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Abstract. The paper proposes a frequency method to identify the components of an unknown three-phase AC 

motor considered as a magic box operating in a high-frequency range. A mathematical model of the AC motor is 

suitable for prediction and analysis of a common-mode (CM) current and Electromagnetic Interference (EMI) 

problems in a cable-fed motor-driven system. The parameters of the proposed model are defined by the frequency 

method using a CM impedance measurement. The proposed method can be used to predict and solve complex 

electrical systems, study high-frequency problems, and design the EMI component to improve Electromagnetic 

Compatibility (EMC). 

The Agilent 4294A Impedance Analyzer is used to measure the frequency-domain characteristic impedance of 

the AC motor. The measured results basically verify the extracted data, while the discrepancy between the 

measured and simulated results is also analysed.  
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Metoda za modeliranje sofazne impedance motorja 

V prispevku je predstavljena metoda za analizo trifaznega 

izmeničnega motorja. Matematičen model motorja je primeren 

za analizo sofaznih tokov in  elektromagnetne interference na 

električnih povezavah. Parametri predlagane metode so 

definirani s frekvenčno metodo  z meritvijo sofazne 

impedance. Predstavljeno metodo lahko uporabimo za 

reševanje kompleksnih električnih sistemov, visokofrekvenčno 

analizo in načrtovanje komponent za izboljšanje 

elektromagnetne skladnosti. Meritve karakteristične 

impedance izmeničnega motorja smo izvedli z impedančnim 

analizatorjem Agilent 4294A. Analizirali smo tudi razliko med 

izmerjenimi rezultati in rezultati simulacij. 

1 INTRODUCTION  

Any mathematical model can be obtained either by a 

theoretical approach based on physical laws or by an 

experimental approach based on system measurements 

[1].  

When designing of an electrical, control or other 

analogue system, it is usually necessary to work with 

the frequency-dependent transfer functions and 

impedances, and to construct the Bode’s diagrams. 

In this study we proposed an approach to predict the 

transfer function of a three-phase AC motor operating in 

a high-frequency (HF) range. We deal with the problem 

of building a mathematical model of a dynamic system 

based on the motor data in tow configurations, CM and 

DM mode, and set up an experimental modelling 

method. The proposed approach is valid for any 

physical model.  

HF modelling of an induction machine is addressed in 

many papers [2, 3, 4, 5, 6, 7, 8, 9, and 18]. The proposed 

model is widely used in EMC studies. For example, to 

design and determine the importance of conducted and 

radiation emissions in adjustable-speed driven systems 

used in industrial applications, electrical vehicles or 

electrical airplanes, it is necessary to have a sufficiently 

accurate model of the various components constituting 

the entire system. The AC motor is one of them. Using 

the system identification method which is based on the 

frequency response of a linear dynamic model shows 

how the model reacts to sinusoidal inputs. If input u(t) is 

sinusoidal of a certain frequency, then the output y(t) 

will also be a sinusoidal. However the input amplitude 

and phase will be different. This frequency response is 

most often depicted by two plots; one showing the 

amplitude change as a function of the sinusoidal 

frequency and one showing the phase shift as a function 

of the frequency. This is known as the Bode’s plot.  

In this work the system is identified from the frequency 

response of the AC motor. To describe the impedance of 

the AC motor only the magnitude plot is needed, 

whereupon the transfer-function parameters of the 

motor can verified by the second curve, i.e the phase 

plot. The motor is thus considered as a magic box. 

Based on the frequency response, we can find its 

transfer function in the frequency range from 100 Hz to 

30 MHz. 
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2 THEORETICAL APPROACH 

The Bode’s plot is a plot of the magnitude and phase of 

the transfer function or some other complex-valued 

magnitude versus the frequency (s = jw) [3].  

 Two plots – both have the frequency logarithm on the 

x-axis 

- The y-axis magnitude of the transfer function, H(s), 

in logarithmic axes (or decibels). 

- The y-axis phase angle in radium/second using semi-

logarithmic axes.   

The transfer function can be defined as [3]:  

  
 
 sX

sY
sG                                            (1) 

The roots of polynom X(s) are called poles of the 

system and the roots of Y(s) are called zeros of the 

system [3]. 

 Though, the real electrical systems are usually 

complex, there are also some that are simple, i.e : the 

integrator, first-order and, second order systems. 

 In this theoretical approach we present only the 

system transfer functions in a CM impedance model. 

 

Figure 1. Frequency response of the integrator. 

2.1  Integral system:  

The magnitude of the integrator transfer function is: 

  
S

K
ZCM 1

        (2) 

The phase of the integrator transfer function is: 
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Fig.1 shows that in the plot on the log-log graph, the 

magnitude plot is linear and its slope is -1. For all 

frequencies, the phase shift is a constant, -90°. 

2.2  Second-order system 

The differential equation describing the system is of the 

second order : 

   
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The transfer function of the second-order system can be 

evaluated as the frequency by relation [4]:  
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wn is the undamped natural frequency 
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where    is the damping ratio.  

