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Abstract 
General formulae are obtained for the PI (Padmakar-Ivan) index of polyacenes. The PI is a 
newly proposed molecular-graph-distance-based structural descriptor. By means of this 
result it was possible, for the first time, to examine relative correlation potential of Wiener 
(W)-, Szeged (Sz)- first-order connectivity (1χ), and PI indices in developing Quantitative 
Structure-Property Relationships (QSPRs) of polyacenes in that hydrophobicity of 
polyacenes is used as the correlating property. 
 
 

Introduction 
 A topological index is a numerical quantity derived in an unambiguous manner 

from the structural graph of a molecule.1–5 It is a number extracted by a well defined 

algorithm from a graphical representation of a molecule. There is good reason to believe 

that often our difficulties in attributing a meaning to this number lie under deeper 

chemical theories and higher level languages and not from esoteric approaches to its 

definition. These indices are graph invariants which usually reflect molecular size, 

shape, branching, and heterogenicity.4,5  

 Wiener originally defined6 his index (W) on trees and studied its use for 

correlations of physicochemical properties of alkanes, alcohols, amines, and their 

analogous compounds.7,8 

 The original definition6 of Wiener index (W) was given in terms of edge 

weights. In an arbitrary tree, every edge is a bridge, that is, after deletion of the edge; the 

graph is no more connected. The weight of an edge is taken to be the product of the 

number of vertices in the two connected components. This number also equals the 
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number of all shortest paths in the tree, which go through the edge. Therefore, the usual 

generalization to the Wiener Index (W) on arbitrary graphs is defined to be the same of 

all distances in a graph. 

 Another natural generalization was previously put forward by Gutman9,10 and 

called the Szeged index, abbreviated as Sz. Now, the weights of edges are taken to be 

the product of the numbers of vertices closed to the two ends of the edge. For reasons to 

introduce Szeged index, and for its basic properties, uses see reference.11–60 

 Wiener index (W) is the first, oldest, and widely used topological index. Even to 

day it is widely used in chemistry.11–60 The Szeged index (Sz) is considered as a 

modification of Wiener index (W) to cyclic graphs.11 For trees (acyclic graphs) Wiener 

and Szeged indices coincide. Comparatively little is known on the applications of 

Szeged index in chemistry. 

 For the reason of the coincidence of Wiener and Szeged indices in case of trees 

(acyclic graphs), we have very recently introduced another Szeged / Wiener-like 

topological index and named it Padmakar-Ivan index, and abbreviated as PI.61–66 Unlike 

Szeged index (Sz), PI index is different for trees as well as for cyclic graphs, and not 

much is known about the applicability of PI index in chemistry. 

 In our earlier publications61–66 we have defined PI index and discussed some of 

its characteristics and applicability in developing quantitative structure-property-activity 

(QSPR/QSAR) relationships and observed that PI index is quite useful in this respect. In 

addition, we have made comparative study of PI index with several other topological 

indices including W, Sz, and connectivity indices (mχR) and observed that PI index in 

some cases gives better results.40,67 There we have used physicochemical property and 

biological activity of n-alkanes, cycloalkanes, alcohols, polychlorinated biphenyls, and 

monosubstituted nitrobenzene. However, we have not included benzenoid hydrocarbons 

in such studies. The present communication is, therefore, an extension of such study to 

benzenoid systems, in that we discuss the methods for the calculation of PI index for 

polyacenes. The other objective of our present study is to compare W, Sz, and PI indices 

of polyacenes. Finally, we will make an attempt to use PI index for modeling 
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hydrophobicity (logP) of polyacenes, thus attempting QSPR/QSAR for this interesting 

class of benzenoid hydrocarbons. The results as discussed below show that we are quite 

successful in this respect. 

Results and Discussion 
Linear Polyacenes 

 Linear polyacenes (Figure 1) are the most thoroughly investigated homologous 

series of conjugated molecules (benzenoid systems). A plethora of theoretical work 

exists devoted to these systems.68–80 However, nothing is known regarding different 

methods of calculating PI index of polyacenes and their applicability in QSPR/QSAR 

studies. For QSPR/ QSAR study we need methods for efficient calculations of PI index. 

