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0  INTRODUCTION

Inverse modelling is the reciprocal process of the 
forward modelling problem in which a physical theory 
is used to predict the behaviour of a real system. Data 
from the indirect observations of unknown model 
parameters can be inferred to adequately represent 
the observed system behaviour. Inverse modelling of 
water distribution system (WDS) models, commonly 
referred to as calibration or parameter estimation, 
has been investigated extensively since the 1980s, 
providing valuable insight for modellers when tackling 
the nonlinear and highly combinational calibration 
process. Throughout this period, different types of 
model parameters have been estimated, e.g. pipe 
friction coefficients, pipe diameters, nodal demands, 
etc. Approaches of WDS model calibration can be 
divided into three categories: iterative trail-and-error 
approaches, explicit models, and implicit models, 
e.g. optimization approaches. The development of 
implicit models has proved to be the most effective 
in the exploration of the non-linear parameter space. 
A wide variety of global optimization methods has 
been studied for parameter estimation problems. 
Those methods can be divided into non-evolutionary 
and evolutionary methods. Among the evolutionary 
methods, genetic algorithms in particular have 
proved their applicability to large and complex real-
world calibration problems with multimodal search 
(parameter) spaces. For a comprehensive review of 

calibration methods, we refer the reader to Savic et al. 
[1].

The assessment of parameter and predictive 
uncertainty is an essential part of the modelling process 
in order to perform model comparison and selection 
[2]. One shortcoming of the summarized optimization 
methods is their ability to only identify near optimal 
parameter values, while they lack the ability to 
estimate the parameter and predictive uncertainty. 
However, formulating the inverse modelling problem 
as a probabilistic Bayesian approach, and solving it 
with a Markov Chain Monte Carlo (MCMC) method 
exhibits the capability of estimating parameter 
values and their associated parameter and predictive 
uncertainties in a single optimization run [3].

Alternatively, in a recent study, the uncertainty 
analysis of pipe roughness coefficients by using grey 
numbers was proposed, which led to uncertainty 
intervals without defining any probability distribution 
[4].

Bayesian inference is a concept of probability 
theory whereby model parameters are represented 
as probabilistic variables having a joint posterior 
probability density function (pdf). The joint posterior 
pdf is derived from combining information on the 
prior distribution of model parameters and data 
likelihood. Bayesian-type approaches have some 
distinct advantages in comparison to existing WDS 
calibration methods: probabilistic definition of prior 
pdf of parameters, retrieving joint and marginal 
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posterior pdf, and no requirement of derivative 
calculation [3].

Recently, developments have led to significant 
improvements in the efficiency of MCMC simulations 
and extended their feasibility to complex, multi-
modal search problems [5], [6]. The differential 
evolution adaptive metropolis (DREAM) scheme 
is a new MCMC sampler, which runs multiple 
chains simultaneously for global exploration and 
automatically tunes the scale and orientation of the 
proposal distribution during the search process. We 
use a recent variant of DREAM, called DREAM(ZS), 
which uses sampling from past states and a mix of 
parallel direction and snooker updates to generate 
proposals in each chain [5].

The aim of this paper is to demonstrate the 
benefits of including prior information to improve the 
identifiability of estimated parameters. We investigate 
the effect of different sampling strategies of pipe 
roughness coefficients in the inverse modelling of 
WDS hydraulic models. The paper is organized as 
follows: following this introduction, we provide the 
governing equations that constitute the WDS forward 
modelling approach. Afterwards, a formulation of the 
Bayesian inference approach is given. The presented 
approach is applied in Sections 3 (artificial case study) 
and 4 (real-world case study) to estimate the parameter 
and predictive uncertainty of WDS model parameters. 
The results of each case study are discussed in their 
corresponding sections. Section 5 summarizes our 
findings and relevant conclusions are drawn.

