ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.) ARS MATHEMATICA CONTEMPORANEA 24 (2024) #P2.09 https://doi.org/10.26493/1855-3974.2751.81f (Also available at http://amc-journal.eu) Finite simple groups on triple systems* Xiaoqin Zhan , Xuan Pang , Suyun Ding † School of Science, East China JiaoTong University, Nanchang, 330013, People’s Republic of China Received 3 December 2021, accepted 14 May 2023, published online 22 November 2023 Abstract Let D be a triple system, and let G be a finite simple group. In this paper we almost determine all possibilities of D admitting G as its flag-transitive automorphism group. Keywords: Triple system, flag-transitivity, finite simple group. Math. Subj. Class. (2020): 05B07, 20B25, 05B25 *The authors would like to express their gratitude to the referee who made very helpful comments and sugges- tions that improved our paper. This work is supported by the National Natural Science Foundation of China (Grant Nos. 12361004 and 11961026) and the Natural Science Foundation of Jiangxi Province (Grant Nos. 20224BAB211005 and 20224BAB201005). †Corresponding author. E-mail addresses: zhanxiaoqinshuai@126.com (Xiaoqin Zhan), p1443202623@163.com (Xuan Pang), dingsy2017@163.com (Suyun Ding) cb This work is licensed under https://creativecommons.org/licenses/by/4.0/ ISSN 1855-3966 (tiskana izd.), ISSN 1855-3974 (elektronska izd.) ARS MATHEMATICA CONTEMPORANEA 24 (2024) #P2.09 https://doi.org/10.26493/1855-3974.2751.81f (Dostopno tudi na http://amc-journal.eu) Končne enostavne grupe sistemov trojk* Xiaoqin Zhan , Xuan Pang , Suyun Ding † School of Science, East China JiaoTong University, Nanchang, 330013, People’s Republic of China Prejeto 3. decembra 2021, sprejeto 14. maja 2023, objavljeno na spletu 22. novembra 2023 Povzetek Naj bo D sistem trojk, in naj bo G končna enostavna grupa. V tem članku določimo skoraj vse možne sisteme trojk D, ki dopuščajo G kot svojo praporno tranzitivno grupo avtomorfizmov. Ključne besede: Sistem trojk, praporna tranzitivnost, končna enostavna grupa. Math. Subj. Class. (2020): 05B07, 20B25, 05B25 *Avtorji bi radi izrazili svojo hvaležnost recenzentu, ki je podal zelo koristne komentarje in predloge, ki so izboljšali naš članek. To delo je podprto s strani National Natural Science Foundation of China (štipendiji št. 12361004 in 11961026) in s strani Natural Science Foundation of Jiangxi Province (štipendiji št. 20224BAB211005 in 20224BAB201005). †Kontaktni avtor. E-poštni naslovi: zhanxiaoqinshuai@126.com (Xiaoqin Zhan), p1443202623@163.com (Xuan Pang), dingsy2017@163.com (Suyun Ding) cb To delo je objavljeno pod licenco https://creativecommons.org/licenses/by/4.0/