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Abstract

Let D be a triple system, and let G be a finite simple group. In this paper we almost
determine all possibilities of D admitting G as its flag-transitive automorphism group.
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1 Introduction
A 2-(v, k, λ) design is a pair D = (P,B) where P is a set of v points and B is a collection
of b k-subsets (blocks) of P with the property that every 2-subset of P occurs in λ blocks
of B. If no blocks are identical, then D is called simple.

An automorphism of a design D is a permutation of P which leaves B invariant. The
full automorphism group of D, denoted by Aut(D), is the group consisting of all automor-
phisms of D. A flag of D is a point-block pair (α,B) such that α ∈ B. For G ≤ Aut(D),
G or D is called flag-transitive if G acts transitively on the set of flags, and point-primitive
if G acts primitively on P . A set of blocks of D is called a set of base blocks with respect
to an automorphism group G of D if it contains exactly one block from each G-orbit on the
block set. In particular, if G is a flag-transitive automorphism group of D, then any block
B is a base block of D.
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In this paper, we focus on simple 2-(v, 3, λ) designs also known as simple triple sys-
tems, which can be denoted by TS(v, λ). One possibility is to take all possible 3-subsets
of P however such designs are called complete and will be ignored. A triple system is a
Steiner triple system, or STS(v), when λ = 1.

Let r be the number of the blocks through a given point. For a TS(v, λ), it is well
known that a necessary and sufficient condition for the existence of a TS(v, λ) is v ̸= 2
and λ ≡ 0 (mod (v − 2, 6)), and

3b = vr; (1.1)

r =
λ(v − 1)

2
; (1.2)

b =
λv(v − 1)

6
; (1.3)

b ≥ v. (1.4)

A 2-(v, k, 1) design is also called a finite linear space. A classic result is that of Higman
and McLaughlin [8] who proved that for a finite linear space, flag-transitivity implies point-
primitivity. Then Buekenhout, Delandtsheer and Doyen in [1] proved that if G acts flag-
transitively on a linear space, then G is of affine or almost simple type. In 1990, the
six-person team [2] classified all flag-transitive linear spaces apart from those with an one-
dimensional affine automorphism group.

For 2-(v, k, 1) designs with small values of k, one of the first classifications was for
Steiner triple systems in [4], which considered what happens when the action was block-
transitive but not 2-transitive on points. It is described in [11] what happens when the
action on points is 2-transitive. This result depends on the classification of all finite simple
groups and is subsumed into the general results proved by Kantor in [10].

Let G be a flag-transitive automorphism group of a TS(v, λ). It is shown in [6, 2.3.7(c),
(e)] that G is point-primitive. Moreover, we can easily prove that G is 2-homogeneous (see
Lemma 2.2 below). This result makes it possible to classify all flag-transitive triple systems
using the classification of the finite 2-transitive permutation groups. Our main purpose is
to give a classification of all triple systems admitting a simple flag-transitive automorphism
group.

We now state the main result of this paper:

Theorem 1.1. Let D be a triple system, and let G be a finite simple group. If G acts
flag-transitively on D, then one of the following LINES of Table 1 holds.

Remark 1.2.

• All but the triple systems listed in LINES 20 and 21 exist.

• If G = PSU(3, q) with q = 5, then there are only two flag-transitive triple systems
corresponding to LINES 19 and 20.

• The existence of triple systems with 3 ∤ q and q ̸= 5 corresponding to LINES 20 and
21 is in doubt.
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Table 1: G and corresponding triple systems.
LINE G D Notes
1 A7 TS(15, 1)
2 TS(15, 12)

3 PSL(2, 11) TS(11, 3)
4 TS(11, 6)

5 HS TS(176, 12)
6 TS(176, 72)
7 TS(176, 90)

8 Co3 TS(276, 112)
9 TS(276, 162)

10 PSp(2d, 2) TS(2d−1(2d + 1), 22d−2) d ≥ 3

11 TS(2d−1(2d + 1), 2(2d−1 − 1)(2d−2 + 1))

12 PSp(2d, 2) TS(2d−1(2d − 1), 22d−2) d ≥ 3

13 TS(2d−1(2d − 1), 2(2d−1 + 1)(2d−2 − 1))

14 PSL(d, q) TS( q
d−1
q−1

, q − 1) d ≥ 3

15 TS( q
d−1
q−1

, qd−1
q−1

− q − 1)

16 PSL(2, q) TS(q + 1, q−1
2

) q ≡ 1(mod 4)

17 Ree(q) TS(q3 + 1, 2(q − 1)) q = 32e+1 > 3
18 TS(q3 + 1, q − 1)

19 PSU(3, q) TS(q3 + 1, q − 1) q ≥ 3

20 TS(q3 + 1, q2−1
(3,q+1)

)

21 TS(q3 + 1, 2(q2−1)
(3,q+1)

)

2 Useful lemmas
The notation and terminology used is standard and can be found in [5, 6] for design theory
and in [7, 9] for group theory. In particular, if G is a permutation group on a set Ω, and
{α, β} ⊆ ∆ ⊆ Ω, then Gα denotes the stabilizer of a point α in G, and Gαβ denotes the
pointwise stabilizer of two points α and β in G, and G∆ denotes the setwise stabilizer of
∆ in G.