1  WATER DISTRIBUTION SYSTEM MODELLING

The main purpose of WDS is to supply its users 
with the required quantities of water under adequate 
pressure for various loading conditions. Common 
constituents of WDS are water sources (i.e. reservoirs, 
pumping stations), distribution storage (water tanks), 
and distribution pipe networks. To appropriately 
perform operational tasks, as well as development 
and rehabilitations measures, the utility operator 
is assisted by WDS models. Hydraulic simulations 
of WDS models provide insight into the flow and 
pressure conditions of even the most complex WDS.

The interconnection of the WDS components 
is governed by the conservation of energy and the 
conservation of mass. The conservation of energy 
means that the difference in energy between nodes 
is equal to the pipe friction and minor losses and the 
energy added to the flow in components between the 
observed nodes:

 h h EL i P j, , ,∑ ∑+ = ∆  (1)

where hL,i is the energy loss in pipe network 
component i, hP,j the added energy by pump j, and ΔE 
the difference in energy between observed nodes [7]. 
A commonly used fictional energy loss model is the 
Darcy-Weisbach equation:

 h L
d
v
g dL frict, , Re, ,= = 
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where L is pipe length, d pipe diameter, v fluid 
flow velocity, g gravitational constant, λ the Darcy-
Weisbach friction factor dependent on the Reynolds 
number (Re), and relative pipe roughness (ε/d), ε 
equivalent roughness. The minor (i.e. local) energy 
losses of valves and fittings are typically expressed as:

 h v
gL local, ,= ζ
2

2
 (3)

where ζ is an empirical coefficient. The pump energy 
gain is given by:

 h h r QP
n

= − − ( )( )ω ω2
0 / ,  (4)

where h0 is pump shutoff head, ω variable pump speed, 
r and n pump curve coefficients. The conservation of 
mass of each junction node is:

 Q Q qin out ext∑ ∑− = ,  (5)

where Qin and Qout are pipe flow into and out of a 
junction node, and qext is the external demand at 
junction node [7]. When steady-state simulations 
are extended to extended-period simulations, 
which mimic a quasi-dynamic WDS behaviour, the 
conservation of mass Eq. (5) is extended to account 
for storage in tanks:

 Q Q dV
dt

qin out
T

ext∑ ∑− − = ,  (6)

where dV is a change in storage volume, and dt 
the time period between steady-state simulations. 
Changing tank water levels are updated by:

 dH dV
AT
T

T

= ,  (7)

where dHT is a change in tank level and AT tank 
cross-section. The set of mass continuity and energy 
equations for a WDS model are most efficiently 
solved by the gradient method, and its implementation 
can be found in the widely known EPANET2 network 
solver [8].
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2  INVERSE MODELLING

The inverse modelling problem is usually based on a 
nonlinear regression model [3]. First, let us consider a 
model, f, that simulates a vector of model predictions. 
In a general form, the model can be written as:

 Y f X s= ( | ) ,θ µ  (8)

where Y is a vector of model predictions, X a vector 
of known model inputs, θ a vector of unknown model 
parameters, μs a bias factor to account for model input 
error which is defined as:

 µ µs hY= ( )exp ,  (9)

where μh is a bias parameter to be inferred from 
the observations [2]. In order to provide a measure 
of model adequacy, it is common to compare the 
model f simulated response Y with measurements 
of the observed system behaviour Y͂. The nonlinear 
regression model describes the random component of 
residuals as the difference between the deterministic 
components of model predictions of a WDS model, Y, 
and observations, Y͂:

 e Y X Yθ θ( ) = −( | ) ,  (10)

where e(θ) is a vector of residuals {e1, …, eN}, N 
the number of observations Y͂. Residuals, e(θ), are 
defined as a statistical model describing a priori 
expected behaviour. Frequently, residuals are assumed 
to be independent and identically distributed (i.i.d.) 
according to a normal distribution with zero mean 
and a constant variance, i.e. homoscedasticity, and 
are not showing any autocorrelation. Occasionally, 
these assumptions are violated and an alternative 
description of the residual is needed. In this study, we 
adopt the generalized likelihood function of Schoups 
and Vrugt [2] that can account for residual errors that 
are correlated, heteroscedastic, and non-Gaussian. 
First, we describe the statistical model of residuals, 
while the generalized likelihood function is provided 
in Section 2.1.

