oθ(Si) are distinct elements of
valency p. Since

p2 = |Ωj | =
∑
s∈Sij

ns ≥
∑

t∈Oθ(Si)

nts = p+ p+ · · ·+ p = p2,

it follows that Oθ(Si)s = Sij .
We claim that Si \Oθ(Si) ⊆ ss∗. Let u ∈ Si \Oθ(Si). Then there exists t ∈ Oθ(Si)

such that u ∈ tss∗ since u ∈ Sijs∗ = Oθ(Si)ss
∗. This implies that u = t∗u ⊆ t∗(tss∗) =

ss∗.
By the claim with p2 = nsns∗ =

∑
t∈Si css∗tnt and css∗1Ωi

= ns = p we have the
first statement, and the second statement is obtained by the symmetric argument.

For the remainder of this section we assume that ns = p for each s ∈
⋃
i 6=j Sij .

Lemma 3.3. The set
⋃
s∈R s is an equivalence relation on Ω.

Proof. Since 1Ωi ∈ Si ⊆ R for i = 1, 2, . . . ,m,
⋃
s∈R s is reflexive. Since ss∗s = {s} is

equivalent to s∗ss∗ = {s∗},
⋃
s∈R s is symmetric.

Let α ∈ Ωi, β ∈ Ωj and γ ∈ Ωk with r(α, β), r(β, γ) ∈ R. Then we have

r(α, γ)r(α, γ)∗ ⊆ r(α, β)r(β, γ)r(β, γ)∗r(α, β)∗.

If one of r(α, β), r(β, γ) is thin, then (α, γ)r(α, γ)∗, and hence r(α, γ) ∈ R. Now we as-
sume that both of them are non-thin. Since r(β, γ)r(β, γ)∗ = Oθ(Sj) = r(α, β)∗r(α, β),
it follows that

r(α, γ)r(α, γ)∗ ⊆ r(α, β)r(α, β)∗ = Oθ(Si).

Applying Lemma 3.1 and 3.2 we obtain that r(α, γ) is regular, and hence
⋃
s∈R s is transi-

tive.

Lemma 3.4. The set
⋃
s∈N s is an equivalence relation on Ω where N :=

⋃m
i=1 Si ∪

(S \R).
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Proof. Since 1Ωi ∈ Si ⊆ N for i = 1, 2, . . . ,m,
⋃
s∈N s is reflexive. By Lemma 3.3,⋃

s∈R is symmetric, so that
⋃
s∈N s is symmetric.

Let α ∈ Ωi, β ∈ Ωj and γ ∈ Ωk with r(α, β), r(β, γ) ∈ N . Since
⋃m
i=1 Si ⊆ R, it

follows from Lemma 3.3 that it suffices to show that

r(α, γ) ∈ S \R

under the assumption that

r(α, β), r(β, γ) ∈ S \R with i 6= k.

Suppose the contrary, i.e., r(α, γ) ∈ R. Then, by Lemma 3.3, Sik ⊆ R. Since

r(α, β)r(β, γ) ⊆ Sik ⊆ R,

it follows that
Oθ(Si)r(α, β)r(β, γ) = r(α, β)r(β, γ).

On the other hand, we have

Oθ(Si)r(α, β)r(β, γ) = Sijr(β, γ) = Sik.

Thus, r(α, β)r(β, γ) = Sik. Since i 6= k, each element of Sik has valency p, and hence,

σs1σs2 =
∑
u∈Sik

σu

where s1 := r(α, β) and s2 := r(β, γ). By Lemma 3.2,

p2 = 〈σs1σs2 , σs1σs2〉 = 〈σ∗s1σs1 , σs2σ
∗
s2〉 = p2 + p(p− 1),

a contradiction where 〈 , 〉 is the inner product defined by

〈A,B〉 := 1/p2tr(AB∗) for all A,B ∈MΩ(C).

Therefore,
⋃
s∈N s is transitive.

Lemma 3.5. We have either R = S or N = S.

Proof. Suppose R 6= S. Let α, β ∈ Ω with r(α, β) ∈ R. Since R 6= S, there exists γ ∈ Ω
with r(α, γ) ∈ N . Notice that r(β, γ) ∈ R ∪N . By Lemma 3.3, r(β, γ) ∈ N , and hence,
by Lemma 3.4,

r(α, β) ∈ R ∩N =

m⋃
i=1

Si.