The following result about flag-transitive 2-designs is well-known.

Lemma 2.1. Let D = (P,B) be a 2-(v, k, λ) design, and let G be an automorphism group
of D. For any α ∈ P and B ∈ B, G is flag-transitive if and only if G is point-transitive
and Gα is transitive on the pencil P (α) (the set of blocks through α), if and only if G is
block-transitive and GB is transitive on the points of B.

Lemma 2.2. Let D = (P,B) be a triple system, and let G be a flag-transitive automor-
phism group of D. If G is a simple group, then G acts 2-transitively on P .

Proof. Let {α, β} and {γ, δ} be arbitrary two unordered pairs of P . By the definition of a
triple system, there are two points ε and θ such that B1 = {α, β, ε} and B2 = {γ, δ, θ} are
two blocks of D. The flag-transitivity of G implies that there is a g ∈ G such that

(ε,B1)
g = (εg, Bg

1 ) = (θ,B2),

and so {α, β}g = {γ, δ}. Thus G is 2-homogeneous. If G is a simple group, then G acts
2-transitively on P by [7, Theorem 9.4B].
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Lemma 2.3. Let D = (P,B) be a triple system, and let G ≤ Aut(D) be a 2-transitive
group on P . Then the following conditions are equivalent:

(i) G acts flag-transitively on D.

(ii) If B = {α, β, γ} ∈ B, then {{α, β, γi} | γi ∈ γG{α,β}} is the set of all blocks
through points α and β.

Proof. (i) ⇒ (ii): Let B(α, β) = {B1, B2, . . . , Bλ} be the set of blocks through points α
and β, where Bi = {α, β, γi}, γi ∈ P \ {α, β}. Clearly, B(α, β)G{α,β} = B(α, β). If G
acts flag-transitively on D, then for any two flags (γi, Bi) and (γj , Bj), there is a g ∈ G
such that (γi, Bi)

g = (γj , Bj), so γg
i = γj and g ∈ G{α,β}. Thus G{α,β} acts transitively

on B(α, β) and hence {γ1, . . . , γλ} = γ
G{α,β}
i .

(ii) ⇒ (i): Let (γ,B) and (ϵ, C) be two flags of D with B = {α, β, γ}, C = {δ, η, ϵ}.
By the 2-transitivity of G, there exists g1 ∈ G such that {α, β}g1 = {δ, η}, thus Bg1 =
{δ, η, γg1} is a block containing δ and η. Since {{δ, η, ϵi} | ϵi ∈ ϵG{δ,η}} is the set
of all blocks through δ and η, there exists g2 ∈ G{δ,η} such that γg1g2 = ϵ, and then
(γ,B)g1g2 = (ϵ, C). Therefore, G acts flag-transitively on D.

Corollary 2.4. Let G be a 2-transitive group on a point set P with |P| = v, and let
λ1, λ2, . . . , λk be all sizes of orbits of Gαβ on P \ {α, β}. If λi ̸= λj for i ̸= j, then there
exist k different flag-transitive TS(v, λi).

Proof. Without loss of generality, let ∆ = γGαβ with |∆| = λ1, where γ ∈ P \ {α, β}.
Since Gαβ ⊴ G{α,β}, the group Gαβ acts 1

2 -transitively on γG{α,β} , that is, Gαβ-orbits
on γG{α,β} have the same length. The uniqueness of the Gαβ-orbit with size λ1 implies
that γGαβ = γG{α,β} . Thus G{α,β} has a unique orbit with size λ1. Let B = {α, β, γ}
and B = BG. We shall prove below that D = (P,B) is a TS(v, λ1) admitting G as its
flag-transitive automorphism group.

Since G is 2-transitive, for any pair {δ, η}, there exists g ∈ G such that {α, β}g =
{δ, η}. So G{δ,η} has a unique orbit ∆g = (γg)G{δ,η} with |∆g| = |∆| = λ1. Let
B(δ, η) be the set of elements of B containing δ, η with |B(δ, η)| = λ. It is easy to see that
Λ = {{δ, η, ϵ} | ϵ ∈ ∆g} ⊆ B, so we have λ ≥ λ1. On the other hand, for C = {δ, η, θ} ∈
B(δ, η), there exists h ∈ G such that C = Bh. As |γGαβ | = |αGγβ | = |βGαγ | = λ1,
we may assume that θ = γh. Then |θG{δ,η} | = |γhG{δ,η} | = |γG{α,β}h| = |∆h| = λ1,
it implies λ1 ≥ λ. Thus, λ = λ1 and B(δ, η) = Λ. Hence D is a TS(v, λ1), and G is a
flag-transitive automorphism group of D by Lemma 2.3(ii).