To account for correlation and non-normality 
residuals, e(θ) are described by:

 Φ p s e s sB e a( ) ( ) =θ σ , ,  (11)

where Φp(B) is an autoregressive polynomial 
with parameters ϕp, B a backshift operator, σe,s a 
standard deviation of residuals, as i.i.d. random error 
described by a skew exponential power distribution 
as ~ SEP(0,1,ξ,β) with zero mean, unit variance, and 

with the parameters ξ and β accounting for skewness 
and kurtosis. The heteroscedasticity of residuals is 
accounted for by assuming that the standard deviation 
σe,s linearly increases with model predictions:

 σ σ σe s sY, ,= +0 1  (12)

where σ0 and σ1 are parameters to be inferred from the 
observations. Details of this approach can be found in 
Schoups and Vrugt [2].

2.1  Likelihood Function

If the inverse problem is stated as a probabilistic 
framework the criterion (i.e. measure) to estimate 
the residuals of a model, the response variables vs. 
observations is called the likelihood. The likelihood 
L(θ|Ŷ) quantifies the “probability” that observed 
data were simulated by a particular set of parameters 
[9]. A general likelihood function presented in 
Schoups and Vrugt [2] is adopted to account for 
conditions of correlation, non-constant variance, i.e. 
heteroscedasticity, and non-normality of residuals. 
Their formulation of a log likelihood ℓ(θ|Ŷ) functions 
is:
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and residual errors aξ,s are given as:

 a as
sign a

s
s

ξ
µ σ

ξ ξξ µ σξ ξ

, ,= +( )− +( )  (14)

where μξ, σξ, cβ and ωβ are variables defined as 
functions of ξ and β, which are provided in Appendix 
A of Schoups and Vrugt [2].

2.2  Parameter Uncertainty

By considering model parameters as the only source 
of uncertainty, the posterior parameter pdf p(θ|Ŷ) can 
be estimated from the Bayes theorem:

 p Y p p Y
p Y

( | ) ( ) ( | )
( )

,θ
θ θ







=  (15)

where p(θ) is a prior parameter pdf, p(Ŷ) a 
normalization constant or “model evidence”, p(Ŷ|θ) ≡ 
L(θ|Ŷ) likelihood function. Since only parameters are 
of interest, we can ignore the normalization constant 
p(Ŷ) and infer parameter samples from the posterior 
parameter pdf p(θ|Ŷ) that is proportional to the prior 
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parameter pdf p(θ) multiplied by the likelihood 
function L(θ|Ŷ):

 p Y p L Y( | ) ( ) ( | ).θ θ θ ∝  (16)

Parameter uncertainty after observing data is 
directly derived from the posterior parameter pdf 
p(θ|Ŷ) [9]. The term p(θ) denotes prior knowledge 
of the parameter vector θ before inferring it to 
the observational data Ŷ. In the present case, pipe 
roughness coefficients are under investigation. Since 
prior information on the parameter pdf is limited and 
vague, we will consider three cases to sample the 
parameter sets θ from the prior parameter space.

Initial parameter sampling will be from a 
continuous uniform pdf (also known as rectangular 
distribution) of the parameter space. The continuous 
uniform distribution p(θ)~U(μθ,σθ) is a bounded 
domain distribution and samples values between 
given lower μθ and upper σθ bounds, respectively. 
The second type of prior pdf is the normal (Gaussian) 
distribution with a given mean value and standard 
deviation. The prior p(θ)~U(μθ,σθ) is given by the 
mean parameter value μθ and its standard deviation σθ.