Since α, β ∈ Ω are arbitrarily taken, it follows that

R =

m⋃
i=1

Si and N = S.

Lemma 3.6. Suppose that S = N and s1 ∈ Sij , s2 ∈ Sjk and s3 ∈ Sik with dis-
tinct i, j, k. Then σs1σs2 = σs3(

∑
t∈Oθ(Sk) atσt) for some non-negative integers at

with
∑
t∈Oθ(Sk) at = p,

∑
t∈Oθ(Sk) a

2
t = 2p − 1 and for each u ∈ Oθ(Sk) \ {1Ωk},∑

t∈Oθ(Sk) atatu = p− 1.
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Proof. Since s1s2 ⊆ Sij = s3Oθ(Sk), σs1σs2 =
∑
t∈Oθ(Sk) atσs3t for some non-

negative integers at. Since σs3t = σs3σt and

p2 = ns1ns2 =
∑

t∈Oθ(Sk)

atns3t = p
∑

tOθ(Sj)

at,

it remains to show the last two equalities on at with t ∈ Oθ(Sj). Expanding σ∗s2σ
∗
s1σs1σs2

by two ways we obtain from Lemma 3.2 that

(2p2 − p)σ1Ωj
+ (p2 − p)

∑
t∈Oθ(Sj)\{1Ωj

}

σt + (p2 − 2p)
∑

u∈Sj\Oθ(Sj)

σu

=
∑

t∈Oθ(Sk)

atσ
∗
t σ
∗
s3σs3

∑
t∈Oθ(Sk)

atσt.

Therefore, we conclude from Lemma 3.2 that

p
∑

t∈Oθ(Sk)

a2
t = 2p2 − p and p

∑
t∈Oθ(Sk)

atatu = p2 − p

for each u ∈ Oθ(Sk) with u 6= 1Ωk .

For the remainder of this section we assume that

S = N.

For i = 1, 2, . . . ,m we take αi ∈ Ωi and we define ti ∈ Si such that t1 ∈ Oθ(S1)\{1Ω1},
and for i = 2, 3, . . . ,m, ti is a unique element in Oθ(Si) with r(α1t1, αiti) = r(α1, αi).
Then Cp acts semi-regularly on Ω such that

Ω× Cp → Ω, (βi, t
j) 7→ βit

j
i ,

where Cp = 〈t〉 and βi is an arbitrary element in Ωi.

Lemma 3.7. The above action acts semi-regularly on Ω as an automorphism of (Ω, S).

Proof. Since Cp acts regularly on each of geometric coset of Oθ(Si) for i = 1, 2, . . . ,m,
the action is semi-regular on Ω. By the definition of {ti}, it is straightforward to show
that r(α1, αi) is fixed by the action on Ω × Ω, and hence each element of

⋃m
j=2 S1j ∪

Sj1 is also fixed since S1j = Oθ(S1)r(α1, αj). Let s ∈ Sijwith 2 ≤ i, j. Notice that
r(αi, α1)r(α1, αj) is a proper subset of Sij by Lemma 3.6. This implies that s is obtained
as the intersection of some of tki r(αi, α1)r(α1, αj) with 0 ≤ k ≤ p − 1, and hence s is
fixed.

For each i = 1, 2, . . . ,m we take {αik | k = 1, 2, . . . ,m} to be a complete set of
representatives with respect to the equivalence relation

⋃
t∈Oθ(Si)

t on Ωi.

Lemma 3.8. For each s ∈ Sij with i 6= j and all k, l = 1, 2, . . . , p there exists a unique
h(s)kl ∈ Zp such that r(αik, αjlth(s)kl) = s. Moreover, if s1 ∈ Sij and ta ∈ Oθ(Sk) with
s1 = sta, then h(s1)kl = h(s)kl + a for all k, l = 1, 2, . . . ,m.
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Proof. Since Oθ(Sj) acts regularly on Sij by its right multiplication, the first statement
holds. The second statement is obtained by a direct computation.

Lemma 3.9. For each s ∈ Sij with i 6= j and all k, l = 1, 2, . . . , p we have

s ∩ (αikOθ(Si)× αjlOθ(Sj)) = {(αiktai , αjltbj) | b− a = h(s)kl}.

Proof. Notice that

r(αikt
a
i , αjlt

b
j) = (tai )∗r(αik, αjl)t

b
j = r(αik, αjl)t

b−a
j .

