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Abstract: An intelligent knowledge-based computing environment for con-
troling the steel production is proposed. CAE non-parametric math-
ematical model was developed based on the measured industrial data. 
Analysis of the obtained results reveals that there is a strong correla-
tion between chemical composition of melts, Al blocs for dezoxida-
tion and different supplements added at various stages, and nonmetal-
ic inclusions. Relatively small number of input parameters taken into 
account in the existing model resulted in large scatter of the obtained 
results. Use of a higher number of input parameters will reduce the 
scatter and improve the prediction. It is evident that the standard ISO 
4967 systematically overestimates some types of nonmetalic inclu-
sions, which may be the result of a subjective human assessment or 
deliberately conservative estimate. The nonmetalic inclusions can be 
most effectively influenced at the early stages of the EAF process. As 
there is still long way to sufficiently describe the whole phenomenon 
of nonmetalic inclusions in steels, the results presented in this study 
are very promissing and they will eventualy lead us to the better mod-
els in the future.
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Izvleček: Predlagano je inteligentno, na znanje oprto računalniško okolje 
za kontrolo proizvodnje jekla. Na podlagi izmerjenih industrijskih 
podatkov je bil razvit neparametrični matematični model CAE. Ana-
liza dobljenih rezultatov je pokazala, da obstaja močna korelacija 
med kemično sestavo šarže, Al bloki za dezoksidacijo in drugimi do-
datki, dodanimi v različnih fazah procesa, in nekovinskimi vključki. 
Zaradi relativno majhnega števila upoštevanih vhodnih parametrov 
je raztros rezultatov dokaj velik. Upoštevanje večjega števila vho-
dnih parametrov bo zagotovo zmanjšalo raztros in izboljšalo napo-
vedi. Očitno je, da standard ISO 4967 sistematično precenjuje ne-
katere tipe nekovinskih vključkov, kar je lahko posledica subjektiv-
nega vrednotenja posameznikov ali pa namerno bolj konservativne 
ocene. Na nekovinske vključke lahko najbolj učinkovito vplivamo v 
zgodnjih fazah EAF-procesa. Čeprav je pred nami še dolga pot, pre-
den bo mogoče v celoti opisati fenomen nekovinskih vključkov, so 
rezultati, predstavljeni v tem prispevku, zelo spodbudni in nas bodo 
v prihodnosti pripeljali do boljših modelov.

Key words: steel production, SQL database, non-parametric models, CAE 
neural network, nonmetalic inclusions 

Ključne besede: proizvodnja jekla, SQL-baza podatkov, neparametrični 
modeli, nevronska mreža CAE, nekovinski vključki

Introduction

Production of steel, which includes 
many intermediate stages with high 
energy consumption, is a complex and 
costly procedure. Optimization of steel 
manufacturing process is therefore 
highly desirable. It can be achieved 
through better in-depth understanding 
of various influential parameters which 
determine the technological path of 
material in the production process. The 
problem is extremely complex due to 
the large number of influential param-
eters and consequently there is still 
lack of useful comprehensive solutions 

in the everyday steel production. Luck-
ily, artificial intelligence and modern 
information and communication tech-
nologies now offer better opportunities 
for solution of this problem.

