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Testing Two Theories for Generating Signed 
Networks Using Real Data 
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Abstract 

Multiple social p r o c e s s e s  gene ra te  soc ia l  n e t wo r k  st r u c t u r e s .  
We use re l a x e d  s t r u c t u r a l  balance, a generalization of classic structural 
balance, to facilitate a direct comparative test of two social psychological 
theories regarding network generation. One is structural balance theory. The 
other concerns differential popularity. These theories predict distinctive 
signed blockmodels. We use two well known empirical temporal signed data 
sets presenting an opportunity for comparing the two theories in terms of 
their predictions about blockmodel representations of these networks. The 
results provide strong support for differential popularity, differential 
disliking, and mutual disliking within a subset of actors. While there is 
evidence that structural balance was also operating, it seems the lesser process 
for the data used in these tests. We also examine the unequal distributions of 
receiving positive and negative ties. Both tend to become more unequal over 
time. Suggestions for future research are provided. 

1 Introduction 

Both social psychologists and social network analysts develop theories intended to 
help understand social processes in small social groups. To the extent that the 
former focus more on node-level (actor) characteristics while the latter are more 
attentive to the network structure as a whole, there is a tension between micro-level 
and macro-level phenomena (Robins and Kashima, 2008). Our focus here is on 
understanding processes that generate network structures. We provide comparative 
tests of two theories based on a simple assumption: social processes, if operative 
in small groups, leave traces of recognizable patterns of network ties. This 
comparative test is for signed networks. Our primary goal is disentangling the 
results from the operation of processes specified by two theories of social processes 
in groups. One is structural balance theory Heider (1946, 1958) The other concerns 
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differential popularity, a process described by Feld and Elsmore (1984) under 
which some group members receive more positive ties than others. The detailed 
predictions of the two theories differ. 

As Taylor (1970) notes, Heider was credited with the initial statement of 
structural balance theory. While we focus attention on the Heider variant of 
consistency theories, Newcomb (1961), Festinger (1957), Osgood and Tannenbaum 
(1955) and others (see Abelson et al., 1968) also formulated alternative consistency 
theories. We use Heider’s approach because Cartwright and Harary’s (1956) formal 
generalization of his theory laid fo rmal  foundations for analyzing signed social 
networks. 

Feld and Elsmore (1984) drew a critical response from Hallinan (1984) 
regarding rival processes accounting for the unequal distributions in the receipt of 
signed ties in a group. Both papers considered rival theories about group processes 
by using distributions of particular triples of ties among trios of actors in the 
network of actors in the group.  

 Rather than use distributions of triple types, we examine the overall structure 
of a network using blocks located in signed blockmodels. Briefly, a blockmodel of a 
network is a simultaneous partition of both the actors and their social ties. The 
clusters of actors are called positions3. Using blockmodels delineating network 
structure provides an direct description of a network’s overall structure. 

The rest of this paper is organized as follows. Section 2 outlines substantive 
issues and Section 3 describes our data and methods. Section 4 presents our results 
and we conclude with a summary and discussion in Section 5. 

2 Theories about processes that generate network 
structures 

2.1 Structural balance theory 

The intuitions of Heider's (1946) structural balance theory, formalized by Cartwright 
and Harary (1956), led to a sustained research effort of discerning the structure of 
signed networks (Doreian et al., 2005: Chapter 10). Key in this development was a 
remarkable ‘structure theorem’ coupling micro-processes (of actors forming and/or 
dropping signed ties) and the resulting macro-structure of the group. Signed ties are 
either positive (e.g. liking, loving, supporting) or negative (e.g. disliking, hating, 
opposing). For three actors, denoted by p, o and q, in a signed network, the poq 
triple is made up of the ties (p�q), (q�o) and (p�o). The sign of every triple is the 

                                                 
3   A formal statement can be found in Doreian et al. (2005). Ferligoj et al. (2011) contains a rigorous 
informal statement about positional analysis in terms of positions and roles. 
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product of its signed relations. A poq-triple is balanced if its sign is positive and 
imbalanced if the sign is negative4. There are four possible balanced triples and 
four imbalanced triples. A signed network is balanced if all of its poq-triples are 
balanced. Cartwright and Harary’s main theorem  states: the vertices of a balanced 
network can be partitioned into two positions where all of the positive ties are 
within positions and all of the negative ties are between members of different 
positions. This result links the micro-processes of tie formation and change within 
triads to a statement about the overall group structure for balanced networks. 
Davis (1967) noted human groups often have more than two mutually hostile 
subgroups. He generalized Cartwright and Harary’s result by reconsidering one 
part of Heider’s foundational statement: if all of the ties in a poq-triple were 
negative, the triple was imbalanced. Davis defined this all-negative triple as 
balanced. His result was: a ‘clusterable’ network5 has two or more positions where 
all the positive ties were within clusters and all of the negative ties were between 
actors in different positions. This also links micro-processes to the macro-structure 
of a group.   A signed network is k-balanced if it has the above partition structure. 
For k=2 it is Cartwright and Harary’s structure theorem. For k > 2 it is the 
generalization. 

Blockmodeling (see Breiger et al., 1975; Doreian et al., 2005) has techniques 
for partitioning network data into positions (containing actors) and blocks (of ties 
between positions). The location of an actor is the set of ties to and from all other 
actors in the group. These locations of actors are clustered to form the positions. 
For n actors, the n locations are partitioned into k positions with k is much smaller 
than n. A large network is reduced to a smaller image matrix with k positions and 
k2  blocks representing the essential network structure. Doreian and Mrvar (1996) 
noticed the theorems of Cartwright and Harary (1956) and Davis (1967) can be 
viewed as leading to statements of specific blockmodels. A positive block is one 
having only positive ties and null ties while a negative block has only negative ties 
and null ties. From the structure theorems, in a k-balanced network, the signed 
blockmodel has positive blocks on the main diagonal (top left to bottom right) and 
negative blocks off the main diagonal. If, for example, k=4 and structural balance 
is the only process operating, then the blockmodel implied by structural balance is 
simple to describe. The block pattern for four positions is: 

                                                 
4   This is expressed in folk aphorisms: “a friend of a friend is a friend”, “a friend of an enemy is 
an enemy”, “an enemy of a friend is an enemy” and “an enemy of an enemy is a friend”. These 
have simple cognitive structures. As Mower White (1979) notes, simple cognitive structures are 
more likely than complex structures to exhibit balance. Also, “it is now recognized that if 
sentiment is restricted to the two values of positive and negative, balance is a simple implication 
of ordinary deductive logic (Montoya and Insko, 2008: 494)”. 
5  To prove this theorem, Davis used the concept of a semiwalk, an alternating sequence of 
vertices and arcs where the direction of the arcs is irrelevant. For pairs of actors between whom 
there exist one or more semiwalks, the sign for each of these semiwalks is the product of the signs 
of the arcs in the semiwalk. These signs are positive or negative. He defined a network as 
‘clusterable’ if it had no semiwalks with a single negative arc. 
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   Positive   Negative  Negative  Negative 

   Negative  Positive   Negative  Negative 

   Negative  Negative  Positive   Negative 

   Negative  Negative  Negative  Positive 

 

We refer to these as ideal blocks by location, call this blockmodel the 
Structural Balance blockmodel, and label it the ‘SB Model’. 

Regardless of the number of positions, every blockmodel predicted by 
structural balance has this generic (ideal) SB Model form. The number of 
positions, k, has to be determined as a part of fitting blockmodels. Empirically, it 
is unreasonable to expect a perfect correspondence between an ideal structure and 
an empirical structure. If structural balance is appropriate we would anticipate the 
SB Model but with some inconsistencies compared to the ideal structure. 

