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Preface

Resonances remain an important tool to study the structure and dynamics of
hadrons and an efficient catalyst for our traditional Mini-Workshops at Bled. The
many ideas, questions and responses presented at our meeting should not fade
away and we thank the participants for submitting their contributions to the Pro-
ceedings as a permanent reminder of our common interests and discussions.
An important aspect of the talks was the bridge between the phenomenological
phase shift analyses and the theoretical interpretation of resonances. Attempts
were shown to relate experimental data to pole parameters in a model-indepen-
dent way, introducing additional constraints to obtain a unique solution. This
year, the emphasis was on meson photoproduction, in particular of η and η′, as
well as doubly-polarized pion electroproduction. Of interest was also pion pho-
toproduction on bound neutrons and the forward neutron asymmetry in proton-
nucleus collisions.
The Roper resonance is still a challenge. It is not clear to which extent it is pre-
dominantly a three-quark system or a dynamically generated resonance. The dy-
namics of other baryons also requires an extension beyond the valence quark con-
figurations. The knowledge of the baryon form-factors has improved both due to
new experimental analyses as well due to new theoretical perspectives, especially
regarding transition form-factors.
It was interesting to learn about the cluster separability in relativistic few body
problems, about phase rotation ambiguities, and about the progress in under-
standing strength functions in hadronic and nuclear dynamics.
The third emphasis was on new resonances in the charm sector. The meson and
baryon resonances discovered at the Belle detector at KEKB are still being anal-
ysed in order to determine their quantum numbers and their double-qq̄ or “molec-
ular” dimeson structure. In view of the forthcoming Belle2 upgrade it is time
to analyse the prospects of identifying the double charm baryons and the DD∗

dimesons (tetraquarks).
We were very happy to host such enthusiastic participants. We do hope to meet
you at Bled again soon and that you will enjoy reading these Proceedings and
refresh your memories of the subjects of our common interest. Perhaps you might
wish to offer these Proceedings to your colleagues as a temptation to join us at
Bled in the near future.

Ljubljana, November 2017 B. Golli, M. Rosina, S. Širca

The full color version of the Proceedings are available at
http://www-f1.ijs.si/BledPub, and the presentations can be found at
http://www-f1.ijs.si/Bled2017/Program.html.





Predgovor

Resonance so še vedno pomembno orodje za študij zgradbe in dinamike hadro-
nov, pa tudi učinkovit katalizator za naše tradicionalne Blejske delavnice. Mnoge
zamisli, vprašanja in odzivi, ki smo jih predstavili na našem srečanju, ne smejo
oveneti, zato se zahvaljujemo udeležencem, da so poslali svoje prispevke kot tra-
jen spomin na naša skupna zanimanja in razprave.

Pomemben vidik predavanj je bil most med fenomenološko analizo faznih pre-
mikov in teoretičnim tolmačenjen resonanc. Predstavljeni so bili poskusi, kako
povezati eksperimentalne podatke s parametri polov na modelsko neodvisen
način, s tem da se vpeljejo dodatni pogoji, ki vodijo do enolične rešitve. Letos
je bil poudarek na fotoprodukciji mezonov, zlasti η in η′, pa tudi na elektropro-
dukciji dvojno polariziranih pionov. Zanimiva je bila tudi fotoprodukcija pionov
na vezanih nevtronih ter asimetrija nevtronov, ki letijo naprej pri trkih protonov
na jedrih.

Roperjeva resonanca predstavlja še vedno izziv. Ni še jasno, do katere mere je
pretežno sistem treh kvarkov ali dinamično povzročena resonanca. Dinamika
mnogih drugih barionov tudi zahteva razširitev modelov na konfiguracije, ki pre-
segajo zgolj valenčne kvarke. Poznavanje barionskih oblikovnih faktorjev se je
izpopolnilo zaradi novih eksperimentalnih analiz kakor tudi zaradi novih teo-
retičnih pogledov, zlasti v zvezi z oblikovnimi faktorji za prehode.

Zanimiv je bil vpogled v ločljivost gruč pri relativističnem problemu malo teles,
v mnogoličnost rotacije faz, pa tudi napredek pri razumevanju jakostnih funkcij
v hadronski in jedrski dinamiki.

Tretji poudarek je bil na novih resonancah v čarobnem sektorju. Mezonske in bar-
ionske resonance, ki so jih odkrili na detektorju Belle na pospeševalniku KEKB, še
vedno analizirajo, da bi določili njihova kvantna števila in njihovo “molekularno”
dimezonsko zgradbo v zvezi z dvojnimi pari qq̄. V perspektivi skorajšnjega pove-
čanja detektorja Belle2 je čas, da prevetrimo možnosti identifikacije dvojno čarob-
nih barionov ter dimezonov (tetrakvarkov) DD∗.

Čutimo se srečne, da smo se družili s tako navdušenimi udeleženci. Upamo, da
vas bomo spet kmalu videli na Bledu in da boste uživali branje tega Zbornika in
osvežili spomine na probleme našega skupnega zanimanja. Morda boste ponudili
ta Zbornik svojim kolegom kot vabo, da se nam v bližnji prihodnosti pridružijo
na Bledu.

Ljubljana, november 2017 B. Golli, M. Rosina, S. Širca

Barvno verzijo lahko dobite na http://www-f1.ijs.si/BledPub in prosoj-
nice predavanj na http://www-f1.ijs.si/Bled2017/Program.html.
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η and η ′ photoproduction with EtaMAID including
Regge phenomenology?

V. L. Kashevarov, L. Tiator, M. Ostrick

Institut für Kernphysik, Johannes Gutenberg-Universität, D–55099 Mainz, Germany

Abstract. We present a new version of the EtaMAID model for η and η ′ photoproduction
on nucleons. The model includes 23 nucleon resonances parameterized with Breit-Wigner
shapes. The background is described by vector and axial-vector meson exchanges in the t
channel using the Regge cut phenomenology. Parameters of the resonances were obtained
from a fit to available experimental data for η and η ′ photoproduction on protons and
neutrons. The nature of the most interesting observations in the data is discussed.

EtaMAID is an isobar model [1, 2] for η and η ′ photo- and electroproduction
on nucleons. The model includes a non-resonant background, which consists of
nucleon Born terms in the s and u channels and the vector meson exchange in the
t channel, and s-channel resonance excitations, parameterized by Breit-Wigner
functions with energy dependent widths. The EtaMAID-2003 version describes
the experimental data available in 2002 reasonably well, but fails to reproduce
the newer polarization data obtained in Mainz [3]. During the last two years the
EtaMAID model was updated [4–6] to describe the new data for η and η ′ photo-
production on the proton. The presented EtaMAID version includes also η and η ′

photoproduction on the neutron.
At high energies, W > 3 GeV, Regge cut phenomenology was applied. The

models include t-channel exchanges of vector (ρ andω) and axial vector (b1 and
h1) mesons as Regge trajectories. In addition to the Regge trajectories, also Regge
cuts from rescattering ρP, ρf2 and ωP, ωf2 were added, where P is the Pomeron
with quantum numbers of the vacuum 0+(0++) and f2 is a tensor meson with
quantum numbers 0+(2++). The obtained solution describes the data up to Eγ =

8 GeV very well. For more details see Ref. [7]. Energies below W = 2.5 GeV are
dominated by nucleon resonances in the s channel. All known resonances with
an overall rating of two stars and more were included in the fit. To avoid double
counting from s and t channels in the resonance region, low partial waves with L
up to 4 were subtracted from the t-channel Regge contribution.

The most interesting fit results are presented in Figs. 1-5 together with corre-
sponding experimental data.

In Fig. 1, the total γp→ ηp cross section is shown. A key role in the descrip-
tion of the investigated reactions is played by three s-wave resonances N(1535)1/2−,

? Talk presented by V. Kashevarov
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Fig. 1. (Color online) Total cross section of the γp→ ηp reaction with partial contributions
of the main nucleon resonances. Red line: New EtaMAID solution. Vertical lines corre-
spond to thresholds of KΣ and η ′N photoproduction. Data: A2MAMI-17 [6].
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Fig. 2. (Color online) Total cross section of the γp→ η ′p reaction with partial contributions
of the main nucleon resonances. Red line: New EtaMAID solution. Data: A2MAMI-17 [6],
CBELSA/TAPS-09 [9], and CLAS-09 [10].

N(1650)1/2−, and N(1895)1/2−, see partial contributions of these resonances in
Fig. 1. The first two give the main contribution to the total cross section and are
known very well. An interference of these two resonances is mainly responsible
for the dip atW = 1.68 GeV. However, the narrowness of this dip we explain as a
threshold effect due to the opening of the KΣ decay channel of the N(1650)1/2−

resonance. The third one, N(1895)1/2−, has only a 2-star overall status according
to the PDG review [10]. But we have found that namely this resonance is respon-
sible for the cusp effect atW = 1.96GeV (see magenta line in Fig. 1) and provides
a fast increase of the total cross section in the γp → η ′p reaction near thresh-
old (see black line in Fig. 2). A good agreement with the experimental data was
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obtained for the cross sections of the γp → η ′p reaction, Fig. 2. The main contri-
butions to this reaction come fromN(1895)1/2−,N(1900)3/2+, andN(2130)3/2−

resonances.
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Fig. 3. (Color online) Total cross section of the γn→ ηn reaction with partial contributions
of the main nucleon resonances. Red line: New EtaMAID solution. Data: A2MAMI-14 [11].

Very interesting results were obtained during the last few years for the γn→
ηn reaction. The excitation function for this reaction shows an unexpected nar-
row structure at W ∼ 1.68 GeV, which is not observed in γp → ηp. As an ex-
ample, the total cross section measured with highest statistics in Mainz [11] is
shown in Fig. 3. The nature of the narrow structure has been explained by dif-
ferent authors as a new exotic nucleon resonance, or a contribution of interme-
diate strangeness loops, or interference effects of known nucleon resonances, see
Ref. [12]. In our analyses, the narrow structure is explained as the interference of
s, p, and d waves, see partial contributions of the resonances in Fig. 3. Our full
solution, red line in Fig. 3, describes the data up toW ∼ 1.85 GeV reasonably well
and shows a cusp-like structure at W = 1.896 GeV similar as in Fig. 2 for the
γp→ ηp reaction. However, the data demonstrate a cusp-like effect at the energy
of ∼ 50MeV below. This remains an open question for our analyses as well as for
the final state effects in the data analysis.

Recently, the CLAS collaboration reported a measurement of the beam asym-
metry Σ for both γp → ηp and γp → η ′p reactions [13]. At high energies,
W > 2 GeV, the γp → ηp data have maximal Σ asymmetry at forward and back-
ward directions, see Fig. 4. We have found that an interference of N(2120)3/2−

andN(2060)5/2− resonances is responsible for such an angular dependence. The
data was refitted excluding the resonances with mass around 2 GeV. The most
significant effect we have found by refitting without N(2120)3/2− (black line)
and N(2060)5/2− (blue line). The red line is our full solution.

The beam asymmetry Σ for γp→ η ′p reaction is presented in Fig. 5 with the
GRAAL data [14] having a nodal structure near threshold. Such a shape of the an-
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Fig. 4. (Color online) Beam asymmetry Σ for the γp → ηp reaction. Red line: New Eta-
MAID solution. Results of the refit to the data without N(2120)3/2− are shown by the
black lines and without N(2060)5/2− - blue lines. Data: CLAS-17 [13],
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Fig. 5. Beam asymmetry Σ for the γp → η ′p reaction. Red line: New EtaMAID solution.
Data: GRAAL-15 [14] (black), CLAS-17 [13] (red).

gular dependence could be explained by interference of s and f or p and dwaves.
However, the energy dependence is inverted in all models. The EtaMAID-2016
solution [5] describes the shape of the GRAAL data for Σ, but not the magnitude.
The new CLAS data [13] can not solve this problem because of poor statistics new
threshold. Our new solution describes the Σ data well atW > 1.95 GeV.

In summary, we have presented a new version ηMAID-2017n updated with
new resonances and new experimental data. The model describes the data cur-
rently available for both η and η ′ photoproduction on protons and neutrons.
The cusp in the η total cross section, in connection with the steep rise of the η ′

total cross section from its threshold, is explained by a strong coupling of the
N(1895)1/2− to both channels. The narrow bump in ηn and the dip in ηp chan-
nels have a different origin: the first is a result of an interference of a few reso-
nances, and the second is a threshold effect due to the opening of the KΣ decay
channel of theN(1650)1/2− resonance. The angular dependence of Σ for γp→ ηp

at W > 2 GeV is explained by an interference of N(2120)3/2− and N(2060)5/2−

resonances. The near threshold behavior of Σ for γp→ η ′p, as seen in the GRAAL
data, is still an open question. A further improvement of our analysis will be pos-
sible with additional polarization observables which soon should come from the
A2MAMI, CBELSA/TAPS, and CLAS collaborations.
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Abstract. A strikingly strong atomic mass dependence was discovered in the single spin
asymmetry of the very forward neutron production in transversely polarized proton-nuc-
leus collision at

√
s = 200GeV in PHENIX experiment at RHIC. Such a drastic dependence

was far beyond expectation from conventional hadronic interaction models. A theoretical
attempt is made to explain theA-dependence within the framework of the ultra peripheral
collision (Primakoff) effect in this document using the Mainz unitary isobar (MAID2007)
model to estimate the asymmetry. The resulting calculation well reproduced the neutron
asymmetry data in combination of the asymmetry comes from hadronic amplitudes. The
present EM interaction calculation is confirmed to give consistent picture with the existing
asymmetry results in p↑ + Pb→ π0 + p + Pb at Fermi lab.

1 Nuclear Dependence of Spin Asymmetry of Forward Neutron
Production

Large single spin asymmetries in very forward neutron production seen [1] using
the PHENIX zero-degree calorimeters [2] are a long established feature of trans-
versely polarized proton-proton collisions at RHIC in collision energy

√
s = 200

GeV. Neutron production near zero degrees is well described by the one-pion
exchange (OPE) framework. The absorptive correction to the OPE generates the
asymmetry as a consequence of a phase shift between the spin flip and non-spin
flip amplitudes. However, the amplitude predicted by the OPE is too small to ex-
plain the large observed asymmetries. A model introducing interference of pion
and a1-Reggeon exchanges has been successful in reproducing the experimental
data [3]. The forward neutron asymmetry is formulated as

AN ∝ φflipφnon−flip sin δ (1)

where φflip (φnon−flip) is spin flip (spin non-flip) amplitude between incident pro-
ton and out-going neutron, and δ is the relative phase between these two ampli-
tudes. Although the OPE can contribute to both spin flip and non-flip amplitudes,
resultingAN is small due to the small relative phase. The decent amplitude can be
generated only by introducing the interference between spin flip π exchange and
spin non-flip a1-Reggeon exchange which has large phase shift in between [3].
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During the RHIC experiment in year 2015, RHIC delivered polarized proton
collisions with gold (Au) and aluminum (Al) nuclei for the first time, enabling the
exploration of the mechanism of transverse single-spin asymmetries with nuclear
collisions. The observed asymmetries showed surprisingly strong A-dependence
in the inclusive forward neutron production [4] and the data even change the sign
of AN from p+ p to p+A as shown in Fig.1, while the existing framework which
was successful in p+ p only predicts moderate A-dependence and does not have
any mechanism to flip the sign of AN in any p+A collision systems [5]. Thus the
observed data are absolutely unexpected and unpredicted. The p+Au data point
shows magnificently large AN of about 0.18 which is three times larger than that
of p+ p in absolute amplitude.

A (atomic mass number)
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Fig. 1. (Color online) Observed forward neutron AN in transversely polarized proton-
nucleus collisions [4]. Data points are A=1, A=27, and A=197 are results of p + p, p+Al,
and p+Au, respectively. Red, Blue and Green data points are neutron inclusive, neutron +
BBC veto, and BBC tagged events, respectively.

More interestingly, another drastic dependence ofAN was observed in corre-
lation measurements in addition to the inclusive neutron. In these measurements,
another out-going charged particle was either tagged or vetoed within the accep-
tance of the beam-beam counter (BBC) in both North and South arms which cov-
ers 3.1 ≤ |η| ≤ 3.9. The BBCs cover such a limited acceptance, but the resulting
asymmetries behaved remarkably contradicts. Once BBC hits (BBC tagging) are
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required in both arms (green data points), the drastic behavior of inclusive AN is
vanished and no flipping sign was observed between p + p and p + Au. On the
contrary, the asymmetries are pushed even more positive for p + Al and p + Au

data points once no hits in BBC are required (BBC vetoed) as represented by blue
data points. Further details of the experiment are discussed in reference [4].