In recent years we have witnessed an 
intensive development of both physi-
cal and metallurgical models which 
can adequately describe various pro-
cesses taking place in steels during 
their thermo-mechanical processing 
as well as solutions in the field of ar-
tificial intelligence and optimization 
methods, which are possible by means 
of the modern computer technology. 
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Numerous publications demonstrate 
that the methods of artificial intelli-
gence provide a set of tools with great 
practical value for complex industrial 
processes.[1–5] Range of applications 
of artificial intelligence methods in 
materials research is wide.[6–10] Practi-
cal applications can be found both in 
research of metallic materials in vir-
tually all phases of their production, 
such as casting, rolling, forging, heat 
treatment, etc.[10–16] Especially popular 
are applications of neural networks, 
which are becoming an indispensable 
component of such systems for manu-
facturing automation and IT solutions 
that are designed to process control of 
metallurgical processes.[17–19] Recently, 
Fazel-Zarandi and Ahmadpour[2] have 
used neural networks in developing ex-
pert system to control the parameters of 
electric arc furnaces in steel by means 
of a variety of independent modules, 
which coordinated the operation with 
regard to other modules. Zhou[3] used 
the dynamic neural networks and com-
puter vision to predict the quality of the 
sintered products. Badheshia and col-
leagues used the methods of artificial 
intelligence in the development of ma-
terials and to find relations between the 
various parameters of their production.
[6–8, 15, 16] Reviewed literature reveals 
that neural networks are often used to 
find the complex relations between the 
large number of influential parameters 
within individual processes. Research 
which address the entire manufactur-

ing process or, where the method of 
artificial intelligence would be coupled 
with optimization methods that would 
allow the search of optimal values ​​of 
influential parameters, are very rare. 

In this paper we present briefly the re-
sults of research which was focused on 
the development of intelligent knowl-
edge-based computing environment 
for controling and optimizing the real 
industrial steel production. Due to the 
complexity of the problem only the 
solutions of aquirying and managing 
information from real steel production, 
development of non-parametric model 
and analysis of underlying trends in the 
formation of nonmetalic inclusions, 
defined by different standards, are pre-
sented.

It solution for information manage-
ment and optimization in steel pro-
duction

General
In practice, a lot of the optimization 
in steel-making process is still based 
on »trail and error« procedures and/
or expert knowledge of process engi-
neers, who based on their empirical 
experience of tuning the process pa-
rameters control the production. From 
a theoretical point of view it is the most 
appropriate to describe the manufac-
turing processes by means of abstract 
mathematical models in order to to 
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represent mathematical relationships. 
However, due to the problems in the 
real steel production mentioned in the 
introduction section, these processes 
can be most effectively simulated by 
analogue models based on electronic 
devices (computers) using the meas-
ured data. Whitin this there are two 
main problems: (1) data aquisition and 
mathematical presentation of data as 
well as expert knowledge and (2) de-
velopment of appropriate analog mod-
els with modern computer technology. 
It is clear that measurements and math-
ematical models represent mutually in-

terdependent components in optimiz-
ing steel production.

Data acquisition in Metal Ravne has been 
implemented several years ago. DBSteel 
is an integrated software solution for 
process control in the steel production. 
It was implemented by Siemens VAI 
Metals Technologies. The solution ena-
bles comprehensive data management 
process, quality control, planning pro-
cess, steel production control per charge, 
networking and communication with the 
ERP (Enterprise Resource Planning) sys-
tems and to generate various reports. 

Figure 1. Schematic presentation of the main building blocks of DBSteel integrated 
software solution. 
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Client - server environment
The server part consists of a High-
Availability (HA) cluster,[20] nine pro-
cessing computers and fifteen worksta-
tions (Figure 1). HA cluster is based on 
IBM BladeCenter™ technology and 
is composed of three physical servers, 
where completely identical combina-
tion of 64-bit operating system Win-
dows Server 2008 R2 and relational 
database Microsoft Windows SQL 
Server 2008 R2 is installed.

All three servers connected into a HA 
cluster use database mirroring tech-
nique. One of the servers plays the 
role of principal database server, an-
other server is a mirror site, while the 
third server provides a smooth tran-
sition to the secondary (MIRROR) 
server in the event of principal server 
failure.

Processing computers
Figure 1 shows different levels and 
connection between those levels of the 
DBSteel integrated software solution. 
At the zero-level there is a production 
unit. First level consists of program-
mable logic controllers (PLC's), e.g. 
for weighing system. PLC is special 
computer, that is used for automation 
of electromechanical processes and 
designed to operate in heavy industrial 
conditions (vibration, electrical noise 
and dust resistant). Processing com-
puters on the second level control/sup-
port the production process, while the 

workstations on the third level enable 
the planning of charges.