Doreian and Mrvar (1996) took the form of the idealized blockmodels implied 
by structural   balance   and   proposed   a   partitioning   approach   for   
establishing   empirical blockmodel structure(s) of signed networks closest to the 
ideal form implied by the structural theorems. When empirical blockmodels do not 
fit exactly there are some inconsistencies between the empirical blockmodel and 
the ideal counterpart. These will take the form of some negative ties in positive 
blocks and some positive ties in negative blocks.  The former are termed negative 
inconsistencies, the latter are positive inconsistencies. For a binary network (where 
the ties are +1 or -1), the total number of positive inconsistencies is denoted by P 

and the total number of negative inconsistencies6 by N. A general measure of how 

poorly a blockmodel fits the data is given by Cf  = αN + (1 - α) P where7 0 < α < 1. 

With α = 0.5, the two types of inconsistencies are weighted equally, a convention 
we use here. In essence, Cf  is the line index of imbalance proposed by Harary et 
al. (1965: 348-350). Cf is a criterion function and the relocation clustering 
algorithm used by Doreian and Mrvar seeks optimal partition(s) minimizing this 
criterion function8. Structural balance implies an SB Model. 

2.2 Differential popularity 

In the main, social scientists collecting sociometric data focused on unsigned data 
with only positive ties. Undoubtedly, such data are easier to collect. Also, one 
rationale for making comparisons of the distribution of triples in unsigned 
                                                 
6   If a network has weighted ties then P and N, respectively, are the sums of positive and negative 
inconsistencies. 
7   For α=1, positive inconsistencies are ignored and negative inconsistencies are ignored for α=0. 
Neither extreme weighting is useful when both positive and negative ties exist. 
8   It is a local optimization method so finding the optimal partition(s) is not guaranteed. Brusco et 
al. (2011) established this algorithm has, thus far, identified all of the optimal partitions for 
signed networks up to 40 actors. 
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networks, as used by Feld and Elsmore (1984) and by Hallinan (1984), is based on 
arguments  of  Davis  and  Leinhardt  (1972)  where  signed  graphs  are  
‘converted’  to unsigned counterparts. Rather than focus on signed ties (positive, 
null, and negative), attention was focused on mutual (M), null (N) and asymmetric 
(A) ties. Identifying clusters of positively connected actors, such as those among 
the positions of signed networks, was treated as evidence of a tendency towards 
clustering. Comparisons were then made of the distributions of the 16 possible 
triples involving M, A, and N ties. However, as using unsigned data handicaps any 
examination of balance theoretic ideas about signed networks, these efforts 
labored under a serious constraint: negative ties were excluded9. Feld and Elsmore 
(1984) focused primarily on transitivity. If (p�o) and (o�q) are present in an 
unsigned network then, under transitivity, the (p�q) tie will be present also. 
Empirically, there is a tendency towards transitivity in most unsigned networks 
with transitivity has regarded as a fundamental network process (Holland and 
Leinhardt, 1972; Wasserman and Faust, 1994: 243-248).  Confirmation came with 
there being more transitive triples in a network than would be expected by chance. 
One  key  feature  of  Feld  and  Elsmore's  argument  is  that  some  of  the  
evidence  for transitivity might be due to the operation of a process of differential 
popularity10. They provided some evidence in the form of distributions of poq-
triples to support this claim. However, they were careful to not state differential 
popularity dominated transitivity.  They suggested it could be a plausible 
generating process, one also creating some transitivity. In neutral terminology, 
transitivity and differential popularity are often confounded in empirical networks. 
When only one of them is considered, some of the support for it as the generating 
process will be spurious. 

The idea of differential popularity extends straightforwardly to signed 
networks: some actors may be more popular and so receive more positive ties 
regardless of the presence of mutually hostile subgroups. If some members of a 
group are universally popular, then with k=4, the group structure, as a blockmodel, 
would be as follows if there were just two processes - structural balance and 
differential popularity – operating. An ideal blockmodel would look like: 

 
   Positive   Negative  Negative  Negative 

   Positive   Positive   Negative  Negative 

   Positive   Negative  Positive   Negative 

   Positive   Negative  Negative  Positive 

                                                 
9   We do not dispute the value of the highly productive work on triadic censuses for unsigned 
networks and their extension to exponential random graph models. But when structural balance is 
involved, we contend that both positive and negative ties must be included. 
10   For example, given p�o and o�q as positive ties, if p�q exists then it can be viewed as 
being consistent with transitivity. It is consistent also with structural balance in a positive triple. 
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Note the column of positive blocks on the left of this ideal blockmodel. Except 
for the top block, all of the positive blocks in the first column are inconsistent 
with structural balance (and are bolded for this reason). We call this ideal 
blockmodel a Structural Balance with Differential Popularity blockmodel and 
label it the SB_DP Model. If some additional actors are popular but not universally 
popular, an ideal blockmodel would look like: 
 

   Positive   Negative   Negative  Negative 

   Positive   Positive    Negative  Negative 

   Positive   Positive    Positive   Negative 

   Positive   Positive    Negative  Positive 

 

The additional bolded blocks (in the second column of blocks) are also 
inconsistent with structural balance but consistent with differential popularity. 
This blockmodel is a variant of the SB_DP Model. There may be less extreme 
configurations where only some blocks in the left hand column are positive. There 
could be other subgroups receiving positive ties from members of other positions. 
These can be accommodated. For now, we focus on the SB_DP Model in our 
comparative tests. 

Discriminating between these two theories can be done in a direct fashion. If 
structural balance operates, then the SB Model is appropriate. Further, if 
differential popularity is not operative, the SB Model would fit the data and not 
the SB_DP Model. But if the SB_DP Model is identified empirically, greater 
credibility is given to differential popularity. The partitioning algorithm of 
Doreian and Mrvar (1996) is useless for this comparative test: a SB Model is the 
only fitted blockmodel. However, thinking in terms of relaxing structural balance 
(Doreian and Mrvar, 2009) led to the creation of an algorithm appropriate for 
distinguishing these two models. 

2.3 Relaxed structural balance 

In responding to Feld and Elsmore (1984), Hallinan (1984) argued at least five 
substantive processes could generate transitivity in unsigned networks: differential 
expansiveness; reciprocity; differential popularity; clustering and cognitive 
(structural) balance. Although we do not focus on transitivity and consider signed 
networks, we accept the point of analyses of network data requiring recognition, 
and consideration, of multiple processes. Incorporating them for signed networks, 
when considering balance theoretic ideas, requires a generalization of structural 
balance. Reciprocal positive ties can be accommodated easily to the extent that 
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they occur among within actors in the same position. But, if there is positive 
reciprocity between pairs of actors in different positions, this creates problems for 
structural balance: positive inconsistencies contribute to Cf. If this involves 
multiple pairs in two positions there will be corresponding positive blocks above 
and below the main diagonal. If there is reciprocation of negative ties between 
actors in different positions this will be consistent with structural balance. 
However, we need to consider subsets of actors who, as individuals, are mutually 
hostile towards each other. Their presence also contradicts structural balance 
because this implies a negative diagonal block11. If we add mutual dislike at the 
actor level for a set of actors – a “nest of vipers” in the colorful terminology of 
Hummert et al. (1990) – to differential popularity and structural balance then we 
would expect a structure approximating the following blockmodel: 

 
   Positive   Negative  Negative  Negative 

   Positive   Positive   Negative  Negative 

   Positive   Negative  Positive   Negative 

   Positive   Negative  Negative  Negative 

 
Locating the diagonal negative block on the bottom right of the blockmodel 

appears arbitrary. But if there is a differential popularity process then it is 
reasonable to anticipate differential disliking implies negative ties are concentrated 
actors other than popular actors12. This is represented by a column of off-diagonal 
negative blocks on the right of this blockmodel. Further, if those that are more 
disliked also tend to dislike each other this implies a diagonal negative block. To 
capture this, we locate (and bold) a diagonal negative block at the bottom right 
hand side while recognizing that there could be more than one such block and they 
could appear anywhere on the diagonal. The column of off-diagonal negative 
blocks on the right is consistent with both structural balance and differential 
dislike. The negative diagonal block is inconsistent with structural balance. We 
call this a Structural Balance with Differential Popularity and Mutual Dislike 
blockmodel and denote it as an SB_DP_MD Model. 