Finally, we provide the gamma distribution for 
describing the prior information on parameters. The 
gamma distribution p(θ)~Г(α,β) is defined by a shape 
parameter α and a scale parameter β. The gamma 
distribution closely approximates a normal distribution 
with the advantage that the gamma distribution has 
density only for positive real numbers, which is 
compliant to the physical nature of our parameters. All 
samples (parameter values) generated from prior pdf 
are trunked at 0 (only positive values are allowed).

Prior information about parameters can 
significantly improve parameter identifiability and 
provides an effective and robust approach of parameter 
value estimation [6]. Additional information on the 
selected prior pdf parameter values is provided in 
Section 3. The assembled Bayesian framework, i.e. the 
prior pdf of model parameters, the likelihood function 
in Eq. (13), and the joint posterior parameter pdf can 
be calculated using Eq. (16). MCMC simulations are 
used to efficiently derive the joint posterior parameter 
pdf by repeated sampling of parameter sets [2] and 
[3].

2.3  Predictive Uncertainty

In addition to the evaluation of parameter uncertainty, 
the predictive uncertainty is also of significant interest. 
The predictive uncertainty derives from predictive 

percentiles Yα, which correspond to the exceedance 
probability P(Ŷ≤ Ŷα|X), and can be calculated as:
 P Y X e Y X

N
| | ,

...
θ θ αα( ) + ( )  ≤( ) =1

  (17)

where Ŷα is exceedance probability 1–α, α significance 
levels, Nθ number of MCMC sampled parameter sets 
θ. The prediction percentiles Ŷα are obtained from 
the set of J predictions of the sampled parameter set 
θ and its corresponding response Y(X|θ) and residuals 
e(θ). Evaluating the 95% predictive uncertainty bands 
requires the selection of α = 0.025 and α = 0.975, 
i.e. the 97.5% and 2.5% prediction percentiles, 
respectively [10].

2.4  Sensitivity Analysis and Parameter Identifiability

A complex real-world WDS comprises numerous 
uncertain model parameters (e.g. pipe roughness 
coefficients, nodal demands, pipe diameters, etc.) 
that could be investigated. To reduce the number of 
calibrated parameters, a sensitivity analysis of the 
pipe roughness coefficient was performed by applying 
the forward finite difference approximation of the first 
derivative of model response against all investigated 
model parameters [11] and [12]. This approximate 
approach is warranted since it serves only as a 
measure of model parameter identifiability for the 
given measurement layout (the model structure is 
assumed to be given and not addressed here). The low 
sensitivity of the model response to a parameter can 
lead to the reduced identifiability of the investigated 
parameters [12]. Sensitivity and uncertainty are 
closely related, e.g. greater parameter sensitivity 
results in greater uncertainty propagation from that 
parameter.

The sensitivity analysis facilitates the selection 
and differentiation between more and less identifiable 
(i.e. sensitive) model parameters. The classification 
between the cases is applied in conjunction with model 
parameter’s prior information. If prior information on 
model parameters is vague, sensitive parameters could 
still be identifiable by applying a uniform prior pdf, 
and less sensitive ones by applying an informative 
(e.g. normally distributed) prior pdf.

2.5  DREAM(ZS) Algorithm

MCMC simulations are an increasingly popular 
method in a wide range of engineering problems [3], 
[6], [13] and [14]. In inverse modelling, Bayesian 
frameworks proved their ability to effectively estimate 
the posterior pdf of parameters. In our study, we used 
the DREAM(ZS) algorithm [5] provided by J. A. Vrugt. 
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The DREAM MCMC scheme runs multiple Markov 
chains simultaneously for effective global exploration 
of the parameter space and provides efficient evolution 
of the proposal distribution to its target distribution, 
especially for complex, highly non-linear and multi-
modal target distributions [5].