Lemma 2.5. Let G be a 2-transitive group on a point set P with |P| = v, and let ∆ =
{α, β, γ} be a 3-subset of P . If Gαβ is a cyclic group of order λ and |γGαβ | = λ, then

(i) D = (P,∆G) is a flag-transitive TS(v, λ) if and only if G∆
∆
∼= S3, or

(ii) D = (P,∆G) is a flag-transitive TS(v, 2λ) if and only if G∆
∆
∼= Z3.

Proof. Here we only prove case (i), and case (ii) can be proved by same procedure. Since
Gαβ is a cyclic group for any points α and β, we have that G∆ = G∆

∆. Let D = (P,∆G).
If D is a flag-transitive TS(v, λ), then using Lemma 2.1 and Equation (1.3), we have that

b =
λv(v − 1)

6
= |∆G| = [G : G∆] = [G : Gαβ ][Gαβ : G∆].
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By 2-transitivity of G and |Gαβ | = λ, we obtain |G∆| = 6. The flag-transitivity of G
implies that G∆ acts transitively on the points of ∆ by Lemma 2.1. Thus G∆

∼= S3.
If G∆

∼= S3, then G{α,β}γ ∼= Z2 and |∆G| = [G : Gαβ ][Gαβ : G∆] =
λv(v−1)

6 . Thus,
D is a TS(v, λ) as G acts 2-transitively on P . Clearly,

|γG{α,β} | = [G{α,β} : G{α,β}γ ] = λ,

where G{α,β}γ = G{α,β} ∩Gγ . Therefore, G acts flag-transitively on D by Corollary 2.4.

Lemma 2.6. Let G = Ree(q) act 2-transitively on Ω, where |Ω| = q3+1 and q = 32e+1 >
3. Then there exist subsets ∆, Σ of size 3 such that

G∆
∆ = Z3, GΣ

Σ = S3.

Proof. Let Q be a Sylow 3-subgroup of G. Then |Q| = q3, and there exists α ∈ Ω such that
Q is regular on Ω\{α}. Thus each subgroup of Q is semiregular on Ω\{α}. Let x, y ∈ Q
such |x| = |y| = 3, x /∈ Z(Q) and y ∈ Z(Q), where the centre Z(Q) is elementary abelian
of order q.

Let ∆ be an orbit of ⟨x⟩. Then |∆| = 3 and G∆
∆ = Z3 or S3. Further, since x is not

conjugate to x−1 in G (reference [12]), we have G∆
∆
∼= ⟨x⟩ ∼= Z3.

Consider y acting on Ω \ {α}. Since y is in the centre Z(Q), there is an involution
z ∈ Gα such that yz = y−1, and the subgroup H = ⟨y, z⟩ ∼= S3. Since ⟨y⟩ is semiregular
on Ω \ {α}, the set Ω \ {α} is divided into 1

3q
3 orbits of ⟨y⟩:

∆1,∆2, . . . ,∆m,

where m = 1
3q

3 is odd. Since each H-orbit Σ contains a ⟨y⟩-orbit, the cardinality |Σ| = 3
or 6. As the number 1

3q
3 of ⟨y⟩-orbits is odd, it follows that there is at least one H-orbit Σ

on Ω \ {α} has length 3. Therefore, GΣ
Σ = HΣ

Σ = S3 with |Σ| = 3.

3 Proof of Theorem 1.1
Let D = (P,B) be a TS(v, λ), and let G be a simple group acting flag-transitively on D.
Then G acts 2-transitively on P by Lemma 2.2. Since we neglect the case D is complete,
we may assume that G is not 3-homogeneous group on P . Thus, all such groups are known
and we can find a classification in [3] and we have that G must be one of the following
Table 2.

We will prove Theorem 1.1 by analyzing the 11 cases in Table 2 one by one.

Proof of Theorem 1.1. Let α and β be two points of P . For Cases 1 – 7, we have the
following facts by the proof of [10, Theorem 1]:

If G = A7 and v = 15, then Gαβ has orbit-lengths 1 and 12 on P \ {α, β}.
If G = PSL(2, 11) and v = 11, then Gαβ has orbit-lengths 3 and 6 on P \ {α, β}.
If G = HS and v = 176, then Gαβ has orbit-lengths 12, 72 and 90 on P \ {α, β}.
If G = Co3 and v = 276, then Gαβ has orbit-lengths 112 and 162 on P \ {α, β}.
If G = PSp(2d, 2) and v = 22d−1 + 2d−1, then Gαβ has orbit-lengths 2(2d−1 −

1)(2d−2 + 1) and 22d−2 on P \ {α, β}.
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Table 2: 2-transitive, not 3-homogeneous simple groups.