2 Ultra-Peripheral Collision (Primakoff) Effects

Due to the smallness of the four momentum transfers of the present kinemat-
ics, i.e. −t ≤ 0.5 (GeV/c)2, the EM interaction may play a role which becomes
increasingly important in large atomic number nucleus. The EM field of the nu-
cleus becomes rich source of exchanging photons between the polarized proton.
This is known as the ultra-peripheral collision (UPC) in heavy ion collider exper-
iments. In the UPC process, there is no charge exchange at the collision vertex
unlike π or a1 meson exchange.

The description of AN is thus extended from Eq. (1) to Eqn. (2), which in-
cludes not only hadronic but also EM amplitudes:

AN ∝ φhad
flipφ

had
non−flip sin δ1 + φEM

flipφ
had
non−flip sin δ2 (2)

+ φhad
flipφ

EM
non−flip sin δ3 + φEM

flipφ
EM
non−flip sin δ4

where ’EM’ and ’had’ stand for electromagnetic and hadronic interactions, and
δ1 ∼ δ4 are relative phases, respectively. The second and the third terms are
known as Coulomb nuclear interference (CNI), which is observed to cause < 5%
asymmetry of elastic scattering in p + p, and p+ C processes [6]. However the
known asymmetry induced by the CNI is not sufficient enough to explain the
present large asymmetry as large as 18%. The main focus of this document is
thus the fourth term, namely the EM interference term. Before starting discussion
on the EM interaction in the present neutron asymmetry, another asymmetry ex-
periment in Fermi Lab is to be introduced in the next section.

3 Fermi’s Primakoff Experiment

Here I introduce one interesting experiment which may be related with the present
forward neutron asymmetry. The experiment [7] was executed in Fermi labo-
ratory using the high energy 185 GeV transversely polarized proton beam. A
large analyzing power observed in π0 production from Pb fixed nuclear target
in |t ′| < 1× 10−3 (GeV/c)2 where Coulomb process is expected to play predom-
inant role. Shown in the left panel of Fig. 2 is the invariant-mass spectrum of the
π0p system in p↑ +Pb→ π0+p+ Pb for |t ′| < 1× 10−3 (GeV/c)2. The prominent
peak in region I (W < 1.36 GeV/c) is the ∆(1232) and the second bump is due to
N∗(1520) resonances. The large negative analyzing power AN ∼ −0.57± 0.12was
observed in the region II of the invariant mass 1.36 to 1.52 GeV, while AN was
consistent with zero in the lower mass W < 1.36 GeV region. The authors claim
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this is due to the interference between the spin-flipping ∆(P33) and spin non-
flippingN∗(P11) resonance amplitudes as shown in the panel (a) and (b) in Fig. 3
via the Primakoff (electro-magnetic EM interaction) effect. The P11 resonance can
be N∗(1440) and higher resonances.

A
N
≈ 0

A
N
≈ −0.57± 0.12
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Fig. 2. (Left) The invariant-mass spectrum of the π0 + p system in p↑ + Pb → π0 + p+Pb
for |t ′| < 1 × 10−3 (GeV/c)2 [7]. Peaks due to the ∆+(1232) and N∗(1520) resonances are
shown. (Right) The Invariant mass spectrum of the Monte-Carlo simulation of the EM
effect for RHIC experiment.
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Fig. 3. The Feynman diagrams of possible spin flip and spin non-flipping amplitudes
which may play key roles to produce large asymmetries in π0 (top row) and π+ (bot-
tom row) productions. (d) is non-resonant π+ production as known as Kroll-Rudermann
term [14].

There are non-trivial differences between the present neutron production
at RHIC and the above π0 production at Fermi experiments. Some key experi-
mental conditions are listed in Table 1. Due to coincidence detection of π0 and
p in the Fermi experiment, the invariant mass W of π0p system is determined
experimentally, while only neutron is detected in RHIC experiment. Therefore
the invariant mass of π+n system can only be predicted by the Monte-Carlo.
Shown in the right panel of Fig. 2 is the invariant mass spectrum of π+n sys-
tem predicted by the Monte-Carlo assuming EM interaction for the RHIC experi-
ment [10]. The nuclear photon yield is calculated by STARLIGHT model [8] while
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unpolarized γ∗p → π+n is calculated using SOPHIA model [9]. The neutron en-
ergy cut xF = En/Ep > 0.4 is applied to be consistent with the experiment [4]
where En is the energy of the outgoing neutron and Ep is the incident proton beam
energy. As can be seen, the prominent peak is located slightly below ∆(1232MeV)
peak since the equivalent photon yield is weighted to lower energy in the nuclear
Coulomb field [10]. The momentum transfer are defined t′ = t−(W2−m2)2/4P2L
for the Fermi experiment1, whereas t is defined as −t = m2n(1 − xF)

2/xF + p2T/xF

for the RHIC experiment, where mn is neutron mass, and pT is the transverse
momentum of neutron. Unfortunately, the momentum transfers are not defined
consistently between two experiments due to undetected π+ in the RHIC experi-
ment.

2
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Fig. 4. (Top) The t′ distributions of the π0p system in p↑ + Pb→ π0 + p + Pb forW < 1.36

GeV and 1.36 < W < 1.52 GeV, respectively. The finite asymmetry was observed in the
region |t ′| < 1 × 10−3 (GeV/c)2 of panel (b) [7]. (Bottom) The experimental momentum
transfer distributions of the RHIC experiment for 3 different trigger selections. (Color on-
line)

1 See reference [7] for the definition.
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Table 1. The difference of experimental conditions between RHIC [4] and Fermi [7] exper-
iments.

Fermi RHIC
Beam Energy Ep [GeV] 185 100√
s [GeV] 19.5 200

Target nucleus Pb Au
Detected particle(s) p + π0 n
Momentum transfer (GeV/c)2 |t′| < 0.001 0.02 < −t < 0.5

Invariant massW [GeV] 1.36 < W < 1.52

AN −0.57± (0.12)sta + 0.21 − 0.18 +0.27± 0.003

4 Asymmetry Induced by Photo-Pion Production

Pion production reaction from nucleon are intensely studied in various medium
energy real photon and electron beam facilities. See reference [11] as one of review
articles. The present forward neutron asymmetries via UPC effect corresponds to
the photo-pion production from a transversely polarized fixed target. The polar-
ized γ∗p cross section is given as Eq. (4):

dσγ∗p↑→π+n

dΩπ
=

|q|

ωγ∗
{R00T + PyR

0y
T } (3)

=
|q|

ωγ∗
[R00T {1+ P2 cosφπT(θ∗π)}] (4)

where R00T is the unpolarized, while R0yT is target polarized response functions,
respectively. T(θ∗π) corresponds to the definition of the present analyzing power
AN = T(θ∗π) = R

0y
T /R00T . θ∗π represents production angle of π in the center-of-mass

system. There are several theoretical/phenomenological fitting models available
to describe photo-pion production observables. Here I quote Mainz unitary iso-
bar model, namely MAID2007 [12] to calculate the asymmetries in the present
kinematics.

Shown in Fig. 5 is the MAID prediction of the unpolarized response function
R00T plotted as a function of the invariant massW of pion and nucleon systems at
Q2 = 0(GeV/c)2 and θ∗π = 40◦. The multipoles are weak function of Q2(= −t)

and only moderately change within our kinematic coverage −t < 0.5 (GeV/c)2.
The leading order multipole decomposition following the notation of reference
[13] is given in Eq. (5):

R00T =
5

2
|M1+|

2 +M∗1+M1− + 3M∗1+E1+ + ... (5)

where M1+ is famous magnetic dipole transition amplitude from the nucleon
ground state to the ∆(P33) resonance state. As blue curve indicates, the γ∗p →
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Fig. 5. (Color online) Unpolarized R00T (W) response function at Q2 = 0(GeV/c)2 and θ∗π =

40◦ plotted as a function of the invariant mass W [MeV]. Red and blue curves represent
MAID predictions for γ∗p→ π+ + n and γ∗p→ π0 + p decay channels, respectively.

π0p channel shows distinctive peak around well known∆ resonance region (W =

1232MeV) in Fig. 5. This is mainly driven by the dominant |M1+|
2 term in Eq. (5).

On the contrary, the ∆ peak is not as distinctive as π0 channel for the π+ channel
and shows rather larger cross section in the threshold pion production region
below ∆. This is due to enhanced charge coupling of photon to the pion field
in the target proton which doesn’t exist for π0 channel. This is known as Kroll-
Rudermann term [14] as shown in the diagram (d) in Fig. 3.

Shown in Fig. 6 is the target polarization response function R0yT (W) of the
MAID predictions for γ∗p↑ → π+n (red) and γ∗p↑ → π0p (blue) decay chan-
nels, respectively. The leading order multipole decomposition of R0yT is denoted
as Eq. (6):

R0yT = Im{E∗0+(E1+ −M1+) − 4 cos θ∗π(E
∗
1+M1+)....} (6)

The asymmetries show peak structure around ∆ region for both π+ and π0

channels, while the sign is opposite. The magnitude of asymmetry is substan-
tially as large as R0yT ∼ 15[µb/st] for π+ channel compared to π0 channel. This is
because of the strong interference between E0+ and M1+ channel in π+ channel
as appears in the first term in Eqn.6. The amplitude of E0+ is much greater in π+

channel compared to π0 channel due to aforementioned Kroll-Rudermann term.
Although dominant ∆ amplitude, i.e. M1+ is even stronger in π0 channel, this
interference is relatively minor due to smallness of E0+ for π0 channel.

The obtained analyzing power AN for MAID predictions by taking the ratio
of response functions R0yT (W) and R00T (W) are shown in Fig. 7 plotted as a func-
tion of the invariant massW atQ2 = 0(GeV/c)2 and θ∗π = 40◦. Note there are dis-
tinctive difference between π+ and π0 channels in AN as a function of W accord-
ing to the MAID model. π+ shows remarkably large asymmetry over AN > 0.8
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Fig. 6. (Color online) Polarized R0yT (W) response function atQ2 = 0(GeV/c)2 and θ∗π = 40◦

plotted as a function of the invariant massW [MeV]. Red and blue curves represent MAID
predictions for γ∗p↑ → π+n and γ∗p↑ → π0p decay channels, respectively.

just below ∆(1232 MeV) due to the interference between E0+ of Kroll-Rudermann
and ∆ dipole resonance M1+ terms. The contribution of this invariant mass re-
gion to the observed neutron is large due to matching peak of the invariant mass
yield as shown in the right panel of Fig.2.
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Fig. 7. (Color online) Analyzing power AN(W) at Q2 = 0(GeV/c)2 and θ∗π = 40◦ plotted
as a function of the invariant mass W [MeV]. Red and blue curves represent MAID [12]
predictions for γ∗p↑ → π+n and γ∗p↑ → π0p decay channels, respectively.

The MAID is in general known to fit reasonably well to photo-pion produc-
tion data in low to medium energy region. Shown in Fig. 8 is the analyzing power
T(= AN) of MAID (red curve) fits to γ∗p↑ → π+p reaction data observed in
PHOENICS experiment at ELSA [15]. For the comparison, Argonne-Osaka [16]
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model fits are also shown in blue curve. Although some model dependence is
seen in higher energiesW > 1365MeV in the θ∗π region where no data, two mod-
els are fairly consistent to each other in lower energies W < 1319 MeV. Although
the ELSA data is not necessarily perfect overlap with the kinematic range of the
present RHIC data, the extrapolation of data by MAID seem to give reasonable
estimate since the data coverage is sufficiently large inW bins below ∆which are
rather weighted for the present neutron data.
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Fig. 8. (Color online) Analyzing power T(= AN) of MAID (red curve) and Argonne-
Osaka [16] model (blue curve) fit to γ∗p↑ → π+p reaction data observed in PHOENICS
experiment at ELSA [15].

In reference [17], an attempt is made to evaluate average AN within the
present RHIC experiment using so evaluated MAID AN. Shown in the left panel
of the Fig.9 is the analyzing power T(= AN) as a function of pion production
angle θ∗π and the invariant mass W of γ∗p↑ → π+n. The region between thin
and thick curves are the rapidity range of the present RHIC experiment and each
curves corresponds to the rapidity boundaries of η = 8.0 and η = 6.8, respec-
tively. As can be seen in the figure, the largeAN > 0.8 is distributed in θ∗π < 1 [rad]
around W ∼ 1.2 GeV and this is where the peak of the neutron yield is located
as shown in the right panel of Fig.2 according to EM interaction Monte-Carlo.
The yield weighted average of AN within the acceptance between 6.8 < η < 8.0
and xF > 0.4 is plotted as open square in the right panel of Fig.9. The analyzing
power via EM interaction are very similar between p+Al or p+Au because the
slope of the photon yield as a function of photon energy is very similar. On the
other hand, resulting AN will be quite different between them due to the frac-
tion of hadronic interaction and the EM interactions are quite different. In fact,
the EM cross section grows square function of atomic number Z. The fraction of
the hadronic and EM interactions are estimated by the cross section ratio of them
assuming one pion exchange (OPE) for the hadronic interaction. The is simpler
hadronic interaction model than the reference [5]. However, the cross section of
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the hadronic interaction for the leading neutron production in this very forward
rapidity range 6.8 < η < 8.0 is known to be dominated by OPE [3]. On the other
hand, the nuclear absorption effect is claimed to play important role in the refer-
ence [5] and is not considered in reference [17] though, the absorption effects are
somewhat canceled when one take ratio between the hadronic and the EM inter-
actions. Details are discussed in the reference [17]. So obtained hadron/EM cross
section weighted AN are plotted as open circles in the right panel of Fig.9 and are
compared with experimental analyzing power data (solid symbols). Solid circle
and squares are inclusive and BBC vetoed data, respectively. The calculated AN

open circles are to be compared with inclusive data points (solid circle) and they
are in very good agreement.
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Fig. 9. (left) Analyzing power T(= AN) as a function of pion production angle in θ∗π and
the invariant mass W of γ∗p↑ → π+n. The region between thin and thick curves are the
rapidity range of the present RHIC experiment and each curves corresponds to the rapid-
ity boundaries of η = 8.0 and η = 6.8, respectively. (right) Comparison of experimental
analyzing power data (solid symbols) and model predictions (open symbols) plotted as a
function of atomic number Z. Solid circle and squares are inclusive and BBC vetoed data,
respectively. Open square is kinematically averaged AN prediction over RHIC acceptance
by MAID. Open circles are weighted mean prediction of MAID and one pion exchangeAN

for Al and Au. Both plots are quoted from reference [17].

5 Summary

A theoretical attempt was made to explain strong A-dependence in the very for-
ward neutron asymmetry recently observed in transversely polarized proton-
nucleus collision at

√
s=200 GeV in PHENIX experiment at RHIC [4]. The drastic

A-dependence in the forward neutron asymmetryAN cannot be explained by the
conventional hadronic interaction model [5] which was successful to explain the
asymmetries observed for p + p collision [3]. In this document, possible major
contribution in the asymmetry from the UPC (Primakoff) effect via one photon
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exchange from the nuclear Coulomb field is discussed. The Mainz unitary isobar
(MAID2007) model [12] was used to estimate the asymmetry by the EM inter-
action which fit past γ ∗ p↑ → π+n reaction data [15] well. The MAID predicts
large asymmetry below∆ region for π+n-channel due to the interference between
non-resonance contact E0+ (non-spin flip) and ∆ resonance M1+ (spin flip) am-
plitudes. Once kinematic average within the detector acceptance and kinematic
cuts, the resulting asymmetries overshot both inclusive AN data for both p + Al

and p+Au data. Once these average EM asymmetries are further taken weighted
mean by cross section ratio with hadronic asymmetries, the resulting asymme-
tries reproduced both p+Al and p+Au data well [17]. The importance of the in-
terference in non-resonance and ∆ resonance contradicts from the large asymme-
try observed in p↑+Pb→ π0+p+Pb at Fermi lab [7] which is interpreted mainly
due to the interference between ∆ and N∗(1440) and higher resonances. This dif-
ference can be explained by the relatively strong Kroll-Rudermann term [14] con-
tribution for π+ channel, and which raises the importance of the interference be-
low ∆ unlike π0 channel. The present EM asymmetry calculation framework is
confirmed to be at least qualitatively consistent with the claim made by the au-
thors of Fermi experiment [7].
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Abstract. We perform partial wave analysis of the eta photoproduction data. In an itera-
tive procedure fixed-t amplitude analysis and a conventional single energy partial wave
analysis are combined in such a way that output from one analysis is used as a constraint
in another. To demonstrate the modus operandi of our method it is applied on a well de-
fined, complete set of pseudo data generated within EtaMAID15 model.