To deal with these and other potential complications - including mediation - 
Doreian and Mrvar (2009) proposed ‘relaxed structural balance’ as a more general 
model for signed networks.  Having only positive blocks and negative blocks was 
retained. However, they were allowed to appear anywhere in a blockmodel. 
Relaxed structural balance is a formal generalization of the structural balance. The 
criterion function, Cf, as described above and the relocation algorithm were 
retained for fitting relaxed structural balance models to network data. All that 
                                                 
11   This pattern is present in Figure 2 and this prompted the notion of diagonal negative blocks. 
12  One mechanism is disliked attributes of some actors take time to be recognized more widely in 
a group. 
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changed under relaxed structural balance is the potential locations of the signed 
blocks. Relaxed structural balance permits the statement of another set of ideal 
blockmodels. 

In partial summary, the first two primary substantive hypotheses are stated in a 
comparative form. 

Hypothesis 1 If differential popularity operates for positive ties, there will be 
a column of positive blocks for the more popular actors and this tendency will 
increase through time13. If structural balance dominates differential popularity then 
there will be no positive off-diagonal blocks in a column corresponding to 
universally popular actors. Nor would there be positive off-diagonal blocks for 
other popular actors. 

Hypothesis 2 If differential dislike is operative, there will be a column of 
negative blocks for the more disliked actors and this tendency will increase though 
time. In particular, there will be at least one diagonal negative block. If structural 
balance dominates then there will be no diagonal negative blocks. 

Heider’s theory is essentially dynamic with actors striving to reduce 
inconsistencies. This is expressed as a tendency towards balance over time. 
Indeed, data for examining Heider’s theory must be temporal. However, all 
Heider’s imbalanced triples can be balanced in three ways. Alas, Heider was silent 
on how balance is achieved. It requires complex temporal processes in human 
groups (Hummon and Doreian, 2003).   If differential popularity and differential 
dislike accumulate over time, this suggests: 

Hypothesis 3 Increasing tendencies of differential popularity and differential 
dislike will create greater inequality on the receipt of both positive and negative 
ties over time. 

The idea of moving towards certain structural forms stems from Heider's 
notion of tendencies towards balance being extended to relaxed structural balance. 
The concentration of both positive and negative ties (Hypothesis 3) could be the 
result of two social mechanisms. One is an individual level process where 
attributes making people popular (liked) or unpopular (disliked) are recognized 
more over time. The other is found in the idea of actors achieving consistency of 
views of people as driven by balance. Of course, this leaves open the issue of 
which of these processes are operative or the extent to which they are both 
operative. The data at our disposal do not permit an exploration of this issue.  
Even so, relaxed structural balance incorporates additional processes beyond 
structural balance. 

The tests that we propose are facilitated by using the same criterion function 
for all fitted models. Relaxed structural balance models have structural balance as 
a special case. If structural balance dominates all other processes then the SB 

                                                 
13  We allow less extreme versions with some actors more popular but not universally popular as 
shown in the one variant of the SB_DP Model. Positive valued actor attributes may also take time 
to be perceived widely. 
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Model will be identified implying structural balance is the generating process. But 
if both structural balance and differential popularity are operating without mutual 
dislike then a variant of the SB_DP Model will fit the signed data better. And if 
there is also mutual dislike in subgroups, the SB_DP_MD Model will fit. If any of 
the more general models within relaxed structural balance fit, there is evidence 
against structural balance being the sole, or even the main, generating process. 
Classic structural balance and relaxed structural balance partitions are rivals to be 
evaluated comparatively. They can be compared through their blockmodel 
signatures. 

3 Data and methods 

Brusco et al. (2011), based on Leik and Meeker (1975), argue it is more fruitful to 
have substance, data, and model (with the methods it implies) form a coherent 
whole. We achieve this here within the rubric of balance theoretic ideas. The  SB  
Model  and  relaxed  structural  balance (RSB) models  can  be evaluated 
comparatively. Group trajectories towards balance, if they exist, need not imply 
strictly monotonic change in the level of imbalance. But there will be some overall 
movement in this direction over time. Given this empirical claim of Heider, it is 
necessary to examine signed structures over time using blockmodel structures. 
Given substance drove the hypotheses and the methods of relaxed structural 
balance are fully consistent with this, the coherence of Leik and Meeker’s 
substance-method-data triple is preserved. 

Alas, there are few signed networks over enough time points to test Heider's 
theory. We know of only two such data sets. One is Newcomb’s (1961) data as 
recorded by Nordlie (1957). The other comes from Sampson’s (1968) study of 
trainee monks in a monastery. Neither data set is ideal. Newcomb collected 
network data from 17 students in a pseudo-fraternity. In partial exchange for room 
and board, these previously unacquainted students provided sociometric data for 15 
time points over a semester. The strength of Newcomb’s study is the network 
formation process started from an initial state of no network ties. The recorded data 
were in the form of ranks with each actor ranking all of the other actors in terms of 
liking. Doreian et al. (1996) recoded these recorded ranked sociometric ties into a 
signed form. With this recoding, they established reciprocity, transitivity and 
structural balance had different time scales. The top four ranks were converted to 
+1 and the bottom three ranks were recoded to -1. The remaining ties were recoded 
as zero14. We use their (four positive ties and three negative ties) coding scheme 
here. Of course, as noted by Hallinan (1984) drawing on the arguments of Holland 

                                                 
14  Their reasons for this coding and the formal methods for establishing it are found in their 
article. With regard to structural balance, other recoding options in terms of the number of 
positive and negative ties were tried without leading to substantively different results. 
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and Leinhardt (1973), there are problems with fixed choice designs. However, as 
we want our results to be comparable with prior analyses of the Newcomb data 
we used this coding.  

Doreian et al. (1996) computed the imbalance over time for the recoded 
Newcomb data and showed a general decline over time. While this decline was not 
strictly monotonic, there was enough support for Heider's empirical hypothesis15. 
However, if the relaxed structural balance model is a better model, one that allows 
for multiple  processes,  then  imbalance  for  relaxed structural balance will 
decline over time. More importantly, imbalance will be lower at each time point 
than for structural balance. To examine Hypothesis 3, we use Theil's (1967: 92) 
entropy index, as a measure of inequality, for receiving positive and negative ties 
at each time point. 

The criterion function Cf can be viewed as merely descriptive and lacking tests 
of its utility for partitions established when using it. To address this, we use 
quadratic assignment regression, QAP, as formulated by Dekker et al. (2007) and 
implemented in Borgatti et al. (2002), to make statistical assessments of 
established signed blockmodels. The ideal blockmodels specify (by locations) the 
presence of positive and negative blocks. Given an established blockmodel (with 
inconsistencies), we can define the ‘fitted’ blockmodel that corresponds to the 
empirical blockmodel. In the following panel we show, on the left, a hypothetical 
pair of positive and negative blocks with some (bolded) inconsistencies.  The 
c orresponding pair of ‘predictions’ implied by the blocks in an ideal blockmodel16 
are on the right. 