The DREAM(ZS) algorithm differs from its 
predecessor by using sampling from past states and 
a mix of parallel direction and snooker updates to 
generate proposals in each chain. Some of the distinct 
advantages of DREAM(ZS) are that sampling from the 
past reduces the need to use a large number of chains; 
outliers can be redirected to the region of exploration; 
the independence of the current state of chains enables 
integration in multi-processor environments [5] and 
[6]. These improvements lead to the acceleration 
of convergence to the target distribution, especially 
for high-dimensional problems (d > 20, i.e. number 
of parameters). DREAM(ZS) can work with d up to 
50 to 100 with far fewer chains, e.g. NZS = 3, while 
still accurately assessing the target distribution once 
convergence has been achieved [5]. Other DREAM(ZS) 
algorithm parameters are DEpair the number of chain 
pairs to generate candidate points; NCR the crossover 
value, pup the fraction of parallel direction updates, 
k the thinning parameter for appending position of 
chains and corresponding posterior density values to 
sample history, Zm0 the initial size of thinned sample 
history (past states), pjump the probability of selecting a 
jump rate of 1, Neval the number of function evaluation.

3  HYPOTHETICAL WDS CASE STUDY

This study aims to demonstrate the performance of 
the suggested approach of parameter and predictive 
uncertainty analysis by applying the Bayesian 
framework on the “Anytown” WDS model and has 
been used in various calibration studies [3], [11] and 
[15]. In a previous study of the Anytown model, a 
Bayesian-type procedure was applied to investigate 
the uncertainties of HW C-factor pipe roughness 
estimations [3]. The present study aims to investigate 
pipe roughness coefficients for the equivalent 
roughness ε of the Darcy-Weisbach (DW) friction 
model.

The Anytown model consists of 34 pipes and 
their roughness coefficients are grouped into six pipe 
roughness groups (PG) (Nθ = 6). Their true DW ε 
values are provided in Table 1. Observational data sets 
are generated by simulating the model response via the 
Epanet2 hydraulic solver [8]. Pressure measurements 
collected at four junction nodes (i.e. 40, 90, 120 
and 140) and five independent LC represent the 

observational data (N = 20) for the presented case. The 
imperfect observational data was generated through 
altering the perfect observational data by introducing 
random normally distributed noise with zero mean 
and a standard deviation of 0.10 m.

Incorporation of prior knowledge on calibration 
parameters (DW equivalent roughness ε) is performed 
by using three prior information pdfs. A continuous 
uniform prior pdf p(θ)~U(0.001, 15) is first used 
for all PGs. Then, the pdf parameters of the normal 
and gamma distribution are estimated on the basis 
of the approximate equivalent roughness ε values by 
consulting literature sources relating the original HW 
C-factors [3] to the DW ε values used in this study 
[16]. The distribution parameters of the normal and 
gamma priors are provided in Table 1.

Table 1.  Anytown: True D-W ε values for PGs and parameters of 
normal and gamma prior pdf

DW
ε

Normal Gamma
μθ σθ α β

PG1 0.525 0.75 0.5 1.0 1.0
PG2 11.75 11.0 1.0 10.0 1.0
PG3 2.5 2.5 1.0 3.0 1.0
PG4 0.3 0.5 0.5 0.5 1.0
PG5 1.2 1.25 1.0 2.0 1.0
PG6 1.2 1.25 1.0 2.0 1.0

The generalized likelihood (GL) function given 
by Eq. (13) is used with fixed values of residual model 
parameters ϕ1 = 0 and μh = 0, while parameters σ0, 
σ1, β, and ξ, are inferred additionally to the model 
parameters. Uniform prior pdfs are assumed for the 
GL parameters and their upper and lower bounds 
are as follows: σ0 [0, 1], σ1 [0, 1], β [–1, 1] and  
ξ [0.1, 10]. This results in a total number of  
Nθ = 10. The DREAM(ZS) algorithm was set up with 
the following parameters: Nθ = 10, NZS = 3, DEpair = 1, 
NCR = 3, pup = 0.9, Zm0 = 10×Ndim = 60, pjump = 0.2, 
Neval = 50,000.