Processing computers control the fol-
lowing operations:
•	 	PC-scrap supports the preparation 

of inlay material (scrap metal, over-
head cranes, computerized scales). 
By using the specific software the 
module operator determines the 
composition of the charge, reads 
data from the scale, records inlay 
material consumption, etc.

•	 	PC-MELT and PC-LEGI EAF sup-
port the melting and then alloying 
process on the electric arc furnace 
(EAF), respectively. The software 
is intended to record the various 
events (for example, charge start 
time), to record consumption of 
electricity, recording the results, 
obtained with CELOX device, etc.

•	 	PC-REFINE VD in PC-LEGI LF 
support the process of secondary 
treatment of steel in a vacuum ladle 
furnace (LF/VD).

•	 	PC-ESR LIGHT supports the elec-
tro slag remelting (ESR).

•	 	PC-LAB 1 in PC-LAB 2 are spe-
cial-purpose computers for sup-
porting the implementation of 
chemical analysis in the plant and 
a chemical laboratory. PC-LAB 1 
is connected with the spectrometer 
at the plant site while PC-LAB 2 is 
connetced with two spectrometers 
located in the chemical laboratory.

•	 	PC-SPARE is a spare computer that 
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is ready to replace any of the above 
eight processing computers in case 
of their failure.

Data structure
Physical partition of steel-making pro-
cess is followed by the similar struc-
ture of the DBSteel database. Descrip-
tion of the tables revelas that each 
process is characterized by a specific 
prefix. Thus, for example, table, which 
is linked to the processes in the electric 
arc furnace, gets the prefix »EAF«, ta-
ble which is linked to vacuum furnaces 
and ladle gets the prefix »LF/VD«, etc. 
The key tables are:
•	 	The main table of charges at the 

EAF
•	 	The table of events at the EAF
•	 	The main table in charges at the 

LF/VD
•	 	The table of events at the LF/VD

Structure of the databases is well 
documented. After applying different 
scripts we got one database for further 
processing. It contains numerical em-
pirical data which allow a mathemati-
cal description of the various phenom-
ena in the steel production process (see 
Chapter 3).

Matemathical tools for modeling of 
manufacturing processes
Development of appropriate math-
ematical models is necessary to opti-
mize the steel production at high-tech 
level. Today, in addition to the usual 

physical models, the models which 
exploit the principles of artificial in-
telligence, especially neural networks, 
are widely used. Among the neural 
networks is the most common use of 
BP neural networks, which describe 
the phenomenon on the basis of meas-
ured data and obtained results. Unfor-
tunately, the rate of learning for very 
complex problem with large number 
of parameters and with large database 
is relatively slow and depends on set-
tings of the parameters of learning. An 
additional weakness of these networks 
for »real-time« production is that the 
BP network must be constantly re-
trained with new data supply in order 
to improve the optimization. We have 
therefore in this study decided to use 
CAE neural network, [21–23] which ena-
bles faster analyses and is significantly 
more robust.

Mathematical modeling of inclu-
sions by using cae neural network

Any type of nonmetalic inclusion (i.e. 
type Ad according to the ISO 4967 
standard [24]) of a specimen (e.g. 
charge) is characterized by a sample 
of observations/experiments on N test 
specimens. The mathematical descrip-
tion of the observation/experiment on 
a single specimen is called a model 
vector. Consequently, the whole phe-
nomenon can be described by a finite 
set of model vectors
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{ }1,...., ,...,n NX X X                           (1)

It is assumed that the observation/ex-
periment on one particular specimen 
can be described by a number of vari-
ables, which are treated as components 
of a model vector

{ }1 1, ..., , ..., , , ... , ...,n n nl nD n nk nMb b b c c c=X 	

	 (2)