 
A positive block (with inconsistencies) The corresponding fitted positive block 

  

0 -1 1 1 0 0 -1 0 
 

1 1 0 1 -1 0 1 -1 
 

0 0 1 1 0 0 1 1 
 

1 0 0 0 1 1 0 1 
 

1 0 -1 0 0 0 0 -1 

0 1 1 1 0 0 1 0 
 

1 1 0 1 1 0 1 1 
 

0 0 1 1 0 0 1 1 
 

1 0 0 0 1 1 0 1 
 

1 0 1 0 0 0 0 1 

 

 

                                                 
15 We emphasize the term ‘enough support’. In a follow-up study using the Newcomb data, 
Doreian and Krackhardt (2001) showed that the incidence of two of the imbalanced triples 
increased over time while the number of two of the balanced triples declined over time. 
16  Borgatti and Everett (1999) propose using Pearsonian correlations in a similar fashion but with 
a crucial difference. Their ideal blocks are either complete or null. The latter are unproblematic 
but we differ here by ‘predicting’ only the implied value of a tie when there is an empirical tie in 
the data. 
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A negative block (with inconsistencies) The corresponding fitted negative block 

-1 0 1 –1 0 0 0 -1  
 

1 -1 0 0 0 -1 -1 1 
 

-1 0 -1 0 0 0 -1 -1 
 

0 0 -1 1 1 -1 -1 0 
 

-1 0 1 0 0 -1 0 0 

-1 0 -1 -1 0 0 0 -1 
 

-1 -1 0 0 0 -1 -1 -1 
 

-1 0 -1 0 0 0 -1 -1 
 

0 0 -1 -1 -1 -1 -1 0 
 

-1 0 -1 0 0 -1 0 0 

 

An empirical network with blocks and the fitted blockmodel can be compared 
by using QAP to assess the fit. QAP is used to ‘compare’ two whole matrix arrays 
to examine the extent to which they are the same or consistent with each other. In 
these analyses, the fitted blockmodel is used to predict the empirical data. If the 
correlations between the two are significant, the fitted blockmodel passes a test in 
terms of empirical adequacy. However, if the fit is poor, the blockmodel fails.  It is 
possible also to compare the fitted blockmodel with a random partition as a 
secondary way of assessing the adequacy of its fit. We did this using the Adjusted 
Rand Index (ARI) and evaluative criteria put forth by Steinley (2004). He argues 
ARI values above 0.9 indicate an excellent correspondence in the composition of a 
pair of partitions; values above 0.8 suggest an acceptable correspondence and 
values below 0.8 are unacceptable. 

Another potential problem with blockmodeling is finding multiple optimal 
partitions for a given value of k. If all have the same block structure, and attention 
is focused solely on the block structure, this is not a huge problem. But, if there 
are multiple ‘best’ partitions, having different block structures, this is a serious 
problem. A third potential problem is the presence of null blocks: they must be 
identified. For structural equivalence, only two block types are possible: complete 
blocks and null blocks. Differential penalties can be imposed on the two types of 
inconsistencies (ones in null blocks and null ties in complete blocks). Doreian et 
al. (2004), for partitioning two-mode data, imposed a heavy penalty on the former 
inconsistency to ensure null blocks appeared as fully null blocks17.  

For the Newcomb data, there are null blocks. Specifying a null block helps 
eliminate multiple equally well fitting partitions under relaxed balance. We used 
the algorithm of Doreian and Mrvar (2009) as implemented in pajek (Batagelj and 
Mrvar, 1998) for each time point in an inductive fashion with one null block 
specified. Having identified the ‘best’ partition structures for k=4 inductively, we 
then, for each time point, pre-specified its delineated block structure in a deductive 

                                                 
17    They used pre-specification but here only the presence of a null block was allowed. 
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fashion (with many repetitions) to make sure there were no additional partitions 
with the identified partition structure18. 

When comparing relaxed structural balance with structural balance we thought 
differential popularity would be important and, perhaps, dominate structural 
balance. The comparisons had to be fair. A crucial difference exists in the 
behavior  of  Cf as  the  number  of  clusters (k)  increases  fot structural  balance  
and  relaxed  structural  balance.  For the former, the curve of the criterion 
function, Cf, when plotted against k, has a U-shape with a guaranteed minimum 
value (Doreian et al., 2005: Theorem 10.6). In contrast, for relaxed structural 
balance, Cf decreases monotonically with k (Doreian and Mrvar, 2009: Theorem 
4). We chose k=4 primarily because the ‘best’ structural balance results were for 
this value of k. Increasing  the value of  k  beyond  4 has two implications:  i) 
values of  Cf  increase for structural balance while they decrease for relaxed 
structural balance. This creates a bias favoring the latter for higher values of k. For 
a fair comparative test we used the same value of k for relaxed structural balance 
and structural balance. If anything, this favored structural balance. At most time 
points, the optimal partition for structural balance occurs for k=4 in the Newcomb 
data. For the Sampson data, it is k=3 at all three time points. We then compared 
the fitted models with each other19.  

 4 Empirical results 

4.1 Using the Newcomb data 

Figure 1 shows the criterion function values for k=4 over time for structural and 
relaxed balance. Both trajectories decrease overall. The values of the criterion 
function for relaxed balance are always lower than for structural balance, implying 
the RSB model fits the data better than the SB model. While this has little surprise 
value, it emphasizes limitations to structural balance. For each time point, we 
computed the ARI for pairs of partitions obtained from the two models. They 
ranged from 0.073 to 0.689. For each time point, the partitions obtained from the 
two approaches are not the same. Most often, they are not even close.  

                                                 
18  In fitting blockmodels to signed networks where null blocks are specified, the criterion 
function Cf = αN + (1 – α)P was modified by including a term for the null block that ensured that 
the null block would be as large as possible. (Small null blocks were penalized relative to larger 
null blocks so larger null blocks were identified.) 
19   For Sampson data we consider also k=4 for relaxed structural balance. 
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Figure 1: Inconsistency counts for the Structural Balance and the Relaxed Structural Balance 
models: Newcomb data. 

 

There are additional issues in fitting blockmodels to network data meriting 
attention. The first concerns the predictive value of the fitted blockmodels. We 
computed the correlation, for the 15 time points labeled t1 through t15, between 
these QAP correlations and the value of the criterion function, Cf. The value of 
this correlation is -0.959 (p < .0001) indicating an very close correspondence 
between the two set of values. Table 1 provides the numerical values and the QAP 
correlations for both relaxed structural balance and structural balance. The QAP 
correlations in Table 1, using a permutation test, act as a close proxy for a 
permutation test for the criterion function. The p-values20 for the QAP correlations 
are all less than 0.001.  The  values  for  structural  balance  have  a  similar  
temporal  pattern  but  the correlation between the QAP correlations and the 
criterion function is slightly less. Even so,  the  lower  QAP  correlations  for  
structural  balance  suggest  poorer  predictive performances consistent with the 
values of the criterion function for the two rival models.  

 
 

                                                 
20   Most correlations are ‘significant’ which may be an inherent feature of QAP. However, our use of 
QAP is driven primarily by a need to compare the results from using relaxed structural balance and 
structural balance. It is unlikely that a bias towards significance affects the comparative results 
differently. Also there are non-significant QAP estimates in the results we report. 
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Table 1: QAP correlations and criterion function values: empirical and fitted 
blockmodels: Newcomb data. 

T RSB QAP 
Correlations* 

RSB Criterion Function 
Values (Cf) 

SB QAP 
Correlations* 

SB Criterion Function 
Values (Cf) 

t1 0.679 9.5 0.499 15.5 
t2 0.740 8.0 0.502 15.0 
t3 0.779 6.5 0.588 12.5 
t4 0.752 8.0 0.598 12.5 
t5 0.810 6.0 0.579 13.0 
t6 0.754 5.0 0.511 11.0 
t7 0.911 3.0 0.633 11.0 
t8 0.881 3.5 0.619 11.5 
t9 0.865 4.0 0.633 11.0 
t10 0.860 4.5 0.617 11.5 
t11 0.899 3.0 0.674 10.0 
t12 0.898 3.0 0.669 10.0 
t13 0.881 3.5 0.671 10.0 
t14 0.932 2.0 0.687  9.5 
t15 0.915 2.5 0.669 10.0 
 
RSB Relaxed Structural Balance; SB Structural Balance 
* All p-values < 0.001. The correlation between QAP correlations and Cf is -0.959 for RSB and -
0.858 for SB. 
 