1 Introduction

Single energy partial wave analysis (SE PWA) is a standard method used to ob-
tain partial waves from scattering data at a given energy. Invariant amplitudes,
reconstructed from partial waves by means of corresponding partial wave ex-
pansions obey a fixed-s analyticity required in Mandelstam hypothesis. It is quite
general that at a given energy many different partial wave solutions equally well
describe the data. The fit to the data at one energy “does not know” which solu-
tion was obtained in independent SE PWA at another, even neighboring energies.
This poses a problem of finding a unique partial wave solution as a function of
energy. To solve this problem and to achieve continuity of partial wave solution in
energy, one has to impose some additional constraints on partial wave solutions.
The aim of this paper is to demonstrate a method which imposes analyticity of
invariant scattering amplitudes at fixed values of Mandelstam variable t in ad-
dition to analyticity at fixed s-value which is already achieved by partial wave
expansion. In our method SE PWA and a fixed-t amplitude analysis (Ft AA) are
coupled together in an iterative procedure in such a way that output from one
analysis serves as a constraint in another. Detailed description of formalism and
the method is given in refs. [2], [2]. Here we demonstrate how the method works.
As an input we use the eta photoproduction pseudo data constructed from theo-
retical model EtaMAID-2015 [3]. Applying our method, we reproduced partial
waves from a model which was used to generate the data fitted. This proves
uniqueness of partial wave solution obtained applying our method.
? Talk presented by H. Osmanović



18 H. Osmanović et al.

2 Method and results

To prove uniqueness of solution obtained by use of our method, we generated a
complete set of observables in the eta photoproduction process: {σ0, Σ̌, Ť , P̌, F̌, Ǧ,
Čx ′ , Ǒx ′ } [4, 5]. To apply our method we need data at two different kinematical
grids: energy - t (W,t) to be used in the Ft AA, and energy - scattering angle theta
grid to be used in SE PWA. Our pseudo data sets are generated at 140 energies in-
side the physical region, each at 50 t-values with artificially small errors of 0.1%.
W-t kinematical grid is shown in Fig. 1. Yellow line shows the data used in the
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Fig. 1. (Color online) (Wcm, t) diagram for η photoproduction. Points represent pseudo-
data generated by EtaMAID2015a model in physical range. Yellow line symbolizes fixed-t
analysis, and red line symbolizes fixed-s (SE) analysis.

Ft AA ( t = −0.6GeV2), while the data along red line ( W = 1800MeV) are used
in the SE PWA. Iterative procedure in our method is shown in Fig. 2. χ2SEdata and

Fig. 2. Iterative procedure in a combined single energy partial wave analysis and fixed-t
amplitude analysis.
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χ2FTdata are standard quadratic forms used in fitting the data, Φconv is conver-
gence test function which is integral part of Pietarinen expansion method used in
Ft AA [6–10], whileΦtrunc makes a soft cut off of higher multipoles at lower en-
ergies in SE PWA (for technical details see refs [2], [2]). The two analyses, SE PWA
and Ft AA, are coupled by terms χ2Ft and χ2SE which measure deviations of values
of invariant amplitudes obtained in SE PWA from corresponding ones obtained
in Ft AA and vice versa. After several iterations, usually not more than three,
results from both analyses agree reasonably well. Figure 3 and Figure 4 show im-
portance of constraint from Ft AA in obtaining a unique partial wave solution
in SE PWA. In Figure 3 are shown partial waves obtained in unconstrained SE
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Fig. 3. (Color online) The result of on unconstrained single-energy fit described in the text.
The blue and red points show the real and imaginary parts of the multipoles obtained in
the fit compared to the ”true” multipoles from the underlying EtaMAID-2015 model (blue
and red solid lines).

PWA. Even if a complete set of data with small errors is used in analysis, unique
solution is not obtained- input partial waves solution from which the data is gen-
erated is not reconstructed. Figure 4 shows results of PWA using our method with
the same input data after two iterations. Starting solution is reconstructed with a
high accuracy.



20 H. Osmanović et al.

-10

 0

 10

 20

 1500  1800  2100

E
0

+
 [

m
fm

]

-0.1

 0

 0.1

 0.2

 1500  1800  2100

 E
1

+
 [

m
fm

]

-1

 0

 1

 2

 1500  1800  2100

M
1

+
 [

m
fm

]

W[MeV]

-2

 0

 2

 1500  1800  2100

M
1

- 
[m

fm
]

W[MeV]

-0.1

 0

 0.1

 1500  1800  2100

E
2

+
 [

m
fm

]

-0.5

 0

 0.5

 1

 1.5

 1500  1800  2100

 E
2

- 
[m

fm
]

-0.4

 0

 0.4

 1500  1800  2100

M
2

+
 [

m
fm

]

W[MeV]

-0.5

 0

 0.5

 1500  1800  2100

M
2

- 
[m

fm
]

W[MeV]

 0

 0.002

 0.004

 1500  1800  2100

E
3

+
 [

m
fm

]

-0.2

-0

 0.2

 1500  1800  2100

 E
3

- 
[m

fm
]

 0

 0.04

 0.08

 1500  1800  2100

M
3

+
 [

m
fm

]

W[MeV]

-0.15

-0

 0.15

 1500  1800  2100

M
3

- 
[m

fm
]

W[MeV]

-0.0003

 0

 0.0003

 1500  1800  2100
E

4
+

 [
m

fm
]

 0

 0.01

 1500  1800  2100

 E
4

- 
[m

fm
] 

 0

 0.01

 0.02

 1500  1800  2100

M
4

+
 [

m
fm

]

W[MeV]

 0

 0.04

 1500  1800  2100

M
4

- 
[m

fm
]

W[MeV]

Fig. 4. (Color online) Real (blue) and imaginary (red) parts of electric and magnetic multi-
poles up to L = 4. The points are the result of the analytically constrained single-energy fit
to the pseudo data and are compared to the multipoles of the underlying EtaMAID-2015
model, shown as solid lines.

3 Conclusions

In order to achieve unique and continuous solution in energy, additional con-
straint in an partial wave analysis is needed. It is shown that a unique solution
may be obtained using only analytic properties of invariant scattering amplitudes
at fixed values of Mandelstam variables s and t as constraint.

References
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Abstract. A convenient framework for dealing with hadron structure and hadronic phy-
sics in the few-GeV energy range is relativistic quantum mechanics. Unlike relativistic
quantum field theory, one deals with a fixed, or at least restricted number of degrees of
freedom while maintaining relativistic invariance. For systems of interacting particles this
is achieved by means of the, so called, “Bakamjian-Thomas construction”, which is a sys-
tematic procedure for implementing interaction terms in the generators of the Poincaré
group such that their algebra is preserved. Doing relativistic quantum mechanics in this
way one, however, faces a problem connected with the physical requirement of cluster
separability as soon as one has more than two interacting particles. Cluster separability, or
sometimes also termed “macroscopic causality”, is the property that if a system is subdi-
vided into subsystems which are then separated by a sufficiently large spacelike distance,
these subsystems should behave independently. In the present contribution we discuss the
problem of cluster separability and sketch the procedure to resolve it.

1 Introduction to relativistic quantum mechanics

It is a widespread opinion that a relativistically invariant quantum theory of inter-
acting particles has to be a (local) quantum field theory. Therefore we first have to
specify what we mean by “relativistic quantum mechanics”. Relativistic quantum
mechanics is based on a theorem by Bargmann which basically states that [1, 2]:
A quantum mechanical model formulated on a Hilbert space preserves probabilities in all
inertial coordinate systems if and only if the correspondence between states in different
inertial coordinate systems can be realized by a single-valued unitary representation of
the covering group of the Poincaré group.
According to this theorem one has succeeded in constructing a relativistically
invariant quantum mechanical model, if one has found a representation of the
(covering group of the) Poincaré group in terms of unitary operators on an ap-
propriate Hilbert space. Equivalently one can also look for a representation of
the generators of the Poincaré group in terms of self-adjoint operators acting on
this Hilbert space. These self-adjoint operators should then satisfy the Poincaré

? Talk presented by N. Reichelt and by W. Schweiger



Cluster Separability in Relativistic Few Body Problems 23

algebra

[Ji, Jj] = ı εijkJk , [Ki, Kj] = −ı εijkJk , [Ji, Kj] = ı εijkKk ,

[Pµ, Pν] = 0 , [Ki, P0] = −ı Pi , [Ji, P0] = 0 ,

[Ji, Pj] = ı εijkPk ,
[
Ki, Pj

]
= −ı δij P

0 . (1)

P0 and Pi generate time and space translations, respectively, Ji rotations and Ki

Lorentz boosts. From the last commutation relation it is quite obvious that, if
P0 contains interactions, Ki or Pj (or both) have to contain interactions too. The
form of relativistic dynamics is then characterized by the interaction dependent
generators. Dirac [3] identified three prominent forms of relativistic dynamics,
the instant form (interactions in P0, Ki, i = 1, 2, 3), the front form (interactions in
P− = P0−P3, F1 = K1−J2, F2 = K2+J1) and the point form (interactions in Pµ, i =
0, 1, 2, 3). In what follows we will stick to the point form, where Pµ, the generators
of space-time translations, contain interactions and J,K, the generators of Lorentz
transformations, are interaction free. The big advantage of this form is that boosts
and the addition of angular momenta become simple.

For a single free particle and also for several free particles it is quite easy to
find Hilbert-space representations of the Poincaré generators in terms self-adjoint
operators that satisfy the algebra given in Eq. (1), but what about interacting sys-
tems? Local quantum field theories provide a relativistic invariant description
of interacting systems, but then one has to deal with a complicated many-body
theory. It is less known that interacting representations of the Poincaré algebra
can also be realized on an N-particle Hilbert space and one does not necessar-
ily need a Fock space. A systematic procedure for implementing interactions in
the Poincaré generators of an N-particle system such that the Poincaré algebra
is preserved, has been suggest long ago by Bakamjian and Thomas [4]. In the
point form this procedure amounts to factorize the four-momentum operator of
the interaction-free system into a four-velocity operator and a mass operator and
add then interaction terms to the mass operator:

Pµ =MVµfree = (Mfree +Mint)V
µ
free . (2)

Since the mass operator is a Casimir operator of the Poincaré group, the con-
straints on the interaction terms that guarantee Poincaré invariance become sim-
ply thatMint should be a Lorentz scalar and that it should commute with Vµfree, i.e.
[Mint, V

µ
free] = 0. Remarkably, this kind of construction allows for instantaneous

interactions (“interactions at a distance”). Similar procedures can also be carried
out in the instant and front forms of relativistic dynamics such that the phys-
ical equivalence of all three forms is guaranteed in the sense that the different
descriptions are related by unitary transformations [5].

A very convenient basis for representing Bakajian-Thomas (BT) type mass
operators consists of velocity states

|v;k1, µ1;k2, µ2; . . . ;kN, µN〉 ,
N∑
i=1

ki = 0 . (3)
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These specify the state of an N-particle system by its overall velocity v, the par-
ticle momenta ki in the rest frame of the system and the spin projections µi of
the individual particles. The physical momenta of the particles are then given by
pi =

−−−−→
B(v)ki, where B(v) is a canonical (rotationless) boost with the overall sys-

tem velocity v. Associated with this kind of boost is also the notion of “canonical
spin” which fixes the spin projections µi.N-particle velocity states, as introduced
above, are eigenstates of the free N-particle velocity operator Vµfree and the free
mass operator

Mfree |v;k1, µ1;k2, µ2; . . . 〉 = (ω1 +ω2 + . . . ) |v;k1, µ1;k2, µ2; . . . 〉 , (4)

with ωi =
√
m2i + k

2
i . The overall velocity factors out in velocity-state matrix

elements of BT-type mass operators,

〈v′;k′1, µ1;k′2, µ′2; . . . |M|v;k1, µ1;k2, µ2; . . . 〉
∝ v0 δ3(v′ − v) 〈k′1, µ1;k′2, µ′2; . . . ||M||k1, µ1;k2, µ2; . . . 〉 , (5)

leading to the separation of overall and internal motion of the system.

2 Cluster separability

A central requirement for local relativistic quantum field theories is “microscopic
causality”, i.e. the property that field operators at space-time points x and y

should commute or anticommute, depending on whether they describe bosons
or fermions, if these space-time points are space-like separated, i.e.

[Ψ(x), Ψ(y)]± = 0 for (x− y)2 < 0 . (6)

The crucial point here is that this must hold for arbitrarily small space-like dis-
tances. This condition requires an infinite number of degrees of freedom and can
therefore not be satisfied in relativistic quantum mechanics with only a finite
number of degrees of freedom. What replaces microscopic causality in the case
of relativistic quantum mechanics is the physically more sensible requirement
of “macroscopic causality”, or also often called “cluster separability”. It roughly
means that subsystems of a quantum mechanical system should behave indepen-
dently, if they are sufficiently space-like separated.

In order to phrase cluster separability in more mathematical terms, we start
with an N-particle state |Φ〉 with wave function φ(p1,p2, . . . ,pN) and decom-
pose thisN-particle system into two subclusters (A) and (B). Next one introduces
a separation operator U(A)(B)

σ with the property that

lim
σ→∞〈Φ|U(A)(B)

σ |Φ〉 = 0 . (7)

The role of the separation operator will become clearer by means of an example.
Let us consider (space-like) separation by a canonical boost. In this case subsys-
tem (A) is boosted with velocity v and subsystem (B) with velocity −v. The action
on the wave function is then

(
U

(A)(B)
v φ

)
(pi∈(A),pj∈(B)) = φ

(−−−−−→
B(−v)pi∈(A),

−−−→
B(v)pj∈(B)

)
(8)
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and one has to consider the limit σ = |v|→∞ in Eq. (7).
Having introduced a separation operator we are now able to formulate clus-

ter separability in a more formal way. In the literature one can find different no-
tions of it. A comparably weak, but physically plausible requirement, is cluster
separability of the scattering operator:

s− lim
σ→∞U(A)(B)

σ

†
SU(A)(B)

σ = S(A) ⊗ S(B) . (9)

It means that the scattering operator should factorize into the scattering oper-
ators of the subsystems after separation. For three-particle systems it has been
demonstrated that this type of cluster separability can be achieved by a BT con-
struction [6].

A stronger requirement is that the Poincaré generators become additive, when
the clusters are separated. In a weaker version this means for the four-momentum
operator that

lim
σ→∞〈Φ|U(A)(B)

σ

†(
Pµ − Pµ(A) ⊗ I(B) − I(A) ⊗ Pµ(B)

)
U(A)(B)
σ |Φ〉 = 0 , (10)

the stronger version is that

lim
σ→∞

∣∣∣
∣∣∣
(
Pµ − Pµ(A) ⊗ I(B) − I(A) ⊗ Pµ(B)

)
U(A)(B)
σ |Φ〉

∣∣∣
∣∣∣ = 0 . (11)

The BT construction violates both conditions already in the 2+1-body case (i.e.
particles 1 and 2 interacting and particle 3 free) [2, 7]. The reason for the failure
can essentially be traced back in this case to the fact that the BT-type mass op-
erator and the mass operator of the separated 2+1-particle system differ in the
velocity conserving delta functions. In the BT-case it is the overall three-particle
velocity which is conserved, in the separated case it is rather the velocity of the in-
teracting two-particle system. The separation, however, is done by boosting with
the velocity of the interacting two-particle system.

One may now ask, whether wrong cluster properties lead to observable phys-
ical consequences. From our studies of the electromagnetic structure of mesons
we have to conclude that this is indeed the case [8–10]. In these papers electron
scattering off a confined quark-antiquark pair was treated within relativistic point
form quantum mechanics starting from a BT-type mass operator in which the dy-
namics of the photon is also fully included. The meson current can then be iden-
tified in a unique way from the resulting one-photon-exchange amplitude which
has the usual structure, i.e. electron current contracted with the meson current
and multiplied with the covariant photon propagator. The covariant analysis of
the resulting meson current, however, reveals that it exhibits some unphysical
features which most likely can be ascribed to wrong cluster properties. For pseu-
doscalar mesons, e.g., its complete covariant decomposition takes on the form

J̃µ(p′M;pM) = (pM + p′M)µ f(Q2, s) + (pe + p
′
e)
µ g(Q2, s) . (12)

It is still conserved, transforms like a four-vector, but exhibits an unphysical de-
pendence on the electron momenta which manifests itself in form of an addi-
tional covariant (and corresponding form factor) and a spurious Mandelstam-
s dependence of the form factors. Although unphysical, these features do not
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spoil the relativistic invariance of the electron-meson scattering amplitude. The
Mandelstam-s dependence of the physical and spurious form factors f and g is
shown in Fig. 1. Since the spurious form factor g is seen to vanish for large s and
the s-dependence of the physical form factor f becomes also negligible in this case
it is suggestive to extract the physical form factor in the limit s → ∞. This strat-
egy was pursued in Refs. [8–10] where it lead to sensible results. It gives a simple
analytical expression for the physical form factor F(Q2) = lims→∞ f(Q2, s) which
agrees with corresponding front form calculations in the q⊥ = 0 frame. Similar
effects of wrong cluster properties on electromagnetic form factors were also ob-
served in model calculations done within the framework of front form quantum
mechanics [11].
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Fig. 1. Mandelstam-s dependence of the physical and spurious B meson electromagnetic
form factors f and g for various values of the (negative) squared four-momentum trans-
fer Q2 [9]. The result has been obtained with a harmonic-oscillator wave function with
parameters a = 0.55 GeV,mb = 4.8 GeV,mu,d = 0.25 GeV.