Since r(αik, αjlth(s)kl) = s by Lemma 3.8, it follows that r(αiktai , αjlt
b
j) = s if and only

if b− a = h(s)kl.

Proposition 3.10. For each s ∈ Sij with i 6= j the matrix (h(s)kl) ∈ Mp×p(Zp) satisfies
that, for all distinct k1, k2 ∈ {1, 2, . . . , p},

{h(s)k1,l − h(s)k2,l | l = 1, 2, . . . , p} = Zp.

In other word the matrix is a generalized Hadamard matrix of degree p over Zp, equiv-
alently, the matrix (ξh(s)kl) ∈ Mp×p(C) is a complex Hadamard matrix of Butson type
(p, p) where ξ is a primitive p-th root of unity.

Proof. Notice that, for all distinct k, l, by Lemma 3.9,

{γ ∈ Ω | r(αiktai , γ) = r(αilt
b
i , γ) = s}

equals
p⋃
r=1

{αjrtcj | c− a = h(s)kr, c− b = h(s)lr}.

Since the upper one is a singleton by Lemma 3.2, there exists a unique r ∈ {1, 2, . . . , p}
such that b − a = h(s)kr − h(s)lr. Since a and b are arbitrarily taken, the first statement
holds.

The second statement holds since
∑p−1
i=0 x

i is the minimal polynomial of ξ over Q.

We shall write the matrix (ξh(s)kl) as H(s). For s ∈ Sij with i 6= j, the restriction of
σs to Ωi × Ωj can be viewed as a (p × p)-matrix whose (k, l)-entry is the matrix Ph(s)kl

i

where Pi is the permutation matrix corresponding to the mapping βi 7→ βiti where we may
assume that Pi = Pj , say P , for all i, j = 1, 2, . . . ,m by Lemma 3.7. Notice that H(s) is
obtained from (Ph(s)kl) by sending Ph(s)kl to ξh(s)kl .

Proposition 3.11. For all s1 ∈ Sij , s2 ∈ Sjk and s3 ∈ Sik with distinct i, j, k we have
H(s1)H(s2) = αH(s3) for some α ∈ C with |α| = √p.

Proof. By Lemma 3.6, H(s1)H(s2) = H(s3)(
∑p−1
i=0 aiξ

i) for some ai ∈ Z where ai =

ctik . Thus, it suffices to show that |(
∑p−1
i=0 aiξ

i)|2 = p. By Lemma 3.6, the left hand side
equals

p−1∑
i=0

p−1∑
j=0

aiajξ
i−j =

p−1∑
i=0

a2
i +

p−1∑
i=1

p−1∑
j=0

ajai+jξ
i = (2p− 1) + (p− 1)(−1) = p.
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Corollary 3.12. Let si := r(α1, αi) for i = 2, 3, . . . ,m and Bi denote the basis consisting
of the rows of H(si), i = 2, 3, . . . ,m, and B1 be the standard basis. Then {B1,B2, . . . ,
Bm} is a mutually unbiased bases for Cp, and m ≤ p+ 1.

Proof. The first statement is an immediate consequence of Proposition 3.10, and the second
statement follows from a well-known fact that the number of mutually unbiased bases for
Cn is at most n+ 1 (see [1]).

Proof of Theorem 1.3. Suppose that R 6= S. Then N = S and the theorem follows from
Corollary 3.12.

Proof of Theorem 1.1. Since nOθ(S) = p2 and Oθ(S) < Oθ(S), it follows from [5, The-
orem 2.1] (or see [8]) that the thin residue extension of (Ω, S) is a coherent configuration
with all fibers isomorphic to Cp o Cp such that each basic relation out of the fibers has
valency p.

We claim that S = N . Otherwise, S = R, which implies that 〈ss∗ | s ∈ S〉 has valency
p. Since Oθ(S) = 〈ss∗ | s ∈ S〉 (see [9]), it contradicts that Oθ(S) has valency p2.

By the claim, S = N . Since the number of fibers of the thin residue extension of (Ω, S)
equals |Ω/Oθ(S)|, the theorem follows from Theorem 1.3.

Proof of Corollary 1.2. Since (Ω, S) is a p-scheme and Oθ(S) ' Cp ×Cp, |Ω| is a power
of p greater than p2. By Theorem 1.1, |Ω| ≤ (p+ 1)p2, and hence, |Ω| = p3.
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