The DREAM(ZS) algorithm converged in 
approximately 35,000 function calls with a total 
simulation time of 315 s on a 403 MFLOPS PC. 
The inferred residual model parameters θe of the GL 
function were evaluated at σ0 = 0, σ1 = 0.0011, β = 1, 
and ξ = 0.583 for the proposal prior pdf p(θ) scheme. 
Very similar values were also observed at other 
simulations. The GL function parameters indicate 
that residuals are non-normally distributed and 
heteroscedastic. The SEP parameters β and ξ indicate 
that the residual distributions are peaked (β = 1) and 
negatively skewed (ξ = 0.583).
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The model parameters uncertainty simulation 
results can be observed in Fig. 1. The presented box 
plots of PG1 to PG6 provide information on the 
following statistical values: median (middle line), 
lower (first) and upper (third) quartiles (i.e. the 
interquartile range (IQR)) of posterior parameter pdf 
samples, and the 95% confidence interval (vertical 
lines). The actual parameter values are given in Table 
1. The obtained parameter statistics show that even 
“uninformative” prior distributions (e.g. uniform 
pdf) can adequately identify parameters values. This 
can be observed for parameter groups PG1 to PG4. 
However, PG5 and PG6 show greater deviations of 
the median parameter estimates as well as their IQR 
and the 95% confidence intervals. This is caused 
by their small parameter sensitivity for the given 
observational layout. Therefore, the incorporation 
of prior information is narrowing the IQR ranges by 
deriving independent information on pipe roughness 
states.

Identification of parameters with small 
parameter sensitivity can be very difficult, since the 
given observational data do not provide sufficient 
information to provide reasonable parameter estimates 
and narrow posterior pdf [17]. PG5 and PG6 are not 
identifiable by the uniform pdf, while normal and 
gamma prior pdfs slightly deviate in their marginal 
posterior pdf.

Applying a normal or gamma prior distribution 
narrows the parameter uncertainty. The differences 
in shift and broadness of IQR and 95% confidence 
intervals arise from the prior pdf used and the 
observational information available. By examining 
Fig. 1, the shape and position of both normal and 

gamma pdfs are identifiable from the marginal 
posterior parameter statistics. This indicates that the 
posterior parameter pdf, and their estimated values 
of insensitive parameters benefit or suffer from the 
applied prior distribution. This is evident since the 
likelihood function does not force the joint posterior 
parameter pdf towards their “true” values. Here lies 
the true added value of prior information of calibration 
parameter estimates.

Based on the information given in Sections 
2.2 and 2.4 and the findings from the previous 
paragraph, we used a fourth prior information scheme 
by combining the synergies of prior parameter 
information and parameter sensitivity. A continuous 
uniform prior pdf p(θ)~U(0.001, 15) is used for PGs 
with higher parameter sensitivity (PG1 to PG4), while 
PGs with lower sensitivity are estimated by their 
associated gamma prior distribution given in Table 1 
(PG5 and PG6). When compared to the normal and 
gamma prior pdf results, a close resemblance in terms 
of parameter mean, IQR and 95% confidence intervals 
can be observed.

Table 2.  Anytown: Model fit statistics for the four prior pdf schemes

Uniform Normal Gamma Proposal
RMSE 0.068 0.071 0.062 0.065
R2 0.998 0.998 0.998 0.999
Bias –0.035 –0.021 –0.016 –0.011

The predictive uncertainty results in terms of 
root-mean-squared error (RMSE), coefficient of 
determination R2 and bias are presented in Table 2. All 
different prior pdfs generated an excellent model fit. 
Fig. 2 presents the histograms of marginal parameter 

Fig. 1.  Anytown: DW ε roughness statistics for the marginal posterior pdf of parameters PG1 to PG6a
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distributions and a two-dimensional correlation plot of 
posterior parameter samples for the fourth (i.e. mixed 
prior) approach. Correlation values of any pair of 
parameter groups are low, while only PG3 and PG4 
share a higher correlation coefficient of −0.882. These 
features were also observed in [3].