3 Restoring cluster separability

It is obviously the BT-type structure of the four-momentum operator (see Eq. (2))
which guarantees Poincaré invariance on the one hand, but leads to wrong clus-
ter properties on the other hand (if one has more than two particles). In order
to show, how this conflict may be resolved, let us consider a three-particle sys-
tem with pairwise two-particle interactions. To simplify matters we will consider
spinless particles and neglect internal quantum numbers. We start with the four-
momentum operators of the two-particle subsystems,

Pµ(ij) =M(ij)V
µ
(ij) , i, j = 1, 2, 3 , i 6= j , (13)

which have a BT-type structure (i.e. Vµ(ij) is free of interactions). Cluster sepa-
rability holds for these subsystems, if the two-particle interaction is sufficiently
short ranged. The third particle can now be added by means of the usual tensor-
product construction

P̃µ(ij)(k) = P
µ
(ij) ⊗ I(k) + I(ij) ⊗ P

µ
(k) . (14)
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The individual four-momentum operators P̃µ(ij)(k) describe 2+1-body systems in
a Poincaré invariant way and exhibit also the right cluster properties. One may
now think of adding all these four momentum operators, to end up with a four
momentum operator for a three particle system with pairwise interactions:

P̃µ3 = P̃µ(12)(3) + P̃
µ
(23)(1) + P̃

µ
(31)(2) − 2P

µ
3 free . (15)

But the components of the resulting four-momentum operator do not commute,
[
P̃µ3 , P̃

ν
3

]
6=0 since [M(ij) int, V

µ
(j)] 6= 0 . (16)

One can, of course, write the individual P̃µ(ij)(k) in the form

P̃µ(ij)(k) = M̃(ij)(k) Ṽ
µ
(ij)(k) with M̃2

(ij)(k) = P̃(ij)(k) · P̃(ij)(k) , (17)

but the four-velocities Ṽµ(ij)(k) contain interactions and differ for different cluster-
ings, so that an overall four-velocity cannot be factored out of P̃µ3 . The key ob-
servation is now that all four-velocity operators have the same spectrum, namely
R3. This implies that there exist unitary transformations which relate the four-
velocity operators. One can find, in particular, unitary operators U(ij)(k) such
that

Ṽµ(ij)(k) = U(ij)(k)V
µ
3U
†
(ij)(k) . (18)

With these unitary operators one can now define new three-particle momentum
operators for a particular clustering,

Pµ(ij)(k) := U
†
(ij)(k)P̃

µ
(ij)(k)U(ij)(k) = U

†
(ij)(k)M̃(ij)(k)U(ij)(k)U

†
(ij)(k)Ṽ

µ
(ij)(k)U(ij)(k)

= M(ij)(k)V
µ
3 , (19)

which have already BT-structure, i.e. with the free three-particle velocity factored
out. From Eq. (19) it can be seen that the unitary operators U(ij)(k) obviously
“pack” the interaction dependence of the four-velocity operators Ṽµ(ij)(k) into
the mass operator M(ij)(k). Therefore they were called “packing operators” by
Sokolov in his seminal paper on the formal solution of the cluster problem [12].
The sum (Pµ(12)(3) + P

µ
(23)(1) + P

µ
(31)(2) − 2P

µ
3 free) describes a three-particle system

with pairwise interactions, it has now BT-structure and satisfies thus the correct
commutation relation. However, it still violates cluster separability. The solution
is a further unitary transformation of the whole sum by means ofU =

∏
U(ij)(k),

assuming that U(ij)(k) → 1 for separations (ki)(j), (jk)(i) and (i)(j)(k). The final
expression for the three-particle four-momentum operator, that has all the prop-
erties it should have, is:

Pµ3 := U
[
Pµ(12)(3) + P

µ
(23)(1) + P

µ
(31)(2) + P

µ
(123) int − 2P

µ
3 free

]
U†

= U
[
M(12)(3) +M(12)(3) +M(12)(3) +M(123) int − 2M3 free

]
Vµ3 U

†

= UM3 V
µ
3 U

† . (20)

If U commutes with Lorentz transformations, it can be shown that such a ”gen-
eralized BT construction” will satisfy relativity and cluster separability for N-
particle systems. In addition to the three-body force induced by U, which is of
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purely kinematical origin, we have also allowed for a genuine three-body inter-
action M(123) int. Since the U(ij)(k) will, in general, not commute, U depends on
the order of the U(ij)(k) in the product. For identical particles one should even
take some kind of symmetrized product, for which also different possibilities ex-
ist [2, 12]. This means that Pµ3 is, apart of the newly introduced free-body interac-
tion M(123) int, not uniquely determined by the two-body momentum operators
Pµ(ij). There are even different ways to construct the packing operators U(ij)(k).
All the unitary transformations leave, however, the on-shell data (binding ener-
gies, scattering phase shifts, etc.) of the two-particle subsystems untouched, they
only affect their off-shell behavior.

The kind of procedure just outlined formally solves the cluster problem for
three-body systems. Generalizations to N > 3 particles and particle produc-
tion have also been considered [13]. Its practical applicability, however, depends
strongly on the capability to calculate the packing operators for a particular sys-
tem. A possible procedure can also be found in Sokolov’s paper. The trick is to
split the packing operator further

U(ij)(k) =W
†(M(ij))W(M(ij) free) (21)

into a product of unitary operators which depend on the corresponding two-
particle mass operators in a way to be determined. With this splitting one can
rewrite Eq. (18) in the form

W(M(ij) free)V
µ
3W

†(M(ij) free) =W(M(ij))Ṽ
µ
(ij)(k)W

†(M(ij)) . (22)

Since this equation should hold for any interaction the right- and left-hand sides
can be chosen to equal some simple four-velocity operator, for which Vµ(ij) ⊗ Ik is
a good choice. In order to compute the action of W it is then convenient to take
bases in which matrix elements of Vµ3 , Vµ(ij) ⊗ Ik and Ṽµ(ij)(k) can be calculated.
This is the basis of (mixed) velocity eigenstates

|v(12); k̃1, k̃2,p3〉 = |v(12); k̃1, k̃2〉 ⊗ |p3〉 (23)

ofM(ij)(k) free if one wants to calculate the action ofW(M(ij) free) and correspond-
ing eigenstates ofM(ij)(k) if one wants to calculate the action ofW(M(ij)). It turns
out that the effect of these operators is mainly to give the two-particle subsystem
(ij) the velocity v(ij)(k) of the whole three-particle system. After some calcula-
tions one finds out that the whole effect of the packing operator U(ij)(k) on the
mass operator M̃(ij)(k) is just the replacement

1

m
′ 3/2
(ij) m

3/2

(ij)

v0(ij)δ
3(v ′(ij) − v(ij))

→
√
v ′(ij) · v(ij)(k)
m
′ 3/2
(ij)(k)

√
v(ij) · v(ij)(k)
m
3/2

(ij)(k)

v0(ij)(k)δ
3(v ′(ij)(k) − v(ij)(k)) (24)

in the mixed velocity-state matrix elements. Herem(ij) andm(ij)(k) are the invari-
ant masses of the free two-particle subsystem and the free three-particle system,
v(ij) and v(ij)(k) the corresponding four-velocities.
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4 Summary and outlook

We have given a short introduction into the field of relativistic quantum mechan-
ics. It has been shown that the Bakamjian-Thomas construction, the only known
systematic procedure to implement interactions such that Poincaré invariance of
a quantum mechanical system is guaranteed, leads to problems with cluster sep-
arability for systems of more than two particles. Cluster separability is a physi-
cally sensible requirement for quantum mechanical systems which replaces mi-
crocausality in relativistic quantum field theories. We have discussed the physical
consequences of wrong cluster properties, e.g., unphysical contributions in elec-
tromagnetic currents of bound states. Following the work of Sokolov we have
sketched how a three-particle mass operator with pairwise interactions and cor-
rect cluster properties can be constructed. This is accomplished by a set of unitary
transformations called packing operators. For the simplest case of three spinless
particles we have explicitly calculated these packing operators. In a next step it is
planned to use these results to see whether the problems encountered with elec-
tromagnetic bound-state currents can be cured by starting with a mass operator
that has the correct cluster properties.
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Abstract. In order to describe baryon resonances realistically it has turned out that three-
quark configurations are not sufficient. Rather explicit couplings to decay channels are
needed. This means that additional degrees of freedom must be foreseen. We report results
from a study of the nucleon ground state and the Delta resonance by including explicit
pionic effects.

All current approaches to quantum chromodynamics (QCD) struggle with a pro-
per description of hadron resonances. For baryons one has found that in case of
ground states at low energies three-quark configurations can still provide a rea-
sonable picture. For instance, in a relativistic constituent-quark model relying on
{QQQ} configurations only, the masses of all ground-state baryons as well as their
electromagnetic and axial structures can be well reproduced [1]. In this frame-
work, however, the resonant states are afflicted with severe shortcomings. While
the characteristics of the mass spectra can still be yielded to some extent, the re-
action properties of baryon resonances fall short, especially with respect to their
strong decays. Obviously the reason is that with three-quark configurations only
the resonances are described as excited bound states with real eigenvalues rather
than genuine resonant states with complex eigenvalues. Consequently, the corre-
sponding wave functions or amplitudes show a completely distinct behaviour.

We have started to include beyond {QQQ} configurations explicit mesonic
degrees of freedom. In the first instance, we have studied pionic effects in the N
and the ∆masses. We have done so by considering π-loop effects on the hadronic
as well as the microscopic quark levels. Our program aims at developing a coup-
led-channels relativistic constituent-quark model that can generate consistently
the strong vertex form factors, the baryon ground-state and resonant masses as
well as their electroweak structures. It will contain mesonic degrees of freedom
such as {QQQπ}, {QQQρ}, and eventually {QQQππ} etc.

Here we discuss results obtained from π-dressing of the N and the ∆ on the
hadronic level. We have investigated the most important one-π-loop effects and
several higher-order diagrams. A first account of this study was given already in
Ref. [2], where also the formalism and details of the calculation are explained. In
this context one has in the first instance to solve an eigenvalue equation, which

? Talk presented by W. Plessas
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results from coupling of a bare Ñ and a bare ∆̃ to a single π according to the
diagrams in Fig. 1. It yields the bare and dressed masses, where the latter is real
for theN ground state and becomes complex for the ∆ resonance. The only input
into the calculation are the prescriptions for the πÑÑ and πÑ∆̃ form factors at
the strong-interaction vertices. For that we have employed models existing in
the literature [3–5]. Beyond the results already produced in Ref. [2] we give here
in addition values for the dressing effects by using the more recent form-factor
parametrization by Kamano et al. [6] derived from a coupled-channels meson-
nucleon model. The different form factors are parametrized through the formulae

F
πÑB̃

(k2π) =
1

1+ (kπ
λ1

)2 + (kπ
λ2

)4
or F

πÑB̃
(k2π) = exp−k2π/2λ

2

or F
πÑB̃

(k2π) =

(
λ2

k2π + λ2

)2
, (1)

where B̃ stands either for Ñ or ∆̃. The values of the various cut-off parameters are
given in Tab. 1 together with the corresponding coupling constants.

Table 1. Parameters of the bare πÑÑ and πÑ∆̃ vertex form factors. The first three columns
correspond to the multipole type as in the first formula of Eq. (1), the fourth column to
the Gaussian type as in the second formula of Eq. (1), and the last column to the dipole
type as in the third formula of Eq. (1). The corresponding parametrizations are taken from
Refs. [3], [5] and [6], respectively. All (bare) coupling constants belong to k2π = 0. RCQM
refers to the predictions of the relativistic constituent-quark model [7] in Ref. [3], SL to
the πN meson-exchange model by Sato and Lee [4], PR to the Nijmegen soft-core model
of Polinder and Rijken [5], and KNLS to the coupled-channels meson-nucleon model of
Kamano, Nakamura, Lee, and Sato. All cut-off parameters are in GeV.

.
RCQM SL PR multipole PR Gaussian KNLS

f2
πÑÑ

/4π 0.0691 0.08 0.013 0.013 0.08

λ1 0.451 0.453 0.940
πÑÑ λ2 0.931 0.641 1.102

λ 0.665 0.656

f2
πÑ∆̃

/4π 0.188 0.334 0.167 0.167 0.126

λ1 0.594 0.458 0.853
πÑ∆̃ λ2 0.998 0.648 1.014

λ 0.603 0.709

For the πÑÑ vertex the momentum dependences of the form factors from the
five different models are shown in Fig. 2. With these ingredients the π-dressing
effects in the N mass are yielded as in Tab. 2. The mass shifts are basically of
the same order of magnitude for all form-factor models employed, even though
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π
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N
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Δ
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Δ

Fig. 1. π-loop diagrams considered for the dressing of a bare Ñ and a bare ∆̃.
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Fig. 2. Dependences on the π three-momentum squared k2π of the different (bare) form-
factor models for the πÑÑ system.

the momentum dependences are quite different as seen from Fig. 2. However,
the net effect is gained from an interplay of the momentum dependence of each
form factor and the corresponding πÑÑ coupling constant (cf. Tab. 1). The largest
dressing effect is obtained in case of the RCQM.

Table 2. π-loop effects in the N mass mN = 0.939 GeV according to the l.h.s. diagram of
Fig. 1.

RCQM SL PR multipole PR Gaussian KNLS

mÑ [GeV] 1.067 1.031 1.051 1.025 1.037
mÑ −mN [GeV] 0.128 0.092 0.112 0.086 0.098

For the πÑ∆̃ vertex the momentum dependences of the form factors from the
five different models are shown in Fig. 3. With these ingredients the π-dressing
effects in the ∆ mass are yielded as in Tab. 3. It is immediately evident that the
∆ mass gets complex. The real part corresponds to resonance position in the πN
channel and the complex part to (half) the hadronic ∆ decay width. While the
π-dressing effects in the real part are of about the same magnitudes as in theN, in
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all cases the decay widths are much too small as compared to the empirical value
of about 0.117 GeV.
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0.0

0.2

0.4

0.6
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F
(k

π
2
)

πNΔ Form Factor

Fig. 3. Dependences on the π three-momentum squared k2π of the different (bare) form-
factor models for the πÑ∆̃ system.

Table 3. π-loop effects in the ∆ mass Re (m∆)= 1.232 GeV and in the π-decay width Γ ac-
cording to the r.h.s. diagram of Fig. 1, where the bare Ñ masses mÑ in the intermediate
states are the same as in Table 2.

RCQM SL PR multipole PR Gaussian KNLS

m∆̃ [GeV] 1.300 1.290 1.335 1.321 1.259
m∆̃ − Re (m∆) [GeV] 0.068 0.058 0.103 0.089 0.027
Γ = 2 Im (m∆) [GeV] 0.004 0.023 0.008 0.016 0.007

An improvement in the ∆ → πN decay width Γ is achieved by replacing
the bare Ñ in the intermediate state by the dressed N like in Fig. 4. Thereby the
phase space for the strong decay is enlarged, and the situation may be closer
to the realistic one. The π-dressing effect in the real part is slightly raised in all
cases, as compared to the values in Tab. 3, however, the changes achieved for the
decay width Γ are respectable. Now, they reach about 50% of the phenomenolog-
ical value, except for the KNLS form-factor model. Still, the results appear to be
unsatisfactory.

Therefore we have investigated higher-order effects, i.e. two-π loops, where
the ones with π-π interactions in the intermediate state can be effectively de-
scribed by σ and ρmesons. The corresponding dressing effects turned to be mar-
ginal. Their inclusions do not help much to improve the ∆ decay width.
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π

N~
Δ

~
Δ

Fig. 4. π-loop diagram considered for the dressing of a bare ∆̃, where in the intermediate
state a physical Nwith massmN=0.939 GeV is employed.