The magnitude of the transfer function is: 
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The phase angle of the second-order system is: 
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Fig. 2 shows the frequency response of the second-order 

system for the magnitude and phase angle of H(s). 

 

Figure 2.  Frequency response of the second-order system. 
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Phase angle plot of integrator (k/p)
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The approximative amplitude plot consists of two 

straight lines; one line lies along slope (0) when  w<<wn 

and one along slope -2 when w>> wn. 
The approximative phase angle of complex poles 

and zeros consist of three straight lines; the first is at 

zero frequency 0w , the second is at – 90° at corner 

frequency wn and the third at -180° close to large 

frequency w . 

 

3 AN IDENTIFICATION METHOD FOR THE AC 

MOTOR CM IMPEDANCE 

The ratio of CM voltage VCM(s) to CM current ICM(s) 

signal, where the input is sinusoidal, is expressed as ZCM 

(jω) of the transfer function of the CM impedance of the 

AC motor given by the following relation [6]: 

 
 
 sI

sV
sZ

CM

CM
CM   (10) 

Construction of the transfer function from the 

Bode’s plot using the extraction measurement data 

follows the below steps: 

First, the model impedance is measured with an 

impedance bridge (HP4294A). The parameter is 

obtained by a CM test. Its configuration is shown in  

Fig. 3. 

 

 

 

 

 

 

 
 

Figure 3. CM test configuration  [13]. 

 

Evolution of the motor CM impedance with the 

magnitude being the function of the frequency is 

represented in Fig. 4. 

 

 
Figure 4.  Measured impedance (magnitude) of the AC motor. 

 

Gain ZCM (jw) of the gain curve as a function of 

frequency w, can be approximated piecewise by straight 

lines with integer slopes. Each of them can be easily 

shown on a logarithmic plot. The entire Bode’s log 

magnitude plot of ZCM is obtained by superpositioning 

the straight lines. 

3.1 Identification of the transfer function  

The system identification method is based on the 

asymptote approach [16] in three steps: 

 Step 1: Tracing the straight lines (asymptotes) and 

slopes.These asymptotes are just straight lines on the 

log vs. the log plot. 

 Step 2: Finding the break-points (pole and zero 

locations) arranged in the order ofan increasing 

frequency. The two straight-line asymptotes capture the 

essential features of the plot meeting at afrequency 

corresponding to thepole or zero location. This is the 

“break-point”. 

 Step 3: Finding the transfer functions corresponding 

to each straight line in order to construct the entire 

transfer function of the AC motor impedance. 

Step 1: The straight lines are illustrated in Fig. 5. 

There are three asymptote lines, with three slopes: 

1- At the frequencies of less than wn1, then LF 

asymptote is -1. 

2- For the frequencies between wn1 and wn2, the MF 

asymptote is +1. 

3- For the frequencies greater than wn2, the HF 

asymptote is -1. 

Step 2: The first observation coming from Fig.4 is 

that the CM impedance has two resonance frequencies, 

wn1 and wn2, in the frequency rangefrom 100 Hz to 30 

MHz.  

wn1 and wn2 are the natural frequencies of zeros and 

poles respectively of the ZCM transfer function.  

The order value of each zero and pole indicates the 

change in the slope. The slope is increased at zeros and 

reduced at poles [17]. 

Step 3: The left side of the graph shows that at LF 

when, w<w1, the slope of ZCM magnitude plot is –1, 

thus corresponding to the integrator.  

Therefore, the LF, asymptote (w<wn1) is defined by 

the first term [3]: 

S

K
Z 1

 (11) 

From w1 to w2, the slope of the ZCM magnitude plot 

is +1; this change is from the second term defined by 

slope +2; the asymptote with slope +2  corresponding to 

the transfer function of the second-order system in the 

numerator can be given by relation : 
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w1 is the first natural frequency of the ZCM zeros. 

1 is the ZCM damping ratio. 

10
2

10
3

10
4

10
5

10
6

10
7

10
0

10
2

10
4

10
6

10
8

Frequency (rad/s)

I
m

p
e
d

a
n

c
e
 (


)

 

 

Common mode impedance (Zcm)measured

AC motor 
Agilent 

4294A 



244 MILOUDI, BENDAOUD, MILOUDI 

For the frequencies greater than wn2, the composite 

asymptote therefore decreases with slope -1. Each pole 

at the second natural frequency decreases the 

asymptotes with slopes -2 (+1 (the last slope)-2 (pole 

slope) = -1 (composite slope)).  

The transfer function with slope -2 is of the second-

order system in the denominator. It can be given by [3, 

4]: 
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wn2 is the second natural frequency of the ZCM poles. 

2 is the ZCM damping ratio. 

Finally the entire Bode’s log magnitude of ZCM 

results from the superposition of all transfer functions at 

different frequencies. It can be written as: 
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The pole of the CM impedance in the origin; two 

complex conjugate zeros and two complex conjugate 

poles. The zeros and poles represent the break-points. 