Below we present such methods. However, we first repeat in brief, the general definition 

of PI index. 

 

 

 

 

 Lh
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Fig. 1.  Polyacene molecules 

Definition of PI Index 

 Let G be a molecular graph, the vertex and edge sets of which are represented by 

V(G) and E(G) respectively. If e is an edge of G, connecting vertices u and v then we 

write e = uv. The number of vertices of G is denoted by |G|. 

 The distance between a pair of vertices u, w of G is denoted by d(u,w|G). 

 We define for e = uv, two quantities ηeu(e|G) and ηev(e|G). ηeu(e|G) is the 

number of edges lying closer to the vertex u than the vertex v, and ηev(e|G) is the 

number of edges lying closer to the vertex v than the vertex u. Edges equidistant from 
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both ends of the edge uv are not counted (taken into account), then the PI index is 

defined as:61–66 

 PI = ∑ [ η
e

eu (e|G) + ηev(e|G) ]      (1) 

The summation goes over all the edges of G. 

 

The PI Index of Polyacenes 

 As stated earlier, in order to be able to undertake studies on the applicability of 

PI index of polyacenes, we need method(s) of its efficient calculation. In the following 

sections we present such methods for the calculation of PI index of polyacenes for the 

first time. 

 It is well known that polyacenes are linearly para-annelated benzenoids, which 

possesses transitional symmetry (Figure 1). Chemistry of polyacenes is still very much 

of interest to synthetic chemists, environmental chemists, cancer research chemists, 

structural chemists, etc.73–80 We believe that now PI index will be of better value for 

such diversified studies. 

 The hexagonal chain whose h hexagons are arranged in a linear manner is 

denoted by Lh; the respective benzenoid hydrocarbons form the linear homologous series 

(benzene, naphthalene, anthracene, etc.) Note that the number of hexagons in the 

hexagonal chain C is denoted by h. Thus, we have C1 = L1, C2 = L2, C3 = L3, ....., and so 

on. The structure of polyacene (Lh) is shown in Fig.1. 

 From the definition of PI index (equation 1) and from the molecular graph of 

polyacene molecules (Figures 2 and 3), we observed that for any edge like aibi, aibi+1, 

cidi, dici+1, i = 1,2,3,….,n, we have: 

 

 

Fig. 2.  Molecular graph (Gh) of polyacenes 
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Fig. 3.  Case of polyacenes used for the estimation of PI index  

 η1(e)  =  | E1 | = 5i – 3       (2) 

and η2(e)  =  | E2 | = 5h – (5i – 2)      (3) 

Thus giving, 

 η1(e) + n2(e) = | E1 | + | E2 | = 5h -1     (4) 

Similarly, for any edge like bici, i = 1,2,3,….., h+1, we have: 

 η1(e) + n2(e) = | E1 | = | E2 | = 4h      (5) 

 Hence, PI index of he polyacene will be given by: 

 PI(Lh) = 4h (5h – 1) + 4h(h +1) = 24 h2     (6) 

 Recall that Lh has 2 (2h + 1) = n vertices. In view of this PI(Lh) in terms of 

vertices n is given by the following expression: 

 PI (Lh) = 3/2 (n-2)2        (7) 

 The PI indicates so calculated for the first 20 polycaenes are given in Table 1. 

A Case when Calculation of PI Index for Polyacene is Easy 

 Now consider Figure 4B, in that edges eo, e1, e2, e5 …., er are called vertical 

edges of the polyacenes and are represented by VE, while those denoted by ei’ and ei” (i 

= 0,1,2,3,….,n) are called non-vertical edges (NVE) of polyacenes. The sum of the 

vertical and non-vertical edges is denoted by m, such that VE + NVE = m. The number of 

hexagons and edges in polyacenes are denoted by h and m respectively. 