Table 4. π-loop effects in the ∆ mass Re (m∆)= 1.232 GeV and in the π-decay width Γ ac-
cording to the diagram in Fig. 4, where in the intermediate state alwaysmN = 0.939 GeV.

RCQM SL PR multipole PR Gaussian KNLS

m∆̃ [GeV] 1.309 1.288 1.347 1.328 1261
m∆̃ − Re (m∆) [GeV] 0.077 0.056 0.114 0.096 0.029
Γ = 2 Im (m∆) [GeV] 0.047 0.064 0.052 0.051 0.027

We are now in the course of investigating explicit pionic effects on the micro-
scopic level, i.e. along a relativistic coupled-channels constituent-quark model.
This will also help us to get rid of inputs of vertex form factors foreign to the
quark model, because in such an approach one can determine within the same
framework both the mass dressings as well as the vertex form factors consistently.
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Abstract. Free, unconstrained, single channel, single energy partial wave analysis of η
photoproduction is discontinuous in energy. We achieve point-to-point continuity by en-
forcing fixed-t analyticity on model independent way using available experimental data,
and show that present database is insufficient to produce a unique solution. The fixed-
t analyticity in the fixed-t amplitude analysis is imposed by using Pietarinen’s expan-
sion method known from Karlsruhe-Helsinki analysis of pion-nucleon scattering data. We
present an analytically constrained partial wave analysis using experimental data for four
observables recently measured at MAMI and GRAAL in the energy range from threshold
to
√
s = 1.85 GeV.

1 Introduction

In another contribution of our group [1] to the Mini Workshop, we applied iter-
ative procedure with the fixed-t analyticity constraints to a partial wave analysis
of eta photoproduction pseudo data. In this paper we apply our method to a par-
tial wave analysis of experimental data considering some limitations due to use
of real data instead of idealised pseudo one. Presently, we have an incomplete
set of experimental data consisting of differential cross section σ0, single target
polarisation asymmetry T, double beam-target polarisation with circular polar-
ized photons F, and single beam polarisation Σ. Statistical and systematic errors
of experimental data are much larger than 0.1% used in our analysis with pseu-
dodata. There is also limitation in kinematical coverage. Unpolarized differential
cross section has the best coverage in energy and scattering angles. Good cov-
erage is also available for the polarisation data (Σ, T, F) up to total c.m. energy
W = 1.85GeV . More details about formalism and our method may be found in
ref. [2].
? Talk presented by J. Stahov
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2 Input preparation and results

The list of data which we used in our PWA analysis with experimental data is
given in Table 1.

Table 1. Experimental data from A2@MAMI and GRAAL used in our PWA.

Obs N Elab [MeV] NE θcm [0] Nθ Reference

σ0 2400 710 − 1395 120 18 − 162 20 A2@MAMI(2010,2017) [3, 4]

Σ 150 724 − 1472 15 40 − 160 10 GRAAL(2007) [5]

T 144 725 − 1350 12 24 − 156 12 A2@MAMI(2014) [6]

F 144 725 − 1350 12 24 − 156 12 A2@MAMI(2014) [6]

As it may be seen from the table, in our data base we have data for dif-
ferential cross sections at much more energies then for polarisation observables.
To perform partial wave analysis, all observables are needed at the same kine-
matical points. Experimental values of double-polarisation asymmetry F, target
asymmetry T, and beam asymmetry Σ for given scattering angles have to be in-
terpolated to the energies where the σ0 data are available ( fixed-s data binning).
We have used a spline smoothing method as a standard method for interpola-
tion and data smoothing [7] (Fortran code available on request). In the Ft AA
part of our method, we have to build a data base at fixed t-values using mea-
sured angular distribution at a fixed value of variable s (fixed-t data binning).
This has been done using again spline interpolation and smoothing method. We
have performed Ft AA at t-values in the range −1.00GeV2 < t < −0.09GeV2 at
20 equidistant values. When working with real data, uniqueness means that the
partial wave solution does not depend on starting solution. We start with two dif-
ferent MAID solutions: Solution I (EtaMAID-2016, [8]) and Solution II (EtaMAID-
2017, [3]). Although significantly different, both solutions describe experimental
data very well as might be seen in Figure 1 for two values of variable t (predic-
tions from these two solutions can not be distinguished in the plots).

In our truncated PWA we fitted partial waves up to Lmax=5. As in the case
of pseudo data, procedure has converged fast. Resulting multipoles up to L=2,
obtained after three iterations, are shown in Figure 2. Almost no differences can
be observed for the dominant S waves, what is to be expected while this wave is
similar in both starting solutions. Other partial waves are consistent within their
error bands. Considerable differences still exist in certain kinematical regions,
mainly at higher energies. It is a strong indication that for some multipoles a
unique solution in this kinematical regions was not achieved (See ImE1+, ImE2−
, and ReM2− for example). There are different reasons for nonuniqueness ob-
served. First of all, we have as an input an incomplete set of four observables.
Secondly, our fixed- t constraint loses its constraining power at higher energies,
especially at larger scattering angles. In addition, less kinematical points are ex-
perimentally accessible for higher negative t- values. From partial wave analysis
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Fig. 1. Pietarinen fit of the interpolated data at t = −0.2GeV2 and t = −0.5GeV2. The
dashed (black) and solid (blue) curves are the results starting with solutions I and II re-
spectively and are on top of each other.
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Fig. 2. (Color online) Real and imaginary parts of the S-, P- and D-wave multipoles ob-
tained in the final step after three iterations using analytical constraints from helicity am-
plitudes obtained from initial solutions I (blue) and II (red).

of pseudo data we learned that a complete set of data results in unique solution.
From that reason, we presume that new data from ELSA, JLAB and MAMI, which
are expected soon, will help to resolve remaining ambiguities.
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3 Conclusions

We applied iterative procedure with the fixed-t analyticity constraints to a partial
wave analysis of eta photoproduction experimental data. In truncated PWA we
obtained multipoles up to Lmax=5. Ambiguities still remain in some multipoles,
mainly at higher energies. New data, expected soon, will significantly expand our
database, improve reliability of our results, and resolve remaining ambiguities.
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Abstract. A resonance offers a testing ground for few-body dynamics. Two types of reso-
nances are discussed in detail. One is very narrow Hoyle resonance in 12C that plays a cru-
cial role in producing that element in stars. The other includes broad high-lying negative-
parity resonances in A = 4 nuclei, 4H, 4He, 4Li. The former is dominated by the Coulomb
force of three-α particles at large distances, while the latter are by short-ranged nuclear
forces. The structure of these resonances is described by different approaches, adiabatic
hyperspherical method and correlated Gaussians used for strength function calculations.
The localization of the resonance is successfully realized by a complex absorbing potential
and a complex scaling method, respectively.

1 Hoyle resonance

The synthesis of 12C is essential to 12C-based life and its process at low tempera-
tures is sequential via a narrow resonance of 8Be:

α+ α→ 8Be, α+ 8Be→ 12C + γ. (1)

As predicted by Hoyle, however, an existence of a very narrow resonance at
around Ex =7.7 MeV is vital to explain the abundance of 12C element. The reso-
nance is found to be just 0.38 MeV above 3α threshold with its width of 8.5 eV.

Since nobody has ever succeeded in reproducing the Hoyle resonance width,
we have undertaken to tackle this problem in the adiabatic hyperspherical
method [1, 2]. This study has further been motivated by the fact that there ex-
ists huge discrepancy in the rate of triple-α reactions, α + α + α → 12C + γ,
calculated by several authors [3–5].

In contrast to two-body resonances, the Hoyle resonance is characterized
by the followings: (1) 3α particles interact via long-ranged Coulomb force even
at large distances. (2) no asymptotic wave function is known. (3) 2α subsystem
forms a sharp resonance, which causes successive avoided crossings with three-
particle continuum states.

The detail of our approach is given in Refs. [1, 2]. The three-body system is
completely specified by six coordinates excluding the center-of-mass coordinate.
Among six coordinates one is chosen to be the hyperradius of length dimension,
and other five coordinates are hyperangles. Among the five angle coordinates
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three are Euler angles and two are used to specify the geometry of the three body
system. By changing the geometry as much as possible, we can study the adia-
batic potential curve of the three-body system as a function of the hyperradius.
A resonance can be confined by introducing a complex absorbing potential [6]
at large distances of the hyperradius. This method works excellently for quan-
titatively reproducing the very narrow width of the Hoyle resonance as well as
predicting the triple-α reaction rate at low temperatures without relying on any
ambiguous ansatz.

2 Resonances in A = 4 nuclei
4He nucleus is doubly magic and its 0+ ground state is strongly bound. The first
excited state of 4He is not a negative-party but again 0+. The negative-parity
excited states appear above the 3He+p threshold. Seven negative-parity states are
known and some of them have very broad widths. There exist isobar resonances
in 4H and 4Li that are also very broad. Most of these resonances are identified by
R-matrix phenomenology.

These resonances offer typical four-body resonances governed by the nuclear
force. The decay channels include not only two-body but three-body systems. To
describe the resonance we have employed correlated Gaussians [7,8] that provide
us with efficient and accurate performance as few-body basis functions. A general
form of the correlated Gaussians is

[θL × χS]JM exp
[
−
∑
i<j

aij(ri − rj)
2
]
ηTMT

, (2)

where θL, χS, ηT stand for the functions of orbital angular momentum, spin, isospin
parts. aij are variational parameters that control the spatial configuration of the
system. See also Ref. [9] for recent review on the correlated Gaussians.

The negative-parity resonances may be studied by analyzing strength func-
tions for electromagnetic excitations from the ground state of 4He. Actually we
have considered the spin-dipole operator specified by type p and λµ tensor
(λ=0,1,2)

Opλµ =

4∑
i=1

[(ri − R)× σi]λµTpi (3)

where the center-of-mass coordinate of A = 4 nucleus, R, is subtracted from the
position coordinate ri to make sure excitations of intrinsic motion only and Tpi
distinguishes different types of isospin operators (tx, ty, tz)

Tpi =

{ 1 Isoscalar
2tz(i) Isovector

tx(i)± ity(i) Charge − exchange
(4)

We calculate the strength function Spλ(E) corresponding to the response of
the 4He ground state Ψ0 induced by Opλµ

Spλ(E) = Sµf|〈Ψf|O
p
λµ|Ψ0〉|2δ(Ef − E0 − E), (5)
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where Sµf denotes a sum over all possible final states This strength function can
be computed by using the complex scaling method. The important thing for ac-
curate evaluation of Spλ(E) is to span possible final configurations as much as
possible.

We have studied three negative-parity states with isospin 0 in 4He and four
negative-parity states with isospin1 in 4He, 4H, 4Li [10–12]. Some of the reso-
nance widths are very broad, and thus it is hard to identify their resonance pa-
rameters on the complex plane. However, the strength functions calculated above
clearly indicate peaks near the resonance energies. We have confirmed that even
the broad resonance can be identified with this calculation.
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Abstract. It is well known that unconstrained single-energy partial wave analysis
(USEPWA) gives many equivalent discontinuous solutions, so a constraint to some theo-
retical model must be used to ensure the uniqueness. It can be shown that it is a direct con-
sequence of not specifying the angle-dependent part of continuum ambiguity phase which
mixes multipoles, and by choosing this phase we restore the uniqueness of USEPWA, and
obtain the solution in a model independent way. Up to now, there was no reliable way to
extract pole parameters from so obtained SE partial waves, but a new and simple single-
channel method (Laurent + Pietarinen expansion) applicable for continuous and discrete
data has been recently developed. It is based on applying the Laurent decomposition of
partial wave amplitude, and expanding the non-resonant background into a power series
of a conformal-mapping, quickly converging power series obtaining the simplest analytic
function with well-defined partial wave analytic properties which fits the input. The gen-
eralization of this method to multi- channel case is also developed and presented. Unifying
both methods in succession, one constructs a model independent procedure to extract pole
parameters directly from experimental data without referring to any theoretical model.

1 Introduction

It is well known that unconstrained single-energy partial wave analysis (USEPWA)
gives many equivalent discontinuous solutions, so a constraint to some theoret-
ical model must be used to ensure the uniqueness. It can be shown that it is a
direct consequence of not specifying the angle-dependent part of continuum am-
biguity phase which mixes multipoles, and by choosing this phase we restore the
uniqueness of USEPWA, and obtain the solution in a model independent way [1].
Up to now, there was no reliable way to extract pole parameters from so obtained
SE partial waves, but a new and simple single-channel method (Laurent + Pietari-
nen expansion) applicable for continuous and discrete data has been recently de-
veloped [2–4]. It is based on applying the Laurent decomposition of partial wave
amplitude, and expanding the non-resonant background into a power series of a
conformal-mapping, quickly converging power series obtaining the simplest an-
alytic function with well-defined partial wave analytic properties which fits the
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input. The method is particularly useful to analyse partial wave data obtained
directly from experiment because it works with minimal theoretical bias since it
avoids constructing and solving elaborate theoretical models, and fitting the final
parameters to the input, what is the standard procedure now. The generalization
of this method to multi- channel case is also developed and presented.

2 Angular dependent continuum ambiguity

Let us recall that observables in single-channel reactions are given as a sum of
products involving one (helicity or transversity) amplitude with the complex con-
jugate of another, so that the general form of any observable is O = f(Hk · H∗l ),
where f is a known, well-defined real function. The direct consequence is that any
observable is invariant with respect to the following simultaneous phase trans-
formation of all amplitudes:

Hk(W,θ)→ H̃k(W,θ) = e
i φ(W,θ) ·Hk(W,θ)

for all k = 1, · · · , n (1)

where n is the number of spin degrees of freedom (n=1 for the 1-dim toy model,
n=2 for pi-N scattering and n=4 for pseudoscalar meson photoproduction), and
φ(W,θ) is an arbitrary, real function which is the same for all contributing ampli-
tudes.

As resonance properties are usually the goal of such studies, and these are
identified with poles of the partial-wave (or multipole) amplitudes, we must an-
alyze the influence of the continuum ambiguity not upon helicity or transversity
amplitudes, but upon their partial wave decompositions. To simplify the study
we introduce partial waves in a simplified version than those found in Ref. [5]:

A(W,θ) =

∞∑
`=0

(2`+ 1)A`(W)P`(cos θ) (2)

where A(W,θ) is a generic notation for any amplitude Hk(W,θ), k = 1, · · ·n. The
complete set of observables remains unchanged when we make the following
transformation:

A(W,θ)→ Ã(W,θ) = e i φ(W,θ)

×
∞∑
`=0

(2`+ 1)A`(W)P`(cos θ)

Ã(W,θ) =

∞∑
`=0

(2`+ 1)Ã`(W)P`(cos θ) (3)

We are interested in rotated partial wave amplitudes Ã`(W), defined by Eq.(3),
and are free to introduce the Legendre decomposition of an exponential function
as:

e i φ(W,θ) =

∞∑
`=0

L`(W)P`(cos θ). (4)
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After some manipulation of the product P`(x)Pk(x) (see refs. [6, 7] for details of
the summation rearrangement) we obtain:

Ã`(W) =

∞∑
` ′=0

L` ′(W) ·
` ′+∑̀

m=|` ′−`|

〈` ′, 0; `, 0|m, 0〉2 Am(W)

(5)

where 〈` ′, 0; `, 0|m, 0〉 is a standard Clebsch-Gordan coefficient.
To get a better insight into the mechanism of multipole mixing, let us expand

Eq. (5) in terms of phase-rotation Legendre coefficients L` ′(W):

Ã0(W) = L0(W)A0(W) + L1(W)A1(W) + L2(W)A2(W) + . . . , (6)

Ã1(W) = L0(W)A1(W) + L1(W)

[
1

3
A0(W) +

2

3
A2(W)

]

+L2(W)

[
2

5
A1(W) +

3

5
A3(W)

]
+ . . . ,

Ã2(W) = L0(W)A2(W) + L1(W)

[
2

5
A1(W) +

3

5
A3(W)

]

+L2(W)

[
1

5
A0(W) +

2

7
A2(W) +

18

35
A4(W)

]
+ . . . .

...

The consequence of Eqs. (5) and (6) is that angular-dependent phase rotations
mix multipoles.

Conclusion:

Without fixing the free continuum ambiguity phaseφ(W,θ), the partial wave
decomposition A`(W) defined in Eq. (2) is non-unique. Partial waves get mixed,
and identification of resonance quantum numbers might be changed. To compare
different partial-wave analyses, it is essential to match the continuum ambiguity
phase; otherwise the mixing of multipoles is yet another, uncontrolled, source
of systematic errors. Observe that this phase rotation does not create new pole
positions, but just reshuffles the existing ones among several partial waves.