Table 2 presents the results of using QAP regressions comparing the predictive 

values of RSB and SB. Reading from the right, it appears both the fitted SB and 
the fitted RSB blockmodels have some predictive value. Further, the predictive 
value for each, roughly, increases through time. However, when the fitted SB 
blockmodel is included as a predictor with the fitted RSB blockmodel it seldom 
increases the predictive value of the QAP regression. Of course, when two 
predictors are correlated there is no unique partition of the variance explained 
between them. However, we note the following additional items in Table 2: i) the  
estimated  intercept  is  near  zero  for  each  time  point;  ii)  the  unstandardized 
coefficients   are  such   that   the  coefficients   for  RSB  are   always   larger  
than  the corresponding coefficients for SB21; iii) over time, the unstandardized 
coefficient for SB declines while the unstandardized coefficients for RSB increase; 
and iv) at each time point, the standardized coefficient for RSB is larger than the 
standardized coefficient for SB indicating it as the more potent predictor. In short, 
the fitted RSB blockmodel has superior predictive value than the fitted SB 
blockmodel. 

                                                 
21 The two fitted blockmodels have the same density so there is not an issue of different 

scales inflating one coefficient relative to the other. 
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Table 2: QAP Regressions comparing Relaxed Structural Balance and Structural Balance: 
Newcomb data. 

 
T. Variable Unstandardized Standardized    p-value 

Coefficient      Coefficient 
R2 R2 

(for RSB) 
R2 

(for SB) 

t1 Intercept 0.051   0.000     - 
SB 0.134   0.133     0.0140 
RSB 0.596   0.598     0.0005  

0.47  0.46 0.25 

t2 Intercept 0.015   0.000     - 
SB 0.201   0.202     0.0005 
RSB 0.651   0.646     0.0005  

0.58  0.55 0.25 

t3 Intercept 0.013   0.000     - 
SB 0.208   0.209     0.0005  
RSB 0.662   0.659     0.0005  

0.64  0.61 0.35 

t4 Intercept 0.042   0.000     - 
SB 0.285   0.284     0.0005 
RSB 0.610   0.604     0.0005  

0.62  0.57 0.36 

t5 Intercept 0.041   0.000     - 
SB 0.089   0.089     0.0265  
RSB 0.753   0.752     0.0005  

0.66  0.66 0.34 

t6 Intercept 0.010   0.000     - 
SB 0.085   0.085     0.0365  
RSB 0.704   0.702     0.0005  

0.57  0.57 0.26 

t7 Intercept -0.008   0.000     - 
SB 0.076   0.077     0.0100 
RSB 0.868   0.861     0.0005  

0.83  0.83 0.40 

t8 Intercept 0.004   0.000     - 
SB 0.051   0.051     0.0880  
RSB 0.848   0.847     0.0005  

0.78  0.78 0.38 

t9 Intercept -0.020   0.000     - 
SB 0.172   0.173     0.0005  
RSB 0.767   0.761     0.0005  

0.77  0.75 0.40 

t10 Intercept 0.028   0.000     - 
SB 0.108   0.108     0.0040 
RSB 0.792   0.791     0.0005  

0.75  0.74 0.38 

t11 Intercept 0.021   0.000     - 
SB 0.022   0.022     0.2289  
RSB 0.881   0.883     0.0005  

0.81  0.81 0.45 

t12 Intercept -0.026   0.000     - 
SB -0.069  -0.069     0.0475 
RSB 0.957   0.952     0.0005  

0.81  0.81 0.45 

t13 Intercept 0.006   0.000     - 
SB 0.071   0.071     0.0440  
RSB 0.831   0.830     0.0005  

0.78  0.78 0.45 

t14 Intercept -0.004   0.000     - 
SB 0.084   0.085     0.0060  
RSB 0.876   0.874     0.0005  

0.87  0.87 0.47 

t15 Intercept -0.000   0.000     - 
SB 0.020   0.020     0.1964 
RSB 0.902   0.901     0.0005  

0.84  0.84 0.45 
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The blockmodels for each time point are in Table 3 in three panels. The first 
row in each box gives the specific time point. The second row shows whether the 
partition reported was unique. A unique partition for 13 of the 15 time points was 
returned. For one time point (t8) there are two partitions. In each case, the block 
structure is the same and the partitions differ only by a ‘floater’ moving between a 
pair of clusters22. For t12, there were multiple partitions but one stands out23. The 
third row gives the value of the criterion function for α = 0.5 (the  inconsistency 
count is double the criterion function values reported in Figure 1). The final row in 
each cell gives the block structure where P, N and O denote, respectively, positive, 
negative and null blocks. 

Table 3: Signed block structures over 15 time points: Newcomb data*. 

 

t 1 t 2 t 3 t 4 t 5 

          
Unique Unique Unique Unique Unique 

Χ(P)=9.5  Χ(P)=8.0  Χ(P)=6.5  Χ(P)=8.0  Χ(P)=6.0  

PPNN 
PONN 
PNPN 
PNNP 

PNPN  
PPNN  
PNNP  
NPPO 

PNPN 
PPNN 
PNNP 
NPPO 

POPN 
PPNP 
PNPN 
PPNN 

PNPN 
PPNN 
PPNN 
PNON 

t 6 t 7 t 8 t 9 t 10 

          
Unique Unique Two Unique Unique 

Χ(P)=5  Χ(P)=3.0  Χ(P)=3.5  Χ(P)=4.0  Χ(P)=4.5  

PPON 
PNPN 
PPPN 
PPNN 

POPN  
PPNN  
PPPN  
PPNN 

PPPN  
PNPN  
PPON  
PPNN 

PPPN 
PPNN 
PNON 
PPPN 

PNPN 
OPPN 
PPNN 
PNNN 

t 11 t 12 t 13 t 14 t 15 

Unique Unique** Unique Unique Unique 

Χ(P)=3.0  Χ(P)=3.0  Χ(P)=3.5  Χ(P)=2.0  Χ(P)=2.5  

PPPN 
PPON 
PNPN 
PPNN 

PPNN 
PPNN 
PNOP 
PNPN 

PPNN 
POPN 
PPNN 
PNNN 

PPNN 
PNNN 
PONN 
PNPN 

PPPN 
PPON 
PNPN 
PNNN 

 

*P denotes a positive block, N denotes a negative block and O denotes a null block. 
** See footnote 15 for an explanation of this. 

                                                 
22  The value of the ARI measure is 0.845 which is in the acceptable range specified by Steinley 
(2004). 
23   For t12, it was necessary to specify two null blocks to have a unique solution. One of the identified 
null blocks contained a negative tie. We treated it (the third block in the first row) as a negative block. 
While there were multiple partitions using one specified null block, one is shown in Table 1. 
Specifying a second null block suggests a way of choosing a partition from the multiple equally well 
fitting partitions. 
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We examined the delineated signed blockmodel at each time point. We note 
that, especially towards the end of the process, the composition of the positions in 
terms of membership is quite stable. There are members of positions remaining 
firmly in place while a few do move between positions in transitions. We note also 
that the sizes of positions do not change abruptly in each transition.  Illustrating 
the different partitions for structural balance and relaxed structural balance we 
show their unique partitions at t14 for k=4 in Figure 2. We chose this time point 
because it is near the end of the network evolution and the criterion functions are 
lowest at t14 for both models: each structure is closest to its ideal structure. The 
black squares represent positive ties with negative ties represented by grey 
diamonds. The SB partition is in the top panel. The RSB partition is in the bottom 
panel. The number of inconsistencies for structural balance is 19 while the 
corresponding number is 4 for relaxed balance. The reason for the sharp drop in 
the number of inconsistencies is clear. Structural balance struggles with the large 
number of off-diagonal positive ties. Also, the structural balance partition is 
unsatisfactory because it returns a partition with one large cluster, one pair, and 
two singletons. It misses the mutually hostile  subgroup  completely  because  
negative  blocks  cannot  appear  on  the  main diagonal.  The RSB partition 
returns an optimal partition with clusters of size 9, 3, 3 and 2. Many of the positive 
off-diagonal blocks are part of a coherent structure instead of contributing 
inconsistencies under structural balance. In short, the SB_DP_MD model fits these 
(t14) data far better than the SB model. 

It is apparent  from  Table  3  that  none  of  the  fitted  RSB blockmodels 
conform to the SB Model. From Figure 1, the SB Model fares less well than a 
relaxed structural balance model, consistent with results shown in Table 2. 
Structural balance cannot be viewed as the sole generating process for these data. 
It may not be the dominant process. We next interpret the results in Table 3. 