 The lines crossing the vertical and non-vertical edges (Figure 4C) are called 

elementary cuts and play a distinguish role in the theory of benzenoid system. 
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 The elementary cuts for the vertical edges (eo, e1, e2,…., er) is presented by Co. 

The elementary cuts of non-vertical edge for the ith hexagon is represented by Ci’ and 

Ci” respectively in Figure 4C. 
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Fig. 4.  Used for proposing alternative method of estimation PI index of polyacenes 

 The values of h, n, VE, NVE and m for the first twenty members of the polyacene 

series are given in Table 1. The PI values estimated from Equation (1) are given in 

Table 2. The PI values calculated from equations (6) and (7) are also found to be the 

same. 

 Now, a critical examination of the calculation PI index using equation (1) 

indicates that in terms of VE, NVE and m the estimation of PI index is still easy and 

consists of the following two terms: 

 (1)  (VE) . (NVE),  and    

(2)  (m-2) . NVE 

Thus giving: 

 PI  =  (VE) . (NVE) + (m-2) NVE      (8)  
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 Say for example, for the polyacenes L1 (i.e.,benzene, VE =2,NVE = 4. Therefore, 

m = VE + NVE = 6. 

 Therefore, equation (8) gives PI Index for L1 as: 

 PI (L1) = (2 x 4) + (6 – 2) 4 = 8 + 16 = 24     (9) 

which comes out to be the same when PI index for L1 is calculated from equations (1), 

(6) and (7). 

 

Table 1. Calculated values of PI index for polyacenes using equation 1 and the logP 
values of polyacene molecules. 

S. No. L n Names of abbreviated 
polyacenes 

PI LogP 

1 1 6 L1 24 2.202 

2 2 10 L2 96 3.396 

3 3 14 L3 216 4.590 

4 4 18 L4 384 5.784 

5 5 22 L5 600 6.978 

6 6 26 L6 864 8.172 

7 7 30 L7 1172 9.366 

8 8 34 L8 1536 10.560 

9 9 38 L9 1922 11.754 

10 10 42 L10 2400 12.948 

11 11 46 L11 2904 14.142 

12 12 50 L12 3456 15.336 

13 13 54 L13 4056 16.530 

14 14 58 L14 4704 17.724 

15 15 62 L15 5400 18.918 

16 16 66 L16 6144 20.112 

17 17 70 L17 6936 21.306 

18 18 74 L18 7776 22.500 

19 19 78 L19 8664 23.694 

20 20 82 L20 9600 24.880 

 

 

P. V. Khadikar, S. Karmarkar, R G. Varma: On the estimation of PI index of polyacenes 



Acta Chim. Slov. 2002, 49, 755−771. 762

 

Table 2.  Data needed for alternative method for the calculation of PI index of 
polyacenes 

Polyacenes L n NVE VE NVE+VE PI from eqs. 8, 13 & 
14 

L1 1 6 4 2 6 24 
L2 2 10 8 3 11 96 
L3 3 14 12 4 16 216 
L4 4 18 16 5 21 384 
L5 5 22 20 6 26 600 
L6 6 26 24 7 31 864 
L7 7 30 28 8 36 1176 
L8 8 34 32 9 41 1536 
L9 9 38 36 10 46 1949 
L10 10 42 40 11 51 2400 
L11 11 46 42 12 56 2904 
L12 12 50 48 13 61 3456 
L13 13 54 52 14 66 4056 
L14 14 58 56 15 71 4704 
L15 15 62 60 16 76 5400 
L16 16 66 64 17 81 6144 
L17 17 70 68 18 86 6936 
L18 18 74 72 19 91 7776 
L19 19 78 76 20 96 8664 
L20 20 82 80 21 101 9600 

 

 Similarly, we can calculate PI indices for the set of 20 polyacene molecules from 

their respective values of VE, NEV and again found to be the same as presented in Table 

1 (Table 2). 