3 Using angular-dependent phase ambiguity to obtain
up-to-a-phase unique, unconstrained, single-energy solution
in η photoproduction

We perform unconstrained, Lmax = 5 truncated single-energy analyses on a
complete set of observables for η photoproduction given in the form of pseudo-
data created using the ETA-MAID15a model [8]: dσ/dΩ, Σdσ/dΩ, T dσ/dΩ,
F dσ/dΩ,Gdσ/dΩ, P dσ/dΩ, Cx ′ dσ/dΩ, andOx ′ dσ/dΩ. All higher multipoles
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are put to zero. The fitting procedure finds solutions which are non-unique, and
we obtain many solutions depending on the choice of initial parameters in the
fit. In Fig. 1 we show a complete set of pseudo-data with the error of 1 % created
at 18 angles (red symbols), and the typical SE fit (full line) at one representative
energy ofW = 1769.80MeV.

Fig. 1. (Color online) Complete set of observables for η photoproduction given in the form
of pseudo-data created at 18 angles with the error bar of 1 % using the ETA-MAID15a
model (red symbols) and a typical fit to the data (full line).

In Fig. 2 we show an example of three very different sets of multipoles which
fit the complete pseudo-data set equally well to a high precision: two discrete
and discontinuous ones obtained by setting the initial fitting values to the ETA-
MAID16a [9] (SE16a) and Bonn-Gatchina [10] (SEBG) model values (blue and red
symbols respectively), and the generating ETA-MAID15a model [8] which is dis-
played as full and dashed black continuous lines.

We know from Eq.(1) that equivalent fits to a complete set of data must be
produced by helicity amplitudes with different phases. Therefore, in Fig. 3, we
construct the helicity amplitudes corresponding to all three sets of multipoles
from Fig. 2 at one randomly chosen energyW = 1660.4MeV.

We see that all three sets of helicity amplitudes are indeed different, but the
discontinuity of multipole amplitudes, observed in Fig. 2-left is not reflected in a
plot of helicity amplitudes at a fixed single energy. If instead we plot an excitation
curve of all four helicity amplitudes at a randomly chosen angle, which is arbi-
trarily set to the value cos θ = 0.2588, we obtain the result shown in Fig. 3-right.

We see that the excitation curve of helicity amplitudes in this case remains
continuous only for the generating model ETA-MAID15a. For both single-energy
solutions it is different, and at the same time shows notable discontinuities be-
tween neighbouring energy points. This leads to the following understanding of
this, apparently very different multipole solutions:
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Fig. 2. (Color online) Plots of the E0+, M1−, E1+, and M1+ multipoles. Full and dashed
black lines give the real and imaginary part of the ETA-MAID15a generating model. Dis-
crete blue and red symbols are obtained with the unconstrained, Lmax = 5 fits of a
complete set of observables generated as numeric data from the ETA-MAID15a model
of ref. [8], with the initial fitting values taken from the ETA-MAID16a [9] and the Bonn-
Gatchina [10] models respectively. Filled symbols represent the real parts and open sym-
bols give the imaginary parts.

Fig. 3. (Color online) Left we show three sets of helicity amplitudes for all three sets of
multipoles at one randomly chosen energy W = 1660.4 MeV, and right for we show the
excitation curves for all three sets of multipoles, at one randomly chosen value of cos θ =

0.2588MeV. The figure coding is the same as in Fig. 2.

When we perform an unconstrained SE PWA, each minimization is performed in-
dependently at individual energies, and the phase is chosen randomly. So, at each energy
the fit chooses a different angle dependent phase, and creates different, discontinuous nu-
merical values for each helicity amplitude, producing discontinuous sets of multipoles.

However, the invariance with respect to phase rotations offers a possible so-
lution. Let us show the procedure.

We introduce the following angle-dependent phase rotation simultaneously
for all four helicity amplitudes:

H̃SEk (W,θ) = HSEk (W,θ) · eiΦ
15a
H2

(W,θ)− iΦSEH2
(W,θ)

k = 1, . . . , 4 (7)

whereΦSEH2(W,θ) is the phase of any single-energy solution andΦ15aH2 (W,θ) is the
phase of generating solution ETA-MAID15a. Applying this rotation we replace
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the discontinuous ΦSEH2(W,θ) phase from any SE solution with the continuous
Φ15aH2 (W,θ) ETA-MAID15a phase.

Fig. 4. (Color online) Up we show all three sets of rotated helicity amplitudes at one ran-
domly chosen energy W = 1660.4 MeV, and down three sets of rotated multipoles. The
figure coding is the same as in Fig. 2.

The resulting rotated single-energy helicity amplitudes are compared with
generating ETA-MAID15a amplitudes in Fig. 4.

We see that rotated helicity amplitudes of both single-energy solutions are
now identical to the generating ETA-MAID15a helicity amplitudes.

Thus, the previously different sets of discrete, discontinuous single-energy
multipoles different from the generating solution ETA-MAID15a and given in
Fig. 2, are after phase rotation transformed into continuous multipoles now iden-
tical to the generating solution, and given in lower part of Fig. 4.

So, we have constructed a way to generate up-to-a-phase unique solutions
in an unconstrained PWA of a complete set of observables generated as pseudo-
data.

4 Laurent + Pietarinen expansion

The driving concept behind the Laurent-Pietarinen (L+P) expansion was the aim
to replace an elaborate theoretical model by a local power-series representation of
partial wave amplitudes [2]. The complexity of a partial-wave analysis model is
thus replaced by much simpler model-independent expansion which just exploits
analyticity and unitarity. The L+P approach separates pole and regular part in
the form of a Laurent expansion, and instead of modeling the regular part in
some physical model it uses the conformal mapping to expand it into a rapidly
converging power series with well defined analytic properties. So, the method
replaces the regular part calculated in a model by the simplest analytic function
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which has correct analytic properties of the analyzed partial wave (multipole),
and fits the data. In such an approach the model dependence is minimized, and
is reduced to the choice of the number and location of branch-points used in the
model.

The L+P expansion is based on the Pietarinen expansion used in some for-
mer papers in the analysis of pion-nucleon scattering data [11–14], but for the
L+P model the Pietarinen expansion is applied in a different manner. It exploits
the Mittag-Leffler expansion1 of partial wave amplitudes near the real energy
axis, representing the regular, but unknown, background term by a conformal-
mapping-generated, rapidly converging power series called a Pietarinen expan-
sion2. The method was used successfully in several few-body reactions [3, 4, 17],
and recently generalized to the multi-channel case [18]. The formulae used in
the L+P approach are collected in Table 1. In the fits, the regular background
part is represented by three Pietarinen expansion series, all free parameters are
fitted. The first Pietarinen expansion with branch-point xP is restricted to an un-
physical energy range and represents all left-hand cut contributions. The next
two Pietarinen expansions describe the background in the physical range with
branch-points xQ and xR respecting the analytic properties of the analyzed par-
tial wave. The second branch-point is mostly fixed to the elastic channel branch-
point, the third one is either fixed to the dominant channel threshold, or left free.
Thus, only rather general physical assumptions about the analytic properties are
made like the number of poles and the number and the position of branch-points,
and the simplest analytic function with a set of poles and branch-points is con-
structed. The method is applicable to both, theoretical and experimental input,
and represents the first reliable procedure to extract pole positions from experi-
mental data, with minimal model bias.

The generalization of the L+P method to a multichannel L+P method is per-
formed in the following way: i) separate Laurent expansions are made for each
channel; ii) pole positions are fixed for all channels, iii) residua and Pietarinen co-
efficients are varied freely; iv) branch-points are chosen as for the single-channel
model; v) the single-channel discrepancy function Dadp (see Eq. (5) in ref. [17])
which quantifies the deviation of the fitted function from the input is generalized
to a multi-channel quantityDdp by summing up all single-channel contributions,
and vi) the minimization is performed for all channels in order to obtain the final
solution.

The formulae used in the L+P approach are collected in Table 1.

1 Mittag-Leffler expansion [15]. This expansion is the generalization of a Laurent expan-
sion to a more-than-one pole situation. For simplicity, we will simply refer to this as a
Laurent expansion.

2 A conformal mapping expansion of this particular type was introduced by Ciulli and
Fisher [11, 12], was described in detail and used in pion-nucleon scattering by Esco
Pietarinen [13, 14]. The procedure was denoted as a Pietarinen expansion by G. Höhler
in [16].
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Table 1. Formulae defining the Laurent+Pietarinen (L+P) expansion.

Ta(W) =

Npole∑
j=1

xaj + ı yaj
Wj −W

+

Ka∑
k=0

cak X
a(W)k +

La∑
l=0

dal Y
a(W)l +

Ma∑
m=0

eam Z
a(W)m

Xa(W) =
αa −

√
xaP −W

αa +
√
xaP −W

; Ya(W) =
βa −

√
xaQ −W

βa +
√
xaQ −W

; Za(W) =
γa −

√
xaR −W

γa +
√
xaR −W

Dadp =
1

2NaW −Napar

NaW∑
i=1

{[
Re Ta(W(i)) − Re Ta,exp(W(i))

ErrRe
i,a

]2

+

[
Im Ta(W(i)) − Im Ta,exp(W(i))

ErrIm
i,a

]2}
+ Pa

Pa = λac

Ka∑
k=1

(cak)
2 k3 + λad

La∑
l=1

(dal )
2 l3 + λae

Ma∑
m=1

(eam)2m3 ; Ddp =

all∑
a

Dadp

a . . . channel index Npole . . . number of poles Wj,W ∈ C
xai , y

a
i , c

a
k , d

a
l , e

a
m, α

a, βa, γa . . . ∈ R
Ka, La, Ma . . . ∈ N number of Pietarinen coefficients in channel a.

Dadp . . . discrepancy function in channel a

NaW . . . number of energies in channel a

Napar . . . number of fitting parameters in channel a

Pa . . . Pietarinen penalty function

λac , λ
a
d, λ

a
e . . . Pietarinen weighting factors

xaP, x
a
Q, x

a
R ∈ R (or ∈ C).

ErrRe, Im
i,a . . . minimization error of real and imaginary part respectively.
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Pion electroproduction is the main source for investigations of the transition form
factors of the nucleon to excited N∗ and ∆ baryons. After early measurements of
the G∗M form factor of the N∆ transition, in the 1990s a large program was run-
ning at Mainz, Bonn, Bates Brookhaven and JLab in order to measure the E/M
ratio of the N∆ transition and the Q2 dependence of the E/M and S/M ratios
in order to get information on the internal quadrupole deformations of the nu-
cleon and the ∆. Only at JLab both the energy and the photon virtuality were
available to measure transition form factors for a set of nucleon resonances up to
Q2 ≈ 5 GeV2. Two review articles on the electromagnetic excitation of nucleon
resonances, which give a very good overview over experiment and theory, were
published a few years ago [1, 2].

In the spirit of the dynamical approach to pion photo- and electroproduction,
the t-matrix of the unitary isobar model MAID is set up by the ansatz [1]

tγπ(W) = tBγπ(W) + tRγπ(W) , (1)

with a background and a resonance t-matrix, each of them constructed in a uni-
tary way. Of course, this ansatz is not unique. However, it is a very important
prerequisite to clearly separate resonance and background amplitudes within a
Breit-Wigner concept also for higher and overlapping resonances. For a specific
partial wave α = {j, l, . . .}, the background t-matrix is set up by a potential multi-
plied by the pion-nucleon scattering amplitude in accordance with the K-matrix
approximation,

tB,αγπ (W,Q2) = vB,αγπ (W,Q2) [1+ itαπN(W)] , (2)

where the on-shell part of pion-nucleon rescattering is maintained in the non-
resonant background and the off-shell part from pion-loop contributions is ab-
sorbed in the phenomenological renormalized (dressed) resonance contribution.
In the latest version MAID2007 [3], the S, P, D, and F waves of the background
contributions are unitarized as explained above, with the pion-nucleon elastic
scattering amplitudes tαπN described by phase shifts and inelasticities taken from
the GWU/SAID analysis [4].
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constraints at the pseudo threshold:

• longitudinal ff   S1/2 (Qpt
2) = 0   (also holds for the Roper)

• slope of long. ff is determined by slope of electric ff
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Fig. 1. The W dependence of the pseudo-threshold, where the Siegert theorem strictly
holds and which also limits the physical region, where time-like form factors can be ob-
tained from Dalitz decays Nπ → Ne+e−. At πN threshold, the pseudo-threshold value is
Q2pt = −m2π = −0.018 GeV2, at W = 1535 MeV, Q2pt = −0.356 GeV2. The vertical lines
denote the pion threshold and nucleon resonance positions, where space-like transition
form factors have been analyzed from electroproduction experiments.

For the resonance contributions we follow Ref. [3] and assume Breit-Wigner
forms for the resonance shape,

tR,αγπ (W,Q2) = ĀRα(W,Q2)
fγN(W)Γtot(W)MR fπN(W)

M2
R −W2 − iMR Γtot(W)

eiφR(W) , (3)

where fπN(W) is a Breit-Wigner factor describing the decay of a resonance with
total width Γtot(W). The energy dependence of the partial widths and of the
γNN∗ vertex can be found in Ref. [3]. The phase φR(W) in Eq. (3) is introduced
to adjust the total phase such that the Fermi-Watson theorem is fulfilled below
two-pion threshold.

In most cases, the resonance couplings ĀRα(W,Q2) are assumed to be inde-
pendent of the total energy and a simpleQ2 dependence is assumed for Āα(Q2).
Generally, these resonance couplings, taken at the Breit-Wigner massW =MR are
called transition form factors Āα(Q2). In the literature, baryon transition form
factors are defined in three different ways as helicity form factors A1/2(Q

2),
A3/2(Q

2), S1/2(Q2), Dirac form factors F1(Q2), F2(Q2), F3(Q2) and Sachs form
factorsGE(Q2),GM(Q2),GC(Q2). For detailed relations among them see Ref. [1].
In MAID they are parameterized in an ansatz with polynomials and exponentials,
where the free parameters are determined in a fit to the world data of pion photo-
and electroproduction.

In the case of theN∆ transition, the form factors are usually discussed in the
Sachs definition and are denoted by G∗E(Q

2), G∗M(Q2), G∗C(Q
2). While the G∗M

form factor by far dominates the N → ∆ transition, the electric and Coulomb
transitions are usually presented as E/M and S/M ratios. In pion electroproduc-
tion they are defined as the ratios of the multipoles. Within our ansatz they can
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be expressed in terms of the N∆ transition form factors by

REM(Q2) = −
G?
E(Q

2)

G?
M(Q2)

, (4)

RSM(Q2) = −
k(M∆, Q

2)

2M∆

G?
C(Q

2)

G?
M(Q2)

, (5)

with the virtual photon 3-momentum

k(W,Q2) =
√
((W −MN)2 +Q2)(W +MN)2 +Q2)/(2W) .

Fig. 2. The Q2 dependence of the E/M and S/M ratios of the ∆(1232) excitation for low
Q2. The data are from Mainz, Bonn, Bates and JLab. For details see Ref. [1]. The behavior
of the S/M ratio at low Q2 and in particular for Q2 < 0 in the unphysical region is a
consequence of the Siegert theorem.
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Whereas in photo- and electroproduction, data are only available for space-
like momentum transfers, Q2 = −kµk

µ ≥ 0, the inelastic form factors can be ex-
tended into the time-like region,Q2 ≤ 0, down to the so-called pseudo-threshold,
Q2pt, which is defined as the momentum transfer, where the 3-momentum of the
virtual photon vanishes,

k(W,Q2pt) = 0 → Q2pt = −(W −MN)
2. (6)

This time-like region is called the Dalitz decay region. The energy dependence
of this region is shown in Fig. 1. At pion threshold, the Dalitz decay region is
very small and extends only down to Q2pt = −0.018 GeV2, for transitions to the
∆(1232) resonance down to −0.086 GeV2 and to the Roper resonance N(1440)

down to −0.252 GeV2.
In Fig. 2 we have extended our parametrization of the E/M and S/M ratios

for N → ∆ from space-like to time-like regions and show a comparison to the
data obtained from photo- and electroproduction [1, 2].

In general, the extrapolation of the transverse form factors GE and GM into
the time-like region is more reliable than the extrapolation of the longitudinal
form factor GC, which can not be measured at Q2 = 0 with photoproduction.
For longitudinal transitions, the photon point is only reachable asymptotically,
and in practise, only at MAMI-A1 in Mainz, momentum transfers as low asQ2 '
0.05GeV2 are accessible. Therefore, the longitudinal form factors become already
quite uncertain in the real-photon limit Q2 = 0.