4  REAL-WORLD WDS CASE STUDY

The aim of this section is to demonstrate the Bayesian 
framework of parameter estimation on a real-world 
WDS network and to show the effect of assumed 
prior pdfs on calibrated parameter values. The prior 
information approach presented in this paper is 
applied to exhibit its applicability to real-world WDS 
networks. The selected model parameters are the 
equivalent roughness ε of the DW pipe friction model. 
The analysed system is part of a bigger WDS, but 
hydraulically independent of the rest of the WDS.

The WDS of Šentvid serves a population of 
approximately 34,000 inhabitants, and its estimated 
average demand is 93.87 l/s. From the available WDS 
data, an Epanet2 hydraulic model was assembled 
consisting of three reservoirs, two tanks, three pumps, 

one pressure reducing valve, 812 junction nodes and 
1072 pipes. The complete measurement campaign 
consists of 11 fire flow tests were performed 
throughout the WDS network. Sixteen pressure 
loggers (PL) (Memmy NT, measurement range: 0 to 
20 bar, measurement error: ±0.05% max. measurement 
range)), four ultrasonic flow metering devices (Krohne 
UFM 610P, measurement range: 0.006 to 14.89 m/s, 
measurement error: ±2.0% (v ≥ 1 m/s) and ±0.02 m/s 
(v < 1 m/s)) and SCADA measurements (five flow 
meters and two tank level gauges) were recording 
measurements. In this study, 11 steady-state hydraulic 
simulations were performed to represent the 11 fire 
flow loading conditions (LC) during the measurement 
campaign. A total of 176 observations (16 PL × 11 
LC) are considered in the observational data set. Flow 
and SCADA measurements were used to define the 
boundary conditions of the hydraulic simulations.

The PGs were established based on the criterion 
of pipe diameter, material and age, resulting in a total 
of 93 PGs. A second grouping criterion involved only 
pipe material and age, resulting in 25 PGs. Only the 
last criterion was investigated, since the quantity 
of observational data would not support the higher 

Fig. 3.  Marginal posterior densities of the individual PGs (1 to 8) for the real-world WDS network and GL residual model parameters (9 to 12) 
(× indicates the maximum a posterior (MAP) values)

Fig. 2.  Anytown; histograms of marginal distributions and two-dimensional correlation plots of posterior parameter samples
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dimensionality of the parameter estimation problem 
[18]. For the GL residual model, we used fixed values 
of residual model parameters ϕ1 = 0 and μh = 0, while 
parameters σ0, σ1, β, and ξ, were inferred with uniform 
prior distributions as described in Section 3. This 
resulted in a total of Nθ = 29. The PGs prior pdf were 
estimated by literature given pipe roughness values 
ε for different pipe materials [19]. The parameter 
values of the gamma pdf p(θ)~Г(α,β) were kept 
close to the higher estimates of roughness values 
for new pipes (i.e. α parameter), while their right-
tailed shape provided a possible drift towards higher 
roughness values if some pipe aging was present (i.e. 
β parameter). The DREAM(ZS) algorithm was set 
up with the same parameters as in Section 3, except  
Ndim = Nθ = 29 and Neval = 75,000.