01 p   (16) 

 2

2223,2 1   jwp n   (17) (18) 

 2

1112,1 1   jwz n   (18) (19) 

3.2 Identification of the transfer-function parameters 

The constant terms “k” are located by passing 

through ZCM at w = 1 even though the composite curve 

will not go through this point. So we can write: 

   
   0

0

log1log

loglog
1

w

Zk




  (19) (20) 

wn1 is the first natural frequency of the ZCM zeros. It 

corresponds to the first break-point, the meeting of the 

LF asymptote (slope -1) and the MF asymptote (slope 

+1) at a frequency corresponding to the wn1 (Fig. 6). 

1 is the ZCM damping ratio: we can find it by 

relation: 

2

111 1  np ww  (20)  (21) 

wp1 is the damped natural frequency corresponding 

to the minimal value of the amplitude around first 

natural frequency wn1. 

wn2 is the second natural frequency of the ZCM poles. 

It corresponds to the second break-point, the meeting 

point of the law and medium frequency asymptote 

(slope +1) and the HF asymptote (slope-1) at a 

frequency corresponding to the wn2. 

 

2 is the ZCM damping ratio found by relation: 

2

222 1  np ww  (21) 

wp2 is the damped natural frequency corresponding 

to the maximal value of the amplitude around the 

second natural frequency wn2. 

Table. 1.  Transfer-function parameters 

Constant terms K 2.62005719e+09  

The first  natural frequency (wn1) 2.87688758e+05 

(wp1) damped natural frequency  2.81876265e+05 

The second natural frequency (wn2) 4.16779364e+05 

(wp2) damped natural frequency  4.04598107e+05 

The first  damping ratio 1  0.2   

The second damping ratio 2   0.24 

 

The results confirm the Bode’s plot of the magnitude of 

CM impedances Z1, Z2, Z3, and ZCM given by relations 

12, 13, 14 and 16, respectively as shown in Fig. 5. 

 
Figure 5. Simulated CM impedances. 

 

Fig. 6 shows a comparison between the experimental 

and simulation results for the CM impedance. 

 
Figure 6. Comparison between the measured and simulated 

CM impedance. 
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As well seen, there is a good agreement between the 

experimental and simulation results obtained by the 

proposed approach. 

The AC motor transfer function can be verified by 

using the second-phase angle plot.  The ZCM phase can 

be easily evaluated by: 
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Fig. 7 shows the measurement result and the model data 

of the CM impedance phase of the AC motor. 

 
Figure 7. Comparison between the measured and simulated 

CM impedance (phase). 

 

The best results are found on the frequency response of 

impedance ZCM in the magnitude plot (Fig. 6). On the 

contrary, the frequency response of phase impedance 

ZCM (Fig. 7) shows some discrepancy in the HF range. 

 

4 ANALYSIS OF THE CM MOTOR IMPEDANCE  

In the EMC studies, particularly for the inverter cable 

motor, the CM noise-current flows into the ground and 

through a stray capacitance inside the motor to the 

motor frame and back to the source via the power mains 

(Fig. 8).  

 
Figure 8. CM and DM current paths of the inverter cable 

motor. 

 

So the path of the CM current is dominted by the 

parasite capacity existing between the motor windings 

and the ground. 

The CM impedance of the motor can be represented 

by the impedance of this capacity in a HF range [5], as 

confirmed by the experimental and simulation results 

shown in Fig. 9. 

 
Figure 9. Comparison between the measured and simulated 

CM impedance and the integrator (magnitude). 

 

The most of the LF and HF ranges, the magnitude 

decreases with slope -1, and the phase equals -90°. This 

plot corresponds to the Bode’s plot of the integrator and 

also to the HF capacitance model. So the CM 

impedance of AC motor ZCM is dominated by the 

capacity. 

Above first resonant frequency wn1, the impedance 

of the inductor and the impedance magnitude increase 

with slope +1. 

As observed in Fig. 9, the CM impedance decreases 

as the switching frequency decreases. This is the reason 

why the CM currents are a serious problem at high 

switching-frequency drives [9]. 

As shown in Figs. 9 and 10, superimposing the 

experimental and simulation results of the proposed 

mathematical model demonstrates a very good 

accordance between them in terms of both the 

magnitude and phase. 

Term Z1 domintes the CM impedance of the AC 

motor an a LF and HF range. 

 
Fig. 10.  Comparison between the measured and simulated 

CM impedance and the integrator (phase).  
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5 CONCLUSION 

In this paper, a HF model of a three-phase AC motor in 

a CM configuration is presented in the frequency range 

from 10 Hz up to 30 MHz based on the frequency-

response method. The proposed model corresponds to 

the measurement results of both the magnitude and the 

phase.  

The method can be used to predict and solve 

complex electrical systems in a HF range for the 

electromagnetic compatibility studies. 

The CM impedance increases and the capacity 

between the motor and the ground dominates. This 

makes this parasitic capacity to be a preferred path for 

the CM currents and becomes a serious problem in high 

switching frequency drives. 

To complete this work, the differential mode of the 

AC motor should be modelled.   
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