A Case when Estimation of PI is Still Easier 

 A perusal of Table 2 shows that: 

 VE  =  h + 1               (10) 

and  NVE = 4h                   (11) 

So that, 

 m = 4L + h + 1  =  5h + 1              (12) 
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 Substituting the values of VE, NEV, and m in equation (8) we get the following: 

 PI  =  (VE) (NVE) + (m – 2) NVE          (13) 

      = 4h (h + 1) + { (5h + 1 – 2) 4h }          

      =  4h (h + 1) + 4L (5h – 1) 

      =  4h { h + 1 + 5h – 1 }  

      =  4h (6h) 

      =  24h2             (14) 

 Thus, the estimation of PI index of polyacenes is made still easier by equation 

(13). 

 

Comparison of W, Sz, and PI Indices of Polyacenes 

 It will be interesting to study relatedness among W, Sz, and PI indices of 

polyacenes. Such a study will provide us a way to predict their relative correlation 

potential in developing QSPR/QSAR relationships. 

 As stated above the expression for estimating PI index (equation 6) is: 

 PI (Lh) = 24 h2  

The corresponding expressions for estimating W and Sz are as under:77,78 

 W (Lh) = 1/3 (16h3 + 36h2 + 26h + 3)                 (15) 

 Sz (Lh) = 1/3 (44h3 + 72h2 + 43h + 3)                 (16) 

 From the aforementioned equations (15) and (16) we observed that Sz index for 

linear polyacenes have a similar cubic polynomial dependence on molecular size as that 

of W index, but PI has not. Furthermore, the coefficient involved in these equations (15) 

and (16) are much higher than in the equation (6). In fact the coefficients of h terms are 

largest for equation (16). This indicates that the numerical value of Sz will be the largest 

among the three topological indices under present investigation. The order of the 

magnitudes of W, Sz, and PI indices follow the following sequence: 

 Sz (Lh) > W (Lh) > PI (Lh)             (17) 

 The values of Sz, W and PI indices for the first 20-polyacene molecules are 

presented in Table 3. The best account of the relatedness of W, Sz and PI of polyacenes 
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could be made by subjecting the data in Table 3 to regression analysis. First step in such 

a study is to obtain correlation matrix. Such a matrix obtained in the present study is 

presented in Table 4. The regression analysis gives regression parameters as well as 

quality of relatedness.81–85 The quality parameters are presented in Table 4. 

Table 3.   W, Sz, PI and 1χ indices of polyacenes 

Polyacenes W Sz PI 1χ 
L1 27 54 24 3.000 
L2 109 243 96 4.967 
L3 279 640 216 6.933 
L4 569 1381 384 8.899 
L5 1011 2506 600 10.866 
L6 1637 4119 864 12.832 
L7 2479 6308 1176 14.798 
L8 3569 9161 1536 16.765 
L9 4939 12766 1944 18.731 
L10 6621 17211 2400 20.697 
L11 86457 22584 2904 21.663 
L12 11049 28933 3456 24.630 
L13 13859 36466 4056 26.596 
L14 17109 45151 4704 28.562 
L15 20831 55116 5400 30.529 
L16 25057 66449 6144 32.495 
L17 29819 292230 6936 34.641 
L18 35149 93571 7770 36.428 
L19 41079 109536 8664 38.394 
L20 47641 127221 9600 40.360 

 

Table 4. Correlation matrix for investigating relatedness among W, Sz, and PI indices 
of poylacenes 

 W Sz PI 

W 1.0000   

Sz 0.9999 1.0000  

PI 0.9887 0.9885 1.0000 

 

Proposed regression expressions: 

 PI (Lh) = 0.1672 (+ 0.0053) W (Lh) + 1075.3313 
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 PI (Lh) = 0.0625 (+ 0.0020) Sz (Lh) + 1096.6398 

Quality of aforementioned correlations: 

Correlation Se R F P Q 

PI – W 724.1565 0.9887 1001.679 0.000E+00 0.0014 

PI – Sz 731.8385 0.9885 980.280 0.000E+00 0.0014 

 

 A perusal of Table 4 shows that W, Sz and PI are highly linearly correlated; Sz 

correlates with W slightly more than PI index; while the correlation of PI index with W 

and Sz is similar. The corresponding relatedness of PI with W and Sz is given by the 

following regression expressions: 

 PI (Lh)  =  0.1672 W (Lh) + 1075.3313           (18) 

and  PI (Lh)  =  0.0625 Sz (Lh) + 1096.6398           (19) 

 The corresponding qualities viz., standard error of estimation (Se), correlation 

coefficient (R), F-ratio, and probability values also indicates similar relatedness between 

PI-W and PI-Sz (Table 4). 