The vector Xn can be further composed 
of two truncated vectors B and C

{ }1, ..., , ...,n n nl nDb b b=B  

and { }1, ..., , ...,n n nk nMc c c=C            (3a)

Vector Bn is complementary to vector 
Cn and therefore their concatenation 
yields the complete data model vector 
Xn. The prediction vector, too, is com-
posed of two truncated vectors, i.e. the 
given truncated vector B and the un-
known complementary vector Ĉ 

{ }1, ..., , ...,l Db b b=B  

and  { }1
ˆ ˆ ˆ ˆ, ..., , ...,k Mc c c=C                  (3b)

The problem now is how an unknown 
complementary vector Ĉ can be esti-
mated from a given truncated vector 
B and the model vectors {X1, …, Xn, 
..., XN}, i.e. how the inclusion Âd can 
be estimated from known input param-
eters and the available data in the da-

tabase. By using the conditional prob-
ability density function, the optimal 
estimator for the given problem can be 
expressed as 

where ĉk is the estimate of the k-th out-
put variable, cnk is the same output var-
iable corresponding to the n-th model 
vector in the database, N is the number 
of model vectors in the database, bnl  is 
the l-th input variable of the n-th model 
vector in the database (e.g. bn1, bn2, bn3, 
..., bnL), and bl is the l-th input variable 
corresponding to the prediction vector. 
D is the number of input variables, and 
defines the dimension of the sample 
space. Note that Equation (4) requires 
the input parameters to be normalized, 
generally in the range from 0 to 1 if we 
want to use the same width w of the 
Gaussian function for all of the input 
variables (dimensions).

The Gaussian function is used for 
smooth interpolation between the 
points of the model vectors. In this 
context the width w is called the 
“smoothing” parameter. It determines 
how fast the influence of data in the 
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sample space decreases with increas-
ing distance from the point whose co-
ordinates are determined by the input 
variables of the prediction vector. 

A general application of the method 
does not include any prior information 
about the phenomenon. Equation sug-
gest that the estimate of an output vari-
able is computed as a linear combina-
tion of truncated vectors Cn, while the 
coefficients An are non-linear functions 
of all the input variables (Bn) in the da-
tabase. Thus, non-linear phenomena 
can be modeled by this approach. The 
weights An depend on the similarity be-
tween the input variables of the predic-
tion vector, and on the corresponding 
input variables pertinent to the model 
vectors stored in the database. Conse-
quently, the unknown output variable 
is determined in such a way that the 
computed vector, composed of given 
and estimated data, is most consistent 
with the model vectors in the database. 

An intermediate result in the compu-
tational process is the estimated prob-
ability density function    of known in-
put variables 
     

                               (5)

It helps to detect the possible less ac-
curate predictions due to the data dis-
tribution in the database and due to 
local extrapolation outside the data 
range. The higher the     value is, the 

more steel ingots (relatively to the total 
number of test steel ingots in database) 
with input parameters similar to the in-
put parameters of the prediction vector 
exist in the database. 

In the case of using CAE for the es-
timation of the inclusions, which de-
pends on, e.g. three input parameters, 
namely content of oxygen (O) and sul-
phur (S) in charge on one side and the 
amount of Al blocs (Al) relative to the 
total weight of charge on the other side, 
the equation for an can be written as:
	
	

(6)

Results and discussion
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5 and 9 indicates charge samples taken 
during steel processing at LFVD. 

Standards used for the determining 
the inclusion content of steel
Purity of steel is defined by the amount 
of nonmetallic inclusions. Nonmetallic 
inclusions can be found practically in 
any steel. The quantity, chemical com-
position and distribution of inclusions 
depends on the manufacturing process 
of steel. In general, nonmetallic inclu-

sions lower the quality, workability 
and mechanical properties of steel.