Approximate posterior parameter pdfs and of 
equivalent roughness ε in [mm] maximum a posterior 
(MAP) values are given in Fig. 3. Additionally, 
posterior densities for the GL parameters θe are 
provided in Fig. 3 (numbers 9 to 12). The inferred 
GL parameters β = 1 and ξ = 1 indicate that SEP 
distribution of residuals is symmetrically double 

exponentially distributed. Standard deviations σ0 
and σ1 show small heteroscedasticity. The first four 
PGs (Fig. 3, 1 to 4) show high parameter sensitivity; 
therefore, the uniform prior pdf was p(θ)~U(0.001, 15). 
All other PGs had gamma prior pdf applied. Parameter 
uncertainty can be expressed in terms of the spread of 
the posterior marginal parameter pdf. A greater spread 
indicates higher uncertainty. The asbestos-cement 
(AC) and ductile iron (NL) PGs have a narrower 
posterior pdf in combination with a uniform prior pdf, 
indicating smaller parameter uncertainty for those two 
PGs. In contrast, some PGs (e.g. cast iron (LZ)) show 
higher parameter uncertainties due to their greater 
spread. The next four PGs (Fig. 3, 5 to 8) have smaller 
parameter sensitivity values and were inferred using 
a gamma prior pdf p(θ)~ Г(α,β). As can be observed 
by the posterior pdf, a general shape of the gamma 
prior is recognizable, while the likelihood functions 
provided a drift towards the observational information 
content.

Fig. 4 illustrates how the marginal posterior 
pdf (i.e. parameter uncertainty) translates into a 
95% pressure head predictive uncertainty. The 

Fig. 4.  Real-world WDS: 95% posterior parameter (dark grey) and prediction (light grey) uncertainty ranges and corresponding pressure 
observations (solid circles)
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light grey region depicts the predictive uncertainty, 
while the dark grey region corresponds to parameter 
uncertainty. These and other results from both case 
studies are shown for the calibration data set only, i.e. 
no results are shown for the validation data set. Since 
observational data is very limited, it was all used for 
calibration only. Ideally, validation on an independent 
data set should be done.

The WDS model fits very well with the 
observational data with an associated RMSE of 0.458 
m. Additionally, Fig. 4 shows that all observations 
fall inside the 95% predictive uncertainty bounds. 
In a post-processing analysis, assessment of the 
underlining assumptions made in Section 2.1 is 
required, i.e. the likelihood function. Two diagnostic 
tests were conducted to verify the assumptions on the 
statistical model of residuals.

Fig. 5a plots the model predictions against the 
observational data. In addition to the RMSE, the 
coefficient of determination R2 = 0.997 and bias = 
–0.052 indicate a very good model fit. Fig. 5b presents 
residuals as a function of model predictions. It can 
be observed that residual show some heteroscedastic 
behaviour. We can, therefore, conclude that the model 
residual distribution, the posterior parameter pdf and 
predictive uncertainties are adequately represented.

5  CONCLUSIONS

This paper presents a study of uncertainty analyses 
of pipe roughness parameter estimates, their 
corresponding parameter and predictive uncertainties. 
The analyses were conducted on a hypothetical and 
a real-world WDS model. Identifiability of pipe 
roughness parameters is difficult, especially in a real-
world WDS model due to the limited information 
content of the observational data. Mapping samples 
from prior distributions of the parameter space to 
the likelihood space results in the identification of 
plausible ranges of parameter sets through given 
observational data and allows estimation of both 
types of uncertainties. The generalized likelihood 
function was used to adequately represent the residual 
distribution. Using this formal Bayesian approach, the 
inference should lead to unbiased parameter estimates 
[2]. Incorporation of the prior distribution has proved 
to be an efficient and effective approach to estimate 
the posterior parameter pdf. We used three different 
prior pdfs.

The results of this study demonstrate that prior 
information on pipe roughness parameters and correct 
representation of residual distributions significantly 
improves identifiability and reduces parameter and 

predictive uncertainties. Since definition of prior pdf is 
difficult, we suggested an approach that resembles the 
parameter identifiability. It proves to be important to 
provide accurate prior information in order to narrow 
the ranges of uncertainties of posterior parameter pdfs 
and to obtain confidence in the optimised/expected 
parameter values [17]. Using this approach, we 
successfully inferred the posterior parameter pdf and 
derived parameter and predictive uncertainties for a 
real-world WDS model.
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