 It is worth recording that in addition to high relatedness, a particular index will 

be preferred over the other index in that fewer efforts are made for its estimation. 

Therefore, compared to both W and Sz, PI index is better as it is given by 4h2 only. 

Thus, least efforts are required for its calculation. 

 From the aforementioned results and discussion we can conclude that correlation 

potential of W, Sz, and PI indices are similar. Also that, like W and Sz, PI index also 

takes care of size, shape and branching. The size-shape dependence of W and Sz is well 

established[86-88]. But, as discussed below we observe that PI index contains hither to 

unknown structural features, which dominates over size and shape. This makes PI index 

to give better results than W and Sz in some cases.61 
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Modeling of Hydrophobicity of Polyacenes Using W, Sz, and PI Indices 

 It is well established that hydrophobic interaction in biosystems can be modelled 

by logP i.e. logarithm of partition coefficient (P) between octanol-water or in some 

other suitable organic solvent / water partitioning systems.81–92 Modeling of logP with 

molecular descriptors (topological indices) has two-fold advantage, first logP is 

considered as a physicochemical property and secondly it can also be used to represent 

physiological activity of organic compound acting as drugs.   

 The logP values89–92 for the first 20 polyacene molecules are presented in Table 

5. In addition to W, Sz and PI indices we have also chosen 1χ-index67 because it is most 

widely used topological index in QSPR and QSAR studies. That is now, we are 

considering relative ability of W, Sz, PI, and 1χ indices for modeling, monitoring, 

estimating logP of polyacenes. These 1χ values are presented in Table 3. 

 

Table 5. Correlation matrix for investigation relatedness among W, Sz, PI, and 1χ and 
their correlation with logP of polyacene molecule 

 LogP W Sz 1χ PI 

LogP 1.0000     

W 0.9264 1.0000    

Sz 0.9258 0.9999 1.0000   
1χ 0.9999 0.9273 0.9267 1.0000  

PI 0.9707 0.9887 0.9885 0.9713 1.0000 

 

 

Proposed regression expressions for modeling logP of polyacene molecules using 

W, Sz, 1χ, and PI indices. 

 logP  =  2.9087 x 10-4 (+ 2.4652 x 10-5) W + 9.171; 

 logP  =  1.088 x 10-4 (+ 9.2641 x 10-6) Sz + 9.211; 

 logP  =  0.6070 (+ 1.7450 x 10-3) 1χ + 0.1240; 

 logP  =  1.8027 x 10-3 (+ 9.3062 x 10-5) PI + 6.9680. 
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Quality of aforementioned correlations: 

Correlating 
parameter 

Se R F P Q 

W 3.3800 0.9260 139.215 3.099 x 10-11 0.2740 

Sz 3.3940 0.9260 137.867 3.406 x 10-11 0.2728 

1χ 0.1240 1.0000 120842.000 0.00E+0 8.0645 

PI 2.1570 0.9710 375.224 0.000E+0 0.4502 

 

 We have first obtained correlation matrix for the parameters W, Sz, PI, 1χ and 

logP (Table 5). This correlation matrix indicates that compared to both W and Sz, PI-

index is a better topological index for modeling logP of polyacene molecules. However, 
1χ is the most appropriate index for this purpose. That is, correlation potential of PI 

index in modeling logP is inferior to 1χ but superior than W and Sz. Whether this is the 

case with other properties / activities is a problem for further investigation. Attempts in 

this direction are under way and the results will be published soon. 