Differential popularity and Hypothesis 1 are considered first. The top left 
block is positive for all time points, a result consistent with both structural balance 
and differential popularity. The column of positive blocks in the left hand column 
is present for 12 of the 15 time points, including the last 5 leading to the final 
evolved structure. For t2 and t3, a negative off-diagonal block appears in this 
column. Even so, there are still two positive off-diagonal blocks. There is one null 
block with two positive blocks in the first column at t10. This pattern provides 
overwhelming support for the presence of differential popularity (Hypothesis 1) 
and overwhelming support  for  Feld  and  Elsmore's  (1984)  arguments  for  it  as  
a  generative  process. Hypothesis 1 is resolved in favor of the SB_DP model. A 
column of positive blocks appears early and is present for most time points. This 
feature is stable with decreasing inconsistencies.  
 



48 Patrick Doreian and Andrej Mrvar 

 

t14 - structural balance

A
B
D
E
F
G
H
I
K
L
M
N
Q
C
O
J
P

A B D E F G H I K L M N Q C O J P

 
t14 - relaxed balance

A
B
D
F
G
I
L
M
Q
E
H
N
K
O
C
J
P

A B D F G I L M Q E H N K O C J P

 
 

Figure 2: Structural Balance and Relaxed Balance partitions at t14 (Newcomb data). 

Next, we consider Hypothesis 2. For differential dislike, including mutual 
dislike, the column of negative blocks on the right first appears at t5. It was not 
there at the outset and emerged over time. It persisted through all subsequent time 
points.  The  bottom  right  (diagonal)  negative  block  reveals  a subgroup with 
mutual dislike. This also contradicts structural balance. However, negative off-
diagonal blocks in this column are consistent with structural balance and 
differential dislike. Features of the SB_DP_MD Model are evident at multiple time 
points. Hypothesis 2 is resolved in favor of the SB_DP_MD model.  There is 
evidence of differential popularity emerging earlier with a shorter time scale than 
differential dislike. 

The signs of the blocks in the middle two columns for each of the fitted signed 
blockmodels have been treated as having secondary interest. Yet, for structural 
balance theory, additional positive blocks off the main diagonal and negative 
blocks on it provides further contradictory evidence. For eight time points there is 
one negative block on the main diagonal and for six there are two such negative 
blocks. There is strong evidence for differential popularity - in both a universal 
and less universal sense – as well as mutual dislike within a set of actors. These  
features    are  disentangled  from  balance  processes  because  they leave 
observable traces inconsistent with that theory. Consistent with Hallinan's (1984) 
observation, structural features suggest the operation of multiple processes. Some 
cannot be completely distinguished by looking solely at blocks. However, there is 
some further evidence in favor of differential dislike. 

The ideas of differential popularity and differential dislike imply that both 
positive and negative ties are concentrated on some actors but not on others. A 



Testing Two Theories for Generating Signed Networks Using Real Data 49 

 

 

natural way of considering this is by examining inequality in the receipt of these 
ties. Our third hypothesis claims that this inequality will increase over time. Figure 
3 shows the values of the Theil entropy index over time24. Very similar results hold 
when the coefficient of variation (standard deviation/mean) or the Gini coefficient 
is used. The inequality for receiving negative ties increases over the first 7 time 
points, shows some oscillation for the next three time points, followed by a 
downwards drift, and then  some  more  oscillation  with  increasing  values.  The 
over-time movement of inequality for the receipt of positive ties is quite different. 
It is flat over the first four time points, increases from t4 through t7, drops, and 
then oscillates while increasing.  The inequality in the receipt of negative ties is 
always much higher than for the receipt of positive ties after t1. The third 
hypothesis is strongly supported for received negative ties while, at best, it is 
supported for the receipt of positive ties from t4 through t7 and only weakly 
supported after t7. The greater concentration of negative ties over time suggests 
that differential dislike generates more of the column of negative blocks than 
structural balance. 
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Figure 3: Inequalities in receiving positive and negative ties: Newcomb data. 

                                                 
24   The results in Figure 3 are not due to having 4 positive ties and 3 negative ties from each 
actor. The trajectory of the Theil index, when using only 3 positive ties, is close to the trajectory 
of the index for 4 positive ties. 
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4.2 Using the Sampson Data 

Sampson’s (1968) data has three time points (labeled in the literature as T2, T3, 

and T4. Sampson collected data for an earlier time point25(T1). He collected signed 
data on four relations: affect, esteem, influence, and sanction. Each took an 
apparent metric form with three ranked positive and three ranked negative ties. 
The sanction relation is problematic because some trainee monks refused to 
provide data (or claimed they sanctioned no-one). Doreian (2008) argued for using 
a multi-indicator approach for multiple relations. We do this here.  We summed 
the binarized26 affect, esteem and influence relations. The valued signed relation is 
the number of ties with a specific sign between pairs of actors. From prior analyses 
(Sampson, 1968; Breiger et al., 1975; Doreian and Mrvar, 1996), we know there 
are k=3 clusters of monks. Figure 4 shows three trajectories for the criterion 
function. Two are for SB and RSB for k=3. We compare these first. The trajectory 
of the criterion function for relaxed structural balance for k=4 has additional 
interest value regarding differential popularity. 
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Figure 4: Inconsistency counts for the Structural Balance and the Relaxed Structural Balance 
models: Sampson data. 

 

                                                 
25   The T1 data were for a different set of monks. Some of them departed before T2. Those who 
remained were joined by a group on new trainee monks at T2. 
26  This was done because summing the ranks seems problematic with regard to measurement. The 
value of Cronbach’s α for the three time points considered here are 0.795 (T2), 0.777 (T3) and 0. 
849 (T4), suggesting these three network relations are very consistent from a measurement point 
of view. Also, the comparisons of random partitions of the Sampson data into the same number of 
positions with the relaxed balance theoretic partitions, that value of the ARI ranges between -0.06 
through -0.02 over the partitions reported in Table 3. 
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Both trajectories for k=3 decline over time. The values of the criterion 
function for RSB are smaller than for SB. However, this evidence is modest: the 
declines for the RSB are small. For the last time point, the two values of the 
criterion function are close. The value of the criterion function for the RSB model 
for k=4 declines from the first time point to the second but rises slightly at the 
third time point27. The values of the QAP correlations for k=3 are: 0.708 (T2); 
0.687 (T3) and 0.737 (T4). And for k=4 they are: 0.760 (T2); 0.871 (T3) and 0.816 
(T4). For all these QAP correlations p<0.001 confirming the descriptive values for 
the criterion function, Cf, are noteworthy. 

 

Table 4: Signed block structures over 3 time points: Sampson data*. 

Structural balance (k=3) 
 

T2 
Unique 
Χ(P)=23 
PNN 
NPN  
NNP 

T3 
Unique 
Χ(P)=20 
PNN 
NPN  
NNP 

T4 
Unique 
Χ(P)= 16 
PNN 
NPN  
NNP 

 
Relaxed balance (k=3) 
 

T2 
Unique 
X(P)= 17 
PNN 
PPN 
NNP 

T3 
Unique 
X(P) =15.5 
PNN 
PPN 
NNP 

T4 
Unique 
X(P) = 14.5 
PNN 
PPN 
NNP 

 
Relaxed balance (k=4) 
 

T2 
Unique 
X(P)= 13 
PNNN 
PPNN 
PNPP 
NNPP 

T3 
Unique 
X(P) =8.5 
PNPN 
PPNN 
PNPP 
NNPP 

T4 
Unique 
X(P) = 10 
PPNP 
PPNN 
PPPN 
PNNP 

*P denotes a positive block, N denotes a negative block, O denotes a null block 

                                                 
27  One problem with Sampson’s data is the small number of time points. Also, the data collection, in 
contrast to Newcomb’s data, did not start from a null network. 
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Table 4 presents the corresponding signed blockmodels for the three time 
points. For k=3, there are no large differences between the two blockmodels. The 
blockmodel for structural balance must be the SB model. For RSB, the same 
blockmodel existed at each time point with just one difference from the SB model: 
for all time points, one positive off-diagonal block is in the first column of blocks. 
In terms of Hypothesis 1, only a modest version of the SB_DP is present at each 
time point. Even so, it provided slightly better fits. Table 5 reports QAP 
regressions for the Sampson data. The top panel concerns the k=3 partitions. The 
RSB effect dominates SB only for T2, consistent with the larger difference in the 
values of the criterion function at this time point in Table 3. In terms of 
Hypothesis 2, there is no for a SB_DP_MD model given the absence of a negative 
diagonal block. The off-diagonal negative blocks are consistent with both 
structural balance and differential dislike. 