Different test methods for determina-
tion of content of nonmetalic inclusions 
exist (e.g. standards ISO 4967 [24], 
ASTM M45 [25] – ISO, DIN 50 602 
[26] – M and K method). They cover a 
number of recognized procedures (mac-
roscopic and microscopic methods) for 
determining the nonmetallic inclusion 
content of wrought steel. The methods 

Figure 2. Correlations between different standards, taking into consideration only the 
incidence but not the absolute value of the inclusions. N and Nr indicate the number of 
charges and number of inclusions, respectively, used in the analysis.
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are primarily intended for rating inclu-
sions. Constituents such as carbides, 
nitrides, carbonitrides, borides, and 
intermetallic phases may be rated us-
ing some of the microscopic methods. 
However, in order to model the phe-
nomena of inclusions mathematicaly 
(i.e. developing of the non-parametric 
model), a mathematical representation 
of such knowledge is neeeded. To this 
end, we first look for correlations be-
tween different standards in order to 
identify the most appropriate method 
for modeling inclusionss. The purpose 
of this study was not to understand pre-
cisely the methods and  physical back-
ground of each type, size and amount 
of inclusions, but the mathematical for-
malization of knowledge, contained in 
different standards.

DBSteel database contains informa-
tion of the same charges that were 
inspected using two or three standars 
simultaneously. Correlations between 
different standards, taking into consid-
eration only the incidence but not the 
absolute value of the inclusions, were 
shown in Figure  2. Note that in one 
charge different type of inclusions may 
appear (therefore Nr ≥ N). Graphs indi-
cate that the standards differ from each 
other and describe inclusions in dif-
ferent ways. Consequently, customers 
according to their needs, require con-
sideration of inclusions using the de-
sired standard. Figure 2 indicates that 
mapping from one standard to another 

is more reliable than vice versa (e.g. 
mapping ISO to K or ISO to M).

Effectivness of the non-parametric 
CAE model
The effectivness of the CAE model 
can be estimated by the average pre-
diction error Ek. It is defined for k-th 
output variable and can be determined 
with the “leave one out cross validation 
method”. The method computes the 
prediction of k-th inclusion for every 
charge sample, whereas the predicted 
k-th charge sample is excluded from 
the database. With averaging of the 
absolute errors of predictions for all N 
charge samples Ek is calculated as:

( )2

1

1 1 ˆ
N

k nk nk
nk

E c c
c N =

= −∑              (7)

where    is the average of the known 
k–th outputs of all the model vectors 
cnk (charge samples) and ĉnk is the pre-
diction of the measured value cnk of the 
k–th output (inclusion of some type) of 
the n-th model vector (charge sample).

Figure 3 shows the results of »leave one 
out cross validation method« for two 
different smoothing parameters. Stud-
ied is the inclusion of type Ad according 
to the ISO 4967 standard. In the CAE 
non-parametric model some important 
chemical elements (C, S, Si, Mn, …), 
some most influential suplements (FeSi, 
FeCrC, …), Al blocs and oxygen were 

kc
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taken into account. The obtained results 
reveal large scatter. It can be concluded 
that (1) there is high uncertainty in the 
(subjective) determination of inclusions, 
and (2) in order to reduce the scatter in 
the predictions more influential input 
parameters must be taken into account. 
Nevertheless, existent model can give 
a sound qualitative relations between 
input parameters and different types of 
inclusions, as shown in the next section. 
The optimal smoothing parameter was 
found to amount around 0.05, however, 
in order to reveal clear qualitative rela-
tionships somewhat  larger value was 
used (e.g. 0.1 or 0.2).

Influence of important parameters 
on inclusions according to the ISO 
4867 standard
Due to the limited space only a few 

selected results are presented and dis-
cussed in this paper. In order to show 
different behaviour in nonmetalic 
inclusions, results for four different 
types, namely Ad, At, Dd and Dt are 
shown and discussed.