 In order to obtain better insight into the problem of modeling logP with W, Sz, 

PI, 1χ we have subjected the data to regression analysis and obtained corresponding 

regression parameters i.e., the values of Se, R, F, P and Q  (Table 5). Here, Q is the 

quality factor93,95 obtained from the ratio of correlation coefficient (R), and standard 

error of estimation (Se) (Q = R/Se). The advantage of using Q is that it takes accounts of 

R and Se simultaneously. The quality factor Q is directly proportional to R and inversely 

proportional to Se. Hence, larger the value of R, smaller the Se, higher will be Q, and the 

better will be the proposed correlation. 

 The data presented in Table 5 indicates that correlation potential of W and Sz in 

modeling logP of polyacene molecules is similar. The PI index, is slightly more efficient 

than W and Sz for this purpose and that 1χ is the most appropriate index among W, Sz, PI 

and 1χ for modeling logP.    Q-values show that 1χ is almost two-fold better index than 

PI, and that the relative potential of the topological indices in modeling logP follow the 

following sequence. 

 1χ(Lh) > PI(Lh) > W(Lh) ≈ Sz(Lh)            (20) 
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 Once again we state that shape-size dependence of W and Sz is well established. 

Inspite of high collinearity among W, Sz, and PI, the PI index is found better than both 

W and Sz. The Q-value of 0.4502 compared to ≈ 0.2746 or 0.2728 indicates that in 

addition to size and shape, the PI index contain some other hither to unknown structural 

feature, which dominates over shape and size. As stated earlier the study in this direction 

is underway and results will be published soon. 

 In order to investigate probable unknown parameter(s) hidden in PI index we 

considered the polynomials for logP = f(L) and logP = f(1χ). From the data presented in 

Table 5 we have: 

 logP = 1.8022 x 10-3 (+ 9.3062 x 10-5) PI + 6.9680   (21) 

and, logP = 0.6070 (+ 1.7450 x 10-3) 1χ + 0.1240    (22) 

 The first order connectivity index (1χ) conveys more information about the 

number of atoms in a molecule. Therefore, according to equation (22) it is the atomic 

contribution, which accounts for the exhibition of logP. Similarly, according to equation 

(21), the PI index is directly related to logP. While the defination of PI index (= 24 h2, 

equation 6) shows that PI is directly related to number of cycles (h) present in the 

polyacene molecule. Hence, the unknown parameter hidden in PI index is the cyclicity. 

That is, in additive to first, shape, branching, the PI index also accounts for cyclicity, 

thus, hither to unknown structural feature contain in PI index is the cyclicity which 

domination over shape and size. 

Conclusions 
 The aforementioned results and discussion lead us to the following conclusions: 

(1)  The estimation of PI index for polyacene molecules is much simpler than the 

estimation of W and Sz; 

(2)  Both W and Sz are cubic polynomials while PI index is not; 

(3)  Coefficient of h parameters in the corresponding expressions proposes the 

following order of magnitudes of W, Sz, and PI. 

 Sz(Lh) > W(Lh) > PI(Lh); 
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(4) High collinearity among W, Sz, and PI indicates their similar correlation 

potential in proposing QSPR/QSAR models, and also their similar dependence 

on shape and size; 

(5)  High quality of correlation of logP with PI, compared to both W and Sz, 

indicates that in addition to size and shape, the PI index depends upon some 

hither to unknown structural feature which dominates over shape and size. 

 

Experimental 
 For the calculation of PI index the molecular structures are transformed into their 

molecular graphs in that atoms (vertices) are depicted by dots and bonds (edges) by 

small lines. 
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Povzetek  
Prikazane so splošne formule za PI (Padmakar-Ivan) indekse poliacenov. PI je na novo 
predlagan strukturni descriptor molekularne strukturne formule in razdalj. Na osnovi 
prikazanih rezultatov je možno primerjati uporabnost Wienerjevih (W)-, Szegedovih (Sz)- 
povezav prve vrste (1χ) in PI indeksov v razvijanju QSPR poliacenov, pri čemer kot 
korelacijsko lastnost uporabimo hidrofobnost. 
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