Because of this practical limitation, the Siegert Theorem, already derived in
the 1930s, give a powerful constraint for longitudinal form factors. In the long-
wavelength limit, where k → 0, all three components of the e.m. current become
identical, Jx = Jy = Jz, because of rotational symmetry. As a consequence, excita-
tions as N → ∆(1232)3/2+ or N → N(1535)1/2− obtain charge form factors that
are proportional to the electric form factors. For theN→ N(1440)1/2+ transition,
where no electric form factor exists, still a minimal constraint remains, namely

S1/2(Q
2) ∼ k(Q2) , (7)

forcing the longitudinal helicity form factor to vanish at the pseudo-threshold.
This is a requirement for all S1/2 transition form factors to any nucleon reso-
nance. In Fig. 3 the longitudinal transition form factor for the Roper resonance
transition is shown. Different model predictions are compared to previous data
of the JLab-CLAS analysis and a new data point measured at MAMI-A1 forQ2 =
0.1 GeV2 [5]. Only the MAID prediction comes close to the new measurement
because of the build-in constraint from the Siegert theorem.

The study of baryon resonances is still an exciting field in hadron physics.
With the partial wave analyses from MAID and the JLab group of electroproduc-
tion data a series of transition form factors has been obtained in the space-like
region. We have shown that with the help of the long-wavelength limit (Siegert
Theorem) extrapolations to the time-like region can be obtained satisfying min-
imal constraints at the pseudo-threshold. In this time-like region, Dalitz decays
in the process Nπ → N∗/∆ → Ne+e− can be measured and time-like form fac-
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FIG. 2. (Color online.) The scalar helicity amplitude for
Roper electroexcitation extracted at Q2 = 0.1 (GeV/c)2 com-
pared to CLAS measurements [11], MAID [1, 16] (solid line)
and the light-front quark model results of Refs. [29] and [30]
(LFQM1 and LFQM2, dashed and dash-dotted lines, respec-
tively). The isolated meson-baryon dressing contribution cal-
culated in Ref. [9] is shown by the dotted line (MB). The
immense range of other predictions is indicated by shading.

access the scalar helicity amplitude S1/2. This amplitude,250

in addition to its transverse counterpart, A1/2, describes251

the resonance excitation itself, i. e. only the electromag-252

netic vertex γpN∗. While A1/2(Q2 = 0) can be deter-253

mined (and is relatively well known) from photoproduc-254

tion measurements [31], the S1/2 is accessible exclusively255

in electroproduction (Q2 6= 0) and becomes increasingly256

difficult to extract at small Q2. This is a highly relevant257

kinematic region where many proposed explanations of258

the structure of the Roper resonance and mechanisms of259

its excitation give completely different predictions. For260

example, the Roper could be a hybrid (q3g) state, imply-261

ing a vanishing S1/2(Q2) [29, 32–35], or a radial excita-262

tion (a “breathing mode”) of the three-quark core as sup-263

ported by the observed behavior of A1/2(Q2) [9, 11, 36].264

This is also a region in which large pion-cloud effects are265

anticipated [37, 38]. The range of theoretical predictions266

for S1/2(Q2), assembled from the literature, is indicated267

by shading in Fig. 2. In the most relevant region below268

Q2 ≈ 0.5 (GeV/c)2 where quark-core dominance is ex-269

pected to give way to manifestations of the pion cloud270

— and where existing data cease — the predictions de-271

viate dramatically. Even the most sophisticated model272

calculations tend to suffer from strong, hard-to-control273

cancellations of quark and meson contributions at low274

virtualities, hence any additional data point approaching275

the photon point becomes priceless in pinning down these276

competing classes of ingredients.277

Given that the agreement of our new recoil polarization278

data with the MAID model is quite satisfactory and that279

the transverse helicity amplitude A1/2 is relatively much280

better known, we have attempted a model-dependent ex-281

traction of the scalar amplitude S1/2 at the single value282

of Q2 of our experiment. We have performed a Monte283

Carlo simulation across the experimental acceptance to284

vary the relative strength of S1/2 with respect to the best285

MAID value for A1/2 and made a χ2-like analysis with286

respect to our experimentally extracted event sample in287

P ′x, Py and P ′z. Since P ′z was the least reliable of the288

three due to the systematic uncertainty of its extraction,289

the analysis relied on the other two components, P ′x and290

Py, of which the former turned out to be relatively insen-291

sitive to the variation of S1/2, leaving us with Py only.292

Fixing A1/2 to its MAID value and taking SMAID
1/2 as the293

nominal best model value, we have been able to express294

S1/2 from our fit as the fraction of SMAID
1/2 , yielding295

S1/2 =
(
0.80+0.15

−0.20
)
SMAID
1/2 =

(
14.1+2.6

−3.5
)
· 10−3GeV−1/2 .296

This result is shown in Fig. 2.297

In summary, proton recoil polarization components in298

the p(~e, e′~p)π0 process in the energy range of the Roper299

resonance have been measured precisely for the first time.300

The scalar helicity amplitude for Roper electroexcita-301

tion has been determined at a Q2 very close to the real-302

photon point. The extracted value favors calculations in303

which the interplay of quark and meson contributions re-304

sults in a small value of S1/2. From the standpoint of305

phenomenological models, the unitary isobar approach306

(MAID) based on dressed resonances is superior to the307

model involving dynamical dressing (DMT).308
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Abstract. The observables in a single-channel 2-body scattering problem remain invariant
once the amplitude is multiplied by an overall energy- and angle-dependent phase. This
invariance is known as the continuum ambiguity. Also, mostly in truncated partial wave
analyses (TPWAs), discrete ambiguities originating from complex conjugation of roots are
known to occur. In this note, it is shown that the general continuum ambiguity mixes
partial waves and that for scalar particles, discrete ambiguities are just a subset of continu-
um ambiguities with a specific phase. A numerical method is outlined briefly, which can
determine the relevant connecting phases.

1 Introduction

We assume the well-known partial wave decomposition of the amplitudeA(W,θ)
for a 2→ 2-scattering process of spinless particles

A (W,θ) =

∞∑
`=0

(2`+ 1)A`(W)P`(cos θ). (1)

The data out of which partial waves shall be extracted are given by the dif-
ferential cross section, which is (ignoring phase-space factors)

σ0 (W,θ) = |A (W,θ)|
2
. (2)

Making a complete experiment analysis [1] for this simple example, we see that
the cross section constrains the amplitude to a circle for each energy and an-
gle: |A(W,θ)| = +

√
σ0(W,θ). Thus, one energy- and angle-dependent phase is

in principle unknown when based on data alone. The other side of the medal in
this case is given by the fact that the amplitude itself can be rotated by an arbi-
trary energy- and angle-dependent phase and the cross section does not change.
This invariance is known as the continuum ambiguity [2]:

A(W,θ)→ Ã(W,θ) := eiΦ(W,θ)A(W,θ). (3)

Another concept known in the literature on partial wave analyses is that of so-
called discrete ambiguities [2–4]. Suppose the full amplitude A(W,θ) can be split
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into a product of a linear-factor of the angular variable, for instance cos θ, and a
remainder-amplitude Â(W,θ) [3]:

A(W,θ) = Â(W,θ) (cos θ− α) . (4)

This is generally the case whenever the amplitude is a polynomial (i.e. the series
(1) is truncated), but it may also be possible for infinite partial wave models. Then,
it is seen quickly that the cross section (2) is invariant under complex conjugation
of the root α, which causes the discrete ambiguity

α −→ α∗. (5)

Figure 1 shows a schematic illustration of the meaning of the terms continuum-
vs. discrete ambiguities. In this proceeding, the purely mathematical mechanisms
(3) and (5) are investigated. Of course, constraints from physics may reduce the
amount of ambiguity encountered. For instance, unitarity is a very powerful
constraint which, for elastic scatterings, leaves only one remaining non-trivial
so-called Crichton-ambiguity [5]. This is believed to be true independent of any
truncation-order L of the partial wave expansion [2]. However, in energy-regimes
where the scattering becomes inelastic, so-called islands of ambiguity are known to
exist [6].

Fig. 1. Three schematic pictures are shown in order to distinguish the terms discrete- and
continuum ambiguities. The grey colored box depicts in each case the higher-dimensional
parameter-space composed by the partial wave amplitudes, be it for infinite partial wave
models, or for truncated ones.
Left: One-dimensional (for instance circular) arcs can be traced out by continuum ambigu-
ity transformations, both for infinite and truncated models.
Center: Connected continua in amplitude space, containing an infinite number of points
with identical cross section, can be generated by use of angle-dependent rotations (3)
(however, only in case the partial wave series goes to infinity). The connected patches
are also called islands of ambiguity [2, 6].
Right: Discrete ambiguities refer to cases where the cross section is the same for discretely
located points in amplitude space. These ambiguities are most prominent in TPWAs [2,4].
However, two-fold discrete ambiguities can also appear for infinite partial wave models,
once elastic unitarity is valid [2].
These figures have been published in reference [8].

Although here we focus just on the scalar example, ambiguities have become
a topic of interest in the quest for so-called complete experiments in reactions with
spin, for instance photoproduction of pseudoscalar mesons [1, 7].
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This proceeding is a briefer version of the more detailed publication [8]. The
arXiv-reference [9] also treats very similar issues, as does the contribution of Al-
fred Švarc to these proceedings.

2 The effect of continuum ambiguity transformations on partial
wave decompositions

We let the general transformation (3) act on A(W,θ) and assume a partial wave
decomposition for the original as well as the rotated amplitude

A(W,θ) −→ Ã(W,θ) = eiΦ(W,θ)A(W,θ) = eiΦ(W,θ)
∞∑
`=0

(2`+ 1)A`(W)P`(cos θ)

≡
∞∑
`=0

(2`+ 1)Ã`(W)P`(cos θ). (6)

Out of the infinitely many possibilities to parametrize the angular depen-
dence of the phase-rotation, the convenient choice of a Legendre-series is em-
ployed

eiΦ(W,θ) =

∞∑
k=0

Lk(W)Pk(cos θ). (7)

In case this form of the rotation is inserted into the partial wave projection in-
tegrals of the general rotated waves Ã` (cf. equation (6)), the following mixing
formula emerges [10]

Ã`(W) =

∞∑
k=0

Lk(W)

k+∑̀
m=|k−`|

〈k, 0; `, 0|m, 0〉2Am(W). (8)

Here, 〈j1,m1; j2,m2|J,M〉 is just a usual Glebsch-Gordan coefficient.
Some more remarks should be made on the formula (8): first of all, although

it’s derivation is not difficult, this author has (at least up to this point) not found
this expression in the literature, at least in this particular form. However, mixing-
phenomena have been pointed out for πN-scattering [11] and for photoproduc-
tion [12].

Secondly, in can be seen quickly from the mixing formula that for angle-
independent phases, i.e. when only the coefficient L0 survives in the parametri-
zation (7) of the rotation-functions, partial waves do not mix. Rather, in this case
each partial wave is multiplied by L0(W) = eiΦ(W). However, once the phase
Φ(W,θ) carries even a weak angle-dependence, the expansion (7) directly be-
comes infinite and thus introduces contributions to an infinite partial wave set via
the mixing-formula. There may be (a lot of) cases where the series (7) converges
quickly and in these instances, it is safe to truncate the infinite equation-system
(8) at some point.

It has to be stated that the mixing under very general continuum ambiguity
transformations may lead to the mis-identification of resonance quantum num-
bers (reference [9] illustrates this fact on a toy-model example).
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3 Discrete ambiguities as continuum ambiguity
transformations

In case of a polynomial-amplitude, i.e. a truncation of the infinite series (1) at
some finite cutoff L, the amplitude decomposes into a product of linear factors [4]

A(W,θ) =

L∑
`=0

(2`+ 1)A`(W)P`(cos θ) ≡ λ
L∏
i=1

(cos θ− αi) , (9)

with a complex normalization proportional to the highest wave λ ∝ AL(W). In
case of a TPWA, one energy-dependent overall phase has to be fixed. This could
be done, for instance, by choosing λ real and positive: λ = |λ|. Sometimes it is also
customary to fix the phase of the S-wave.

Gersten [4] showed that discrete ambiguities in the TPWA can occur in case
subsets of the roots {αi} are complex conjugated. All combinatorial possibilities
can be parametrized by a set of mappings πp, the number of which rises expo-
nentially with L:

πp (αi) :=

{
αi , µi (p) = 0

α∗i , µi (p) = 1
, p =

L∑
i=1

µi (p) 2
(i−1), p = 0, . . . , (2L − 1). (10)

In case these maps are applied, they yield a set of 2L polynomial-amplitudes,
which all have identical cross section:

A(p)(W,θ) = λ

L∏
i=1

(cos θ− πp [αi]) ≡
L∑
`=0

(2`+ 1)A
(p)
` (W)P`(cos θ). (11)

Since σ0 is invariant under the discrete Gersten-ambiguities, these transforma-
tions can effectively only be rotations (because of |A| =

√
σ0). More precisely,

because one overall phase is fixed for all partial waves, discrete ambiguities can
only be angle-dependent rotations. The corresponding rotation-functions are just
fractions of two polynomial amplitudes

eiϕp(W,θ) =
A(p)(W,θ)

A(W,θ)
=

(cos θ− πp [α1]) . . . (cos θ− πp [αL])
(cos θ− α1) . . . (cos θ− αL)

. (12)

Therefore, discrete ambiguities mix partial waves, just as the general continuum
ambiguities do. Furthermore, the expression on the right-hand-side of (12) is ex-
plicitly an infinite series in cos θ. Thus, one may expect an infinite tower of rotated
partial waves Ã` to be non-vanishing upon consideration of the mixing-formula
(8). However, in this case of course the rotation fine-tunes exact cancellations in
the results of the mixing for all higher partial waves Ã`>L.

Furthermore, Gersten [4] claims (without proof) that the root-conjugations
exhaust all possibilities for discrete ambiguities of the TPWA. We have to state that
we believe him.

The remainder of this proceeding is used to outline a numerical method that
is orthogonal to the Gersten-formalism, but which can also substantiate this claim.
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4 Functional minimizations show exhaustiveness of
Gersten-ambiguities

We use the notation x = cos θ, introduce the complex rotation function F(W,x) :=
eiΦ(W,x) and from now on drop the explicit energy W. The proposed numerical
method assumes a truncated full amplitude A(x) as a known input. Then, all
possible functions F(x) are scanned numerically for only those that satisfy the
following two conditions:

(I) The complex solution-function F(x) has to have modulus 1 for each value of
x.

|F(x)|
2
= 1, ∀x ∈ [−1, 1] . (13)

(II) The rotated amplitude Ã(x), coming out of an amplitude A(x) truncated at L,
has to be truncated as well, i.e.

ÃL+k = 0, ∀k = 1, . . . ,∞. (14)

Formally, this scanning-procedure can be implemented by minimizing a suitably
defined functional of F(x):

W [F(x)] :=
∑
x

(
Re [F(x)]2 + Im [F(x)]

2
− 1
)2

+ Im

[
1

2

∫+1
−1

dxF(x)A(x)

]2
+
∑
k≥1

{
Re

[
1

2

∫+1
−1

dxF(x)A(x)PL+k(x)

]2

+ Im

[
1

2

∫+1
−1

dxF(x)A(x)PL+k(x)

]2}
−→ min. (15)

Here, the first term ensures the unimodularity of F(x) (i.e. condition (I)), the sec-
ond fixes a phase-convention on the S-wave Ã0 and the big sum over k sets all
higher partial wave of the rotated amplitude to zero.

It has to be clear that for practical numerical applications, the sums over k
and x have to be finite, i.e. the former is cut off and the latter is defined on a grid
of x-values. Also, a general function F(x) is defined by an infinite amount of real
degrees of freedom, which has to be made finite as well.

This can be achieved for instance by using a finite Legendre-expansion, i.e. a
truncated version of equation (7) (with possibly large cutoff Lcut), or by discretiz-
ing F(x) on a finite grid of points {xn} ∈ [−1, 1]. More details on the numerical
minimizations can be found in reference [8].