Figure 4 reveals that higher content of 
sulphur increases nonmetalic inclusions 
of type At and Ad. Its influence is un-
favourable, but more for inclusions of 
type Ad. Influence of oxygen (Figure 5) 
is very important and amounts up to 5 
% of total contribution. In general, more 
oxygen increases nonmetalic inclusions 
of type Dd, whereas the influence of Al 
blocs is relatively small. Note, that use 
of smaller value of smoothing param-
eter reveals localy larger influence of Al 
blocs which may be taken into account 
when optimization is applied. 

Figure 3. Results of the »leave one out cross validation method« for inclusion type Ad, 
using two different smoothing parameters.

w = 0.01, E1 = 3.598 w = 0.05, E1 = 3.492
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Figure 4. Influence of sulphur (S) after taking first (left) and second (right) charge sam-
ple on nonmetalic inclusions At and Ad. 

Figure 5. Influence of Al blocs and oxygen (tapping weight in mass fractions w/%) on 
nonmetalic inclusion Dd after taking second charge sample. 

w = 0.2 w = 0.05

Figure 6 reveals the influence of 
oxygen and Al blocs on nonmetalic 
inclusions of type Dt. Influence of 
both parameters is now reversed. 

Moreover, in absolute terms, both 
influences are small and relatively 
insignificant. 



379Development of intelligent knowledge-based computing environment for ...

RMZ-M&G 2011, 58

In general, it can be observed the impor-
tant impact of different input parameters 
at different stages, suggesting that a spe-
cific physical phenomena is associated 
with a specific type of the nonmetalic 
inclusion. The results also suggest that 
some types of inclusions can be influ-
enced more efficiently at earlier stages 
and some types of inclusions at later 
stages of the production process.

Conclusions

In the paper the development of intel-
ligent knowledge-based computing en-
vironment for controling the processes 
in the real industrial steel production 
was presented. The problem addressed 
is extremely complex due to the large 

number of influential parameters. Ap-
plication of modern information and 
communication technologies and some 
artificial intelligence methods enables 
us to develop and propose one possible 
solution to this problem.

Within this study the CAE non-para-
metric mathematical model of nonmet-
alic inclusions was developed. Analy-
sis of the obtained results lead us to the 
folowing conclusions:
•	 	There is a strong correlation be-

tween chemical composition of 
melts, Al blocs for dezoxidation 
and different supplements added at 
various stages, and nonmetalic in-
clusions. Relatively small number 
of input parameters (a limited num-
ber of elements of chemical com-

Figure 6. Influence of Al aluminium blocs and oxygen (tapping weight in mass frac-
tions w/%) on nonmetalic inclusion Dt after taking second charge sample. 

w = 0.2 w = 0.1
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position and a limited number of 
some most important suplements) 
taken into account in the existing 
model reveals large scatter of the 
obtained results. It is expected that 
use of a higher number of input pa-
rameters will reduce the scatter and 
improve the prediction.

•	 	It is evident that the standards ISO 
4967 and ASTM E45 systematical-
ly overestimates the value of small-
er At (between 0.5 and 1.5). This 
probably result from a subjective 
human assessment or deliberately 
conservative estimate of nonmet-
alic inclusions by the producer. It 
should also be noted that the stand-
ard itself has shortcomings which 
may result in the above overesti-
mations, when it tries to address a 
physical phenomenon, which is not 
linear.

•	 	The majority of nonmetalic inclu-
sions can be most effectively in-
fluenced at the early stages of the 
EAF process (e.g. during the time 
of taking the first or second charge 
samples). But closer to the end of 
the process we approach the harder 
it become to influence the nonmet-
alic inclusions.

There is still long way to sufficiently 
describe the whole phenomenon of 
nonmetalic inclusions in steels. How-
ever, the results presented in this study 
show that the entire process can be ful-
ly mathematicaly described and then 

optimized in order to minimize the 
nonmetalic inclusions.
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