 

Table 5: QAP Regressions comparing Relaxed Structural Balance and Structural Balance: 
Sampson data. 

A: Three positions (k=3) 
 

T Variable Unstandardized   Standardized  p-value 
Coefficient         Coefficient 

R2 R2 
 ( RSB) 

R2 
(SB) 

T2 Intercept 0.111    0.000    - 
SB 0.040    0.039     0.2324  
RSB 0.782    0.782     0.0005  

0.67  0.67 0.53 

T3 Intercept 0.107    0.000     - 
SB 0.174    0.173     0.0075  
RSB 0.672    0.672    0.0005  

0.67  0.66 0.53 

T4 Intercept 0.057    0.000    - 
SB 0.356    0.355     0.0005  
RSB 0.556    0.556     0.0005  

0.77  0.73 0.68 

 
RSB Relaxed Structural Balance; SB Structural Balance 

 
 

B: Four positions (k=4) RSB only 
 

Time Variable     Unstandardized Standardized p-value 
     Coefficient Coefficient 

R2
 

T2 Intercept   0.031 0.000 - 
RSB   0.858 0.859 0.0005  

0.74 

T3 Intercept   -0.001 0.000 - 
RSB   0.889 0.889 0.0005  

0.79 

T4 Intercept   -0.045 0.000 - 
RSB   0.903 0.902 0.0005  

0.81 

                

The lowest panel of Table 4 displays the blockmodel structure for relaxed 
balance with k=4. The evidence in these blockmodels is stronger for a SB_DP 
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model fitting the Sampson data because of the presence of more off-diagonal 
positive blocks. At the last time point, T4, there is a full column of positive blocks 
in the RSB blockmodel as well as other off-diagonal positive blocks. While 
structural balance works well for the Sampson data for k=3, for k=4 there is 
stronger evidence in favor of the SB_DP model. The corresponding results for 
prediction using only the RSB fitted blockmodel for the k=4 are provided in the 
lower panel of Table 5. This fitted blockmodel is a potent predictor of the signed 
relation for all three time points. 

Figure 5 shows the structural balance partitions of the Sampson data for each 
time point. They are consistent with prior analyses with three clusters of actors: 
The Young Turks (John Bosco, Gregory, Mark, Winfrid, Hugh, Boniface and 
Albert); the Loyal Opposition (Peter, Bonaventure, Berthold, Ambrose, Victor, 
Romauld, Louis and Amand), and the Outcasts (Basil, Elias and Simplicius) were 
identified by Sampson (1968). There are some minor differences with Ambrose 
being in the Young Turk cluster at T3 and Amand joining the Outcasts28 at T4.  

 
 

 
 

Figure 5: Structural Balance Partitions for the Sampson data at each time point. 

       

Figure 6 shows the relaxed balance model as fitted for each time point with k = 
4. For T2, the Loyal Opposition has been split into two clusters. Four of their 
members (Bonaventure, Berthold, Ambrose and Romuald) send mainly positive 
ties to members of the Young Turks, a feature obscured in the structural balance 
partition. Consistent with structural balance, they send positive ties to others in the 
Loyal Opposition and negative ties to those in the Outcasts. The two partitions at 
T3 differ only in the location of Albert, again with positive blocks off the main 
diagonal. At T4, Bonaventure and Ambrose form a single cluster, receiving 
positive ties from members of the other three clusters. They also have reciprocated 

                                                 
28   Doreian and Mrvar (1996) had Amand with the Outcasts at all three time points. 
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positive ties. This column of positive blocks supports the Sampson data 
conforming to the SB_DP model at T4. 
 

 
 

Figure 6: Relaxed Balance Blockmodels for the Sampson data at each time point (k = 4). 

 
Figure 7 shows plots of inequality in the receipt of positive and negative ties. 

Consistent with the Newcomb data results, inequality of the receipt of negative 
ties increases across all time points.  The pattern for inequality in the receipt of 
positive ties differs. From T2 to T3, it drops slightly before a sharp increase 
between T3 and T4. The highest value for each index is at T4 providing support for 
Hypothesis 3 for the receipt of negative ties but only partial support for the receipt 
of positive ties. 
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Figure 7: Inequalities in receiving positive and negative ties: Sampson data. 

5 Summary and discussion 

As multiple processes generate social relations among human actors, it is 
problematic to commit to examining only one process. The relevant processes 
include structural balance, differential popularity, differential dislike, and mutual 
hostility within subgroups larger than dyads. When processes operate they leave 
traces as structural features of networks. Our attempt to disentangle the results of 
these processes focused on the structure of the network as represented by locations 
of positive and negative block types in blockmodels. We used the generalized 
blockmodel of relaxed structural balance (Doreian and Mrvar, 2009) to fit 
blockmodels to signed networks. We found strong support for the operation of 
differential popularity in a column of off-diagonal positive blocks with the 
Newcomb data.  Some actors in were universally popular, contrary to structural 
balance. Evidence was found also of subgroups of mutually hostile actors with 
persistent negative blocks on the main diagonal of the image matrix, also 
contradictory of structural balance.  

The persistent presence of a column of off-diagonal negative blocks is 
consistent with both structural balance and differential dislike. By considering the 
increased concentration of negative blocks over time on a subset of actors, we 
infer that differential dislike contributes more than structural balance even though 
the results of these processes could not be disentangled completely. The results 
were less clear for the Sampson data where the structural balance model fared less 
badly than in the Newcomb data. There was some modest evidence for a weaker 
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form of a model with differential popularity. Only at the last time point, in a model 
with four positions, was differential popularity more evident. 

As a summary, in Newcomb’s data, relaxed structural balance partitions 
provide strong support for the operation of differential capturing structural 
features at odds with structural balance. The increased concentration of negative 
ties on some actors suggests differential dislike is either a more potent process 
than structural balance or is an unrecognized component of it. The evidence for 
such outcomes was not as clear with Sampson’s data. Yet there was support for the 
hypothesis regarding inequalities in receiving negative ties. 

There are some caveats concerning our results because the data we used are not 
ideal. The recoding of Newcomb’s data, used by others before us imposes the 
equivalent of a fixed choice design and is, at most, only an approximation of 
satisfactory temporal signed network data. Sampson also adopted a fixed choice 
design for the data he collected. Neither Newcomb’s nor Sampson’s data have 
systematic information regarding actor attributes. This imposes another limitation. 
Increasing concentration of receiving both positive and negative ties could rest on 
clearer perceptions of actor attributes and the accumulation of network processes. 
Without information on actor attributes and the recognition of this information by 
actors when forming and breaking signed ties these two processes cannot be 
disentangled. Some implications of these limitations are clear.  

First, better over time network data for signed (and unsigned) networks in 
small groups are needed. Second, as networks and actors co-evolve, we need actor 
attribute data and (changing) actor perceptions of each other. Third, an adequate 
theory of network change requires reconsidering Heider's (1946) distinction 
between signed social relations and unit formation relations to incorporate both 
when studying actor and network co-evolution29. Using only structural (network) 
data is not enough. Even so, we have shown that network processes can be 
disentangled to some extent by delineating the structural traces that their operation 
leaves behind. This allowed for some comparative testing of theories about 
generating structures.  