Case Group Degree Notes

1 A7 15
2 PSL(2, 11) 11
3 HS 176
4 Co3 276
5 PSp(2d, 2) 22d−1 + 2d−1 d ≥ 3
6 PSp(2d, 2) 22d−1 − 2d−1 d ≥ 3
7 PSL(d, q) (qd − 1)/(q − 1) d ≥ 3
8 PSL(2, q) q + 1 q ≡ 1 (mod 4)
9 Suz(q) q2 + 1 q = 22e+1 > 2

10 Ree(q) q3 + 1 q = 32e+1 > 3
11 PSU(3, q) q3 + 1 q ≥ 3

If G = PSp(2d, 2) and v = 22d−1 − 2d−1, then Gαβ has orbit-lengths 2(2d−1 +
1)(2d−2 − 1) and 22d−2 on P \ {α, β}.

If G = PSL(d, q) with d ≥ 3 and v = qd−1
q−1 , Gαβ has orbit-lengths q − 1 and

qd−1
q−1 − q − 1 on P \ {α, β}.

It follows from Corollary 2.4 that D is one of triple systems corresponding LINES 1-15
in Table 1.

Case 8: G = PSL(2, q) with q ≡ 1 (mod 4) and v = q + 1. In this case, there are
exactly two G-orbits on 3-subsets of q + 1 points with size q(q2−1)

12 . Also, Gαβ
∼= Z q−1

2

has two orbits with length q−1
2 on P \ {α, β}, denoted by Γ1 and Γ2. Suppose that Γ1 =

{α1, α2, . . . , α q−1
2
}, Γ2 = {β1, β2, . . . , β q−1

2
}. For i ∈ {1, 2}, let Di = (P,∆G

i ) where
∆i = {α, β, γi} and γi ∈ Γi. It is easy to calculate that |G∆i

| = 6, and hence G∆i
∼= S3.

By Lemma 2.5(i), both D1 and D2 are TS(q + 1, q−1
2 ). Let

g = (α, β)(α1, β1) · · · (α q−1
2
, β q−1

2
).

Clearly, g is an isomorphism from D1 to D2, that is D1
∼= D2. Thus, D is a TS(q+1, q−1

2 ).

Case 9: G = Sz(q) and v = q2 + 1. Since G acts flag-transitively on D, then 3 | |G| by
Lemma 2.1. But this contracts the fact that 3 ∤ |G| (see [9, Theorem 3.6]). Therefore, there
is no triple system admitting Sz(q) as its flag-transitive automorphism group.

Case 10: G = Ree(q) and v = q3 +1 with q = 32e+1 > 3. From Lemmas 2.5 and 2.6, we
have that D is one of triple systems corresponding LINES 17 and 18 in Table 1.

Case 11: G = PSU(3, q) and v = q3 + 1. Since Gαβ
∼= Z q2−1

(3,q+1)

has a unique orbit O

with size q − 1 and q(3, q + 1) orbits with size q2−1
(3,q+1) . Similar to proof of Lemma 2.4,

we can prove that there exists a unique TS(q3 +1, q− 1) admitting G as its flag-transitive
automorphism group.

If q = 3e ≥ 3, there exist subsets ∆, Σ of size 3 such that G∆
∆ = Z3, GΣ

Σ = S3 by the
same proof as Lemma 2.6. In this case, D is one of triple systems corresponding LINES 20
and 21 in Table 1 from Lemma 2.5.
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If q = 5 then D can only be a flag-transitive TS(126, 8) in addition to TS(126, 4) by a
simple calculation. This means that there is no flag-transitive TS(126, 16) in this case.

Unfortunately, we don’t know whether Lemma 2.6 holds when 3 ∤ q. Thus the existence
of TS(q3 + 1, q2−1

(3,q+1) ) (or TS(q3 + 1, 2(q2−1)
(3,q+1) )) with 3 ∤ q and q ̸= 5 is in doubt.

This completes the proof of Theorem 1.1.

Conjecture 3.1. Let D be a triple system TS(q3 + 1, λ), and let G = PSU(3, q) act
flag-transitively on D with 3 ∤ q and q ̸= 5. If λ ̸= q − 1 then one of following holds:

(i) If q is even, then λ = 2(q2−1)
(3,q+1) .

(ii) If q is odd, then λ = q2−1
(3,q+1) or 2(q2−1)

(3,q+1) .

In fact, using MAGMA, we have already proved that the conjecture holds when q ≤ 100.
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