Such an approach can be made more fruitful by embedding signed 
blockmodeling in a richer substantive framework with more complete data. Here, 
we have written about tie formation without being attentive to the micro-processes 
involved for pairs of actors. Montoya and Insko (2008) analyze reciprocity in 
terms  of  affective,  cognitive,  and  behavioral  elements.  Wojciszke et al. (2009) 
examine different mechanisms generating like-dislike and respect-disrespect 
relations. However these mechanisms operate, they will be constrained to some 
extent by the macro structure of the group within which they operate. It suggests 
also that a more general account will emerge from combining these different 
approaches. 

                                                 
29  White (1979) notes empirical evaluations of balance theory differ according to whether poq-
triples or pox-triples (with unit formation ties) are used. 
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Another item meriting attention comes from the differences between the two 
sites where Newcomb and Sampson collected their data. The students in the 
pseudo-fraternity of Newcomb had potential relations and contacts outside their 
residential hall. In contrast, the trainee monks were largely cut off from the outside 
world. Such differences could make a difference in the macro network structures 
formed (Doreian and Conti, 2012). In terms of substance, theories of how 
relational tie formation is dependent on the context within which  relations  are  
formed  are  needed  for  a  better  account  of the processes of network formation 
and the resulting network structures.   

Another very promising approach to social networks are exponential random 
graph models (ergms). It would seem useful to explicitly couple the micro-process 
generation of network structure represented in the use of dynamic exponential 
random graph models with the kind of block modeling approach used here. We 
think that coupling the ergm approach to block modeling is an step. The simplest 
way of doing this is to incorporate block structures as a covariate. Doreian and 
Conti (2012) provide an example where both estimated ergm parameters and a 
blockmodel covariate were significant. A much deeper approach is to develop an 
ergm and a blockmodel simultaneously.     

We provide a different take on two classical data sets by using signed 
blockmodeling to comparatively assess two theories about the generation of 
structure. However, we are mindful that these data sets are unique and imply some 
problems with regard to generalization, especially to larger networks. Balance 
theoretic ideas were formed in the study of small networks but it is reasonable to 
anticipate their extension to larger signed networks where overall network density 
tends to be lower. This raises the issue of whether density could affect the use of 
relaxed structural balance and structural balance. We think this would not affect 
our methods, especially if fixed choice designs are avoided. However, this remains 
an empirical issue. In terms of formal analysis, Abell and Ludwig (2009) have 
launched a program of research based on simulation studies of balance processes 
in larger signed networks Their simulated networks are very dense and, while they 
are useful for studying the operation of balance processes, it is not clear that there 
is a direct extension to empirical signed networks.  

If areas of differential density exist in large signed networks, then the 
empirical study of large ‘patchy’ signed networks could benefit from the kinds of 
community detection methods developed by Traag and Bruggeman (2009) for 
signed networks. We provide a methodological comparison of this algorithm with 
RSB in the Appendix A. For the Newcomb data, the results are mixed but point to 
the RSB approach as more useful. The criterion functions implied by the two 
algorithms are different and it may be useful in future work to try and combine 
them in some fashion. Having diagonal blocks with dense positive lines seems 
important provided that this does not destroy the block structures identified here. 
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Appendix A 

Another approach to partitioning networks exists within the community detection 
literature.  Community detection and blockmodeling are two methods for 
partitioning social networks developed separately but with obvious parallels. In 
order to compare them, the algorithm of Traag and Bruggeman (2009), devised 
specifically for signed networks, is best placed for this. It has been implemented in 
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pajek (Batagelj and Mrvar, 1998). The algorithm is based on an adaptation of 
modularity (Newman, 2006; Leicht and Newman, 2008) and maximizes positive 
and minimizes negative lines within diagonal blocks while it minimizes positive 
and maximizes negative lines in off-diagonal blocks. In using this approach, we 
obtained higher values of the modularity index for partitions having a high density 
of positive and low density of negative lines inside clusters and a high density of 
negative and low density of positive lines between clusters.  

We note that partitioning signed networks using relaxed structural balance 
(RSB) is driven by substance concerning the dynamics of relations in small groups 
while community detection is driven more by the observation that communities 
have denser positive ties and sparser (or even no) negative ties within them 
compared to the ties to the rest of the network. It is useful for partitioning large 
networks. It is reasonable to compare them. 

This comparison is purely methodological and takes the following form: i) 
produce the best partitions using the Traag and Bruggeman algorithm; ii) establish 
the corresponding RSB partitions (with the same values of k); iii) create the 
implied fitted matrix arrays for both; iv) establish how well they predict the actual 
data; and v) compare the two partitions in relation to each other. The results are 
shown in Table A.1: the first column lists time points; the second column has the 
number of positions (clusters) obtained by the community detection (CD) 
algorithm and used also for the corresponding RSB partitions; the third column 
has the variance explained by the community detection partitions; the fourth 
column has the variance explained by the RSB partitions; and the final column has 
a direct comparison of the pairs of fitted partitions. The comparison is made solely 
in terms of the number of clusters determined CD and defers to these values of k. 
The result is straightforward: at each time point the variance explained by the RSB 
approach is larger than the variance explained by community detection. However, 
for four time points the differences are trivially small and a reasonable conclusion 
is that the two partitions perform equally well in predicting the empirical relational 
arrays for these time points. Thereafter, in contrast, the differences are more 
substantial and sometimes the differences are large. We note that the correlations 
between the two fitted arrays are particularly high for t4 and t7. The variation of R2 
across the time points has more to do with the number of clusters: other things 
equal, using more positions leads to explaining more variance in the array of 
signed ties. Given that there are only 17 data points, even using 5 or 6 positions 
seems excessive. Using k = 4 for all time points, as done in the paper, seems 
preferable both in terms of substance and for uniform comparisons. 

For the primary substantive concerns considered here, the results of using the 
signed community detection approach are mixed. For five time points (t2, t3, t4, t5, 
and t10) there is no column of positive blocks. However, for the remaining times 
points, there is as least one column of positive blocks. This provides support for 
the SB_DP Model. Using this community detection algorithm permits a 
comparative test precluded by classical structural balance.  For all time points, 
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there are no diagonal negative blocks in the blockmodels obtained by the 
community detection approach: The presence of such blocks is missed and 
precluded the delineation (and examination) of the SB_DP_MD Model. We return 
to Leik and Meeker’s point: coherence between substance, method, and data is 
important. The substantively driven RSB approach has this coherence while the 
community detection approach used here does not. 

 

    Table A.1: Comparing the predictive value of two partitions. 

Time 

Point 

k R2 

 (CD) 

R2  

(RSB) 

R2  

(CD_RSB) 

t1 

t2 

t3 

t4 

t5 

t6 

t7 

t8 

t9 

t10 

t11 

t12 

t13 

t14 

t15 

3 

3 

3 

3 

3 

5 

6 

5 

4 

4 

5 

5 

4 

5

4 

0.27 

0.32 

0.35 

0.42 

0.30 

0.38 

0.81 

0.51 

0.28 

0.29 

0.66 

0.66 

0.64 

0.75 

0.42 

0.33 

0.35 

0.41 

0.46 

0.53 

0.57 

0.93 

0.90 

0.75 

0.74 

0.90 

0.90 

0.78 

0.90 

0.84 

0.22 

0.28 

0.50 

0.86 

0.34 

0.53 

0.87 

0.48 

0.30 

0.30 

0.64 

0.69 

0.64 

0.72 

0.40 

     

   CD - Community detection, RSB - Relaxed Structural Balance 

Appendix B 

All of the data analyses were done using three programs. The temporal plots in 
Figures 1, 3 and 4 were drawn using STATA. The fitting of blockmodels was done 
using Pajek (Batagelj and Mrvar, 1998) using pre-specified models. The 
commands for this are explained in the Pajek manual. The QAP regressions were 
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done by using UCINET (Borgatti et al., 2002). The Pajek files for doing this were 
imported into UCINET. Again, using QAP is documented in the manual for this 
suite of programs. 

 