The only non-redundant solutions of this procedure are, in the end, the Ger-
sten-rotation functions (12). Figures 2 to 5 illustrate this fact for the simple toy-
model [8] (partial waves given in arbitrary units):

A(x) =

2∑
`=0

(2`+ 1)A`P`(x) = A0 + 3A1P1(x) + 5A2P2(x)

= 5+ 3(0.4+ 0.3i)x+
5

2
(0.02+ 0.01i)(3x2 − 1). (16)
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Fig. 2. (Color online) The convergence of the functional minimization procedure is illus-
trated in these plots. For the discrete ambiguities eiϕ0(x) and eiϕ1(x) of the toy-model
(16), two randomly drawn initial functions have been chosen from an applied ensemble
of initial conditions in the search. These initial conditions then converged to these two re-
spective Gersten-rotations. Results are shown for different values of the maximal number
of iterations Nmax of the minimizer, as indicated. Numbers range from Nmax = 5 up to
Nmax = 500. In all plots, the real- and imaginary parts of the precise Gersten-ambiguity are
drawn as blue and red solid lines. The results of the functional minimizations up to Nmax

are drawn as thick dashed lines, having the same color-coding for real- and imaginary
parts (color online). These figures have already been published in reference [8].
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Fig. 3. These plots are the continuation of Figure 2. The convergence of the numerical min-
imization of the functional (15) is shown for the phase eiϕ1(x), which generates discrete
ambiguities of the toy-model (16).
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Fig. 4. Same as before, but for the phase eiϕ2(x).
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Fig. 5. Same as before, but for the phase eiϕ3(x).
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This model is truncated at L = 2. Thus it has two roots (α1, α2) and 22 = 4

Gersten-ambiguities. The latter are generated by four phase-rotation functions:
eiϕ0(x) = 1, eiϕ1(x), eiϕ2(x) and eiϕ3(x). Figures 2 to 5 demonstrate the con-
vergence-process of the functional minimization towards a particular Gersten-
rotation, for very general initial functions. The fact that always one of the four
Gersten-rotations is found is independent of the choice of the initial function.

5 Conclusions & Outlook

We have seen that general continuum ambiguity transformations, as well as dis-
crete Gersten-ambiguities, are in the end manifestations of the same thing: angle-
dependent phase-rotations. Therefore, they both mix partial waves.

The rotations belonging to the Gersten-symmetries have the following defin-
ing property: they are the only rotations which, if applied to an original truncated
model, leave the truncation order L untouched. In order to demonstrate this fact,
a (possibly) new numerical method has been outlined capable of determining all
continuum ambiguity transformations satisfying pre-defined constraints.

A possible further avenue of reserach may consist off the generalization of
these findings to reactions with spin, for instance pseudoscalar meson photopro-
duction. Here, the massive amount of new polarization data gathered over the
last years have renewed interest in questions of the uniqueness of partial wave
decompositions. However, once one transitions to the case with spin, some open
issues still exist, as have already been discussed during the workshop.
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Abstract. Recent results on hadron spectroscopy from the Belle experiment are reviewed
in this contribution. Results are based on experimental data sample collected by the Belle
detector, which was in operation between 1999 and 2010 at the KEKB asymmetric-energy
e+e− collider in the KEK laboratory in Tsukuba, Japan. As a result of the size and quality
of collected Belle experimental data, new measurements are still being performed now,
almost a decade after the end of the Belle detector operation. Results from recent Belle
publications on hadron spectroscopy, selected for this review, are within the scope of this
workshop and reflect the interests of the participants.

1 Introduction

During its operation between 1999 and 2010, the Belle detector [1] at the asym-
metric-energy e+e− collider KEKB [2] accumulated an impressive sample of data,
corresponding to more than 1 ab−1 of integrated luminosity. The KEKB collider,
called a B Factory, was operating mostly around the Υ(4S) resonance, but also at
other Υ resonances, like Υ(1S), Υ(2S), Υ(5S) and Υ(6S), as well as in the nearby
continuum [3]. With succesful accelerator operation and excellent detector per-
formance, the collected experimental data sample was suitable for various mea-
surements, including the ones in hadron spectroscopy, like discoveries of new
charmonium(-like) and bottomonium(-like) hadronic states, together with stud-
ies of their properties.

2 Charmonium and Charmonium-like states

Around the year 2000, when the two B Factories started their operation [4], the
charmonium spectroscopy was a well established field: the experimental spec-
trum of cc states below theDD threshold was in good agreement with theoretical
prediction (see e.g. ref. [5]), and the last remaining cc states below the open-charm
threshold were soon to be discovered [6].

2.1 The X(3872)-related news

However, the field experienced a true renaissance by discoveries of the so-called
“XYZ” states—new charmonium-like states outside of the conventional charmo-
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nium picture. This fascinating story began in 2003, when Belle collaboration re-
ported on B+ → K+J/ψπ+π− analysis1, where a new state decaying to J/ψπ+π−

was discovered [7]. The new state, calledX(3872), was confirmed by the CDF, DØ,
BABAR collaborations [8], and later also by the LHC experiments [9]. The prop-
erties of this narrow state (Γ = (3.0+1.9−1.4 ± 0.9) MeV) with a mass of (3872.2 ±
0.8) MeV, which is very close to the D0D∗0 threshold [10], have been inten-
sively studied by Belle and other experiments [11]. These studies determined the
JPC = 1++ assignment, and suggested that the X(3872) state is a mixture of the
conventional 23P1 cc state and a loosely bound D0D∗0 molecular state.

If one wants to better understand the structure of X(3872), further studies of
production and decay modes for this narrow exotic state are necessary. A recent
example of these experimental studies at Belle is the search for X(3872) produc-
tion via the B0 → X(3872)K+π− and B+ → X(3872)K0Sπ

+ decay modes, where
X(3872) decays to J/ψπ+π− [12]. The results, obtained on a data sample contain-
ing 772×106 BB̄ events, show that B0 → X(3872) K∗(892)0 does not dominate the
B0 → X(3872)(K+π−) decay, which is in clear contrast to charmonium behaviour
in the B→ ψ(2S)Kπ case.

Another consequence of the D0D̄∗0 molecular hypothesis of X(3872) is an
existence of “X(3872)-like” molecular states with different quantum numbers.
Searches for some of these states were performed in another recent Belle anal-
ysis [13], using final states containing the ηc meson. A state X1(3872), aD0D̄∗0 −
D̄0D∗0 combination with JPC = 1+−, and two states with JPC = 0++, X(3730)
(combination ofD0D̄0+ D̄0D0) and X(4014) (combination ofD∗0D̄∗0+ D̄∗0D∗0),
were searched for. Additionally, neutral partners of the Z(3900)± [14] and
Z(4020)± [15], and a poorly understood state X(3915) were also included in the
search. No signal was observed in B decays to selected final states with the ηc
meson for any of these exotic states, so only 90% confidence-level upper limits
were set.

The interpretation of X(3872) being an admixture state of a D0D̄∗0 molecule
and a χc1(2P) charmonium state was also compatible with results of the recent
Belle study of multi-body B decay modes with χc1 and χc2 in the final state, using
the full Belle data sample of 772× 106 BB events [16]. This study is important to
understand the detailed dynamics of Bmeson decays, but at the same time these
decays could be exploited to search for charmonium and charmonium-like exotic
states in one of the intermediate final states such as χcJπ and χcJππ.

These recent results were already obtained with the complete Belle data sam-
ple, so more information about the nature of mentioned exotic states could only
be extracted from the larger data sample, which will be available at the Belle II
experiment [17].

2.2 Alternative χc0(2P) candidate

The charmonium-like state X(3915) was observed by the Belle Collaboration in
B → J/ψωK decays [18]; originally it was named Y(3940). Subsequently, it was

1 Throughout the document, charge-conjugated modes are included in all decays, unless
explicitly stated otherwise.



70 M. Bračko

also observed by the BABAR Collaboration in the same B decay mode [19] and by
both Belle and BABAR in the process γγ → X(3915) → J/ψω [20]. The quantum
numbers of the X(3915) were measured to be JPC = 0++, and as a result, the
X(3915) was identified as the χc0(2P) in the 2014 PDG tables [21].

However, many properties of the X(3915) state were found to be inconsistent
with this identification. For example, the χc0(2P)→ DD decay mode is expected
to be dominant, but has not yet been observed experimentally for the X(3915).
Also, the measured X(3915) width of (20 ± 5) MeV is much smaller than ex-
pected χc0(2P) width of Γ & 100 MeV [22]. A later reanalysis [23] of the data
from Ref. [20] showed that both JPC = 0++ and 2++ assignments are possible.
As a result of these considerations, the X(3915) was no longer identified as the
χc0(2P) in the 2016 PDG tables [10]; and there was enough motivation for Belle
Collaboration to perform an updated analysis of the process e+e− → J/ψDD.

This latest analysis [24] used the 980 fb−1 data sample, collected at or near
the Υ(1S), Υ(2S), Υ(3S), Υ(4S) and Υ(5S) resonances. In addition to this 1.4 times
increased statistics with respect to previous measurement, a sophisticated multi-
variate method was used to improve the discrimination of the signal and back-
ground events, and an amplitude analysis was performed to study the JPC quan-
tum numbers of the DD system. As a result of this analysis, a new charmonium-
like state, the X∗(3860), was observed in the process e+e− → J/ψDD. The mass of
this state is determined to be (3862+26−32

+40
−13) MeV and its width is (201+154−67

+88
−82) MeV.

The X∗(3860) quantum number hypotheses JPC = 0++ and 2++ are compared us-
ing MC simulation. Monte Carlo pseudoexperiments are generated according to
the fit result with the 2++ X∗(3860) signal in data and then fitted with the 2++

and 0++ signals (see Figure 1). The JPC = 0++ hypothesis is favoured over the
2++ hypothesis at the level of 2.5σ.

The new state X∗(3860) seems to be a better candidate for the χc0(2P) char-
monium state than the X(3915): the measured X∗(3860) mass is close to poten-
tial model prediction for the χc0(2P), while the preferred quantum numbers are
JPC = 0++, although the 2++ hypothesis is not excluded.

2.3 Study of JPC = 1−− states using ISR

Initial-state radiation (ISR) has proven to be a powerful tool to search for JPC =

1−− states at B-factories, since it allows one to scan a broad energy range of
√
s be-

low the initial e+e− centre-of-mass (CM) energy, while the high luminosity com-
pensates for the suppression due to the hard-photon emission. Three charmonium-
like 1−− states were discovered at B factories via initial-state radiation in the last
decade: the Y(4260) in e+e− → J/ψπ+π− [25,26], and the Y(4360) and Y(4660) in
e+e− → ψ(2S)π+π− [27, 28]. Together with the conventional charmonium states
ψ(4040), ψ(4160), and ψ(4415), there are altogether six vector states; only five of
these states are predicted in the mass region above the DD threshold by the po-
tential models [29]. It is thus very likely, that some of these states are not charmo-
nia, but have exotic nature—they could be multiquark states, meson molecules,
quark-gluon hybrids, or some other structures. In order to understand the struc-
ture and behaviour of these states, it is therefore necessary to study them in many
decay channels and with largest possible data samples available.
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Fig. 1. Comparison of the 0++ and 2++ hypotheses in the default model (constant nonreso-
nant amplitude). The histograms are distributions of∆(−2 ln L) in MC pseudoexperiments
generated in accordance with the fit results with 2++ (open histogram) and 0++ (hatched
histogram) signals.

Recent paper from Belle collaboration [30] reports on the experimental study
of the process e+e− → γχcJ (J=1, 2) via initial-state radiation using the data sam-
ple of 980 fb−1, collected at and around the Υ(nS) (n=1, 2, 3, 4, 5) resonances.
For the CM energy between 3.80 and 5.56 GeV, no significant e+e− → γχc1
and γχc2 signals were observed except from ψ(2S) decays, therefore only up-
per limits on the cross sections were determined at the 90% credibility level. Re-
ported upper limits in this CM-energy interval range from few pb to a few tens of
pb. Upper limits on the decay rate of the vector charmonium [ψ(4040), ψ(4160),
and ψ(4415)] and charmonium-like [Y(4260), Y(4360), and Y(4660)] states to γχcJ
were also reported in this study (see Table 1). The obtained results could help in
better understanding the nature and properties of studied vector states.

χc1 (eV) χc2 (eV)
Γee[ψ(4040)]× B[ψ(4040)→ γχcJ] 2.9 4.6
Γee[ψ(4160)]× B[ψ(4160)→ γχcJ] 2.2 6.1
Γee[ψ(4415)]× B[ψ(4415)→ γχcJ] 0.47 2.3
Γee[Y(4260)]× B[Y(4260)→ γχcJ] 1.4 4.0
Γee[Y(4360)]× B[Y(4360)→ γχcJ] 0.57 1.9
Γee[Y(4660)]× B[Y(4660)→ γχcJ] 0.45 2.1

Table 1. Upper limits on Γee × B(R→ γχcJ) at the 90% C.L.

Initial-state radiation technique was also used in the new Belle measurement
of the exclusive e+e− → D(∗)±D∗∓ cross sections as a function of the center-
of-mass energy from the D(∗)±D∗∓ threshold through

√
s = 6.0 GeV [31]. The
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analysis is based on a Belle data sample collected with an integrated luminosity
of 951 fb−1. The accuracy of the cross section measurement is increased by a factor
of two over the previous Belle study, due to the larger data set, the improved track
reconstruction, and the additional modes used in the D and D∗ reconstruction.
The complex shape of the e+e− → D∗+D∗− cross sections can be explained by
the fact that its components can interfere constructively or destructively. The fit
of this cross section is not trivial, because it must take into account the threshold
and coupled-channels effects.

Finally, the first angular analysis of the e+e− → D∗±D∗∓ process was per-
formed within this study, allowing the decomposition of the corresponding ex-
clusive cross section into three possible components for the longitudinally, and
transversely-polarized D∗± mesons, as shown in Figure 2. The obtained compo-
nents have distinct behaviour near theD∗+D∗− threshold. The only non-vanishing
component at higher energy is the TL helicity of theD∗+D∗− final state. The mea-
sured decomposition allows the future measurement of the couplings of vector
charmonium states into different helicity components, useful in identifying their
nature and in testing the heavy-quark symmetry.
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Fig. 2. The components of the e+e− → D∗+D∗−γISR cross section corresponding to the
differentD∗±’s helicities. (The labels and units for the horizontal axis, common in all three
cases, are shown only for the right plot.

3 Results on Charmed Baryons

Recently, a lot of effort in Belle has been put into studies of charmed baryons.
Many of these analyses are still ongoing, but some of the results are already avail-
able. One example of such a result is the first observation of the decay Λ+

c →
pK+π− using a 980 fb−1 data sample [32]. This is the first doubly Cabibbo-sup-
pressed (DCS) decay of a charmed baryon to be observed, with statistical signifi-
cance of 9.4 σ (fit results for invariant-mass distributions are shown in Figure 3).
The branching fraction of this decay with respect to its Cabibbo-favoured (CF)
counterpart is measured to be B(Λ+

c → pK+π−)/B(Λ+
c → pK−π+) = (2.35 ±

0.27± 0.21)× 10−3, where the uncertainties are statistical and systematic, respec-
tively.

This year the results of the most recent baryon study were published [33].
In this study the inclusive production cross sections of hyperons and charmed
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.

baryons from e+e− annihilation were measured. The analysed sample corresponds
to 800 fb−1 of Belle data collected around the Υ(4S) resonance. The feed-down
contributions from heavy particles were estimated and subtracted, using the mea-
sured data. The direct production cross sestions of hyperons and charmed baryons
were thus measured and presented for the first time (see Figure 4).

The production cross sections divided by the spin multiplicities for S = −1

hyperons follow an exponential function with a single slope parameter except
for the Σ(1385)+ resonance. A suppression for Σ(1385)+ and S = −2,−3 hy-
perons is observed, which is likely a consequence of decuplet suppression and
strangeness suppression in the fragmentation process. The production cross sec-
tions of charmed baryons are significantly higher than those of excited hyperons,
and strong suppression of Σc with respect toΛ+

c is observed. The ratio of the pro-
duction cross sections of Λ+

c and Σc is consistent with the difference of the pro-
duction probabilities of spin-0 and spin-1 diquarks in the fragmentation process.
This observation supports the theory that the diquark production is the main pro-
cess of charmed baryon production from e+e− annihilation, and that the diquark
structure exists in the ground state and low-lying excited states of Λ+

c baryons.

4 Summary and Conclusions

Many new particles have already been discovered during the operation of the
Belle experiment at the KEKB collider, and some of them are mentioned in this
report. Although the operation of the experiment finished almost a decade ago,
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data analyses are still ongoing and consequently more interesting results on char-
monium(-like), bottomonium(-like) and baryon spectroscopy can still be expected
from Belle in the near future. The results are eagerly awaited by the community
and will be widely discussed at various occasions, in particular at workshops and
conferences.

Still, the era of the Belle experiment is slowly coming to an end. Further
progress towards high-precision measurements—with possible experimental sur-
prises — in the field of hadron spectroscopy are expected from the huge experi-
mental data sample, which will be collected in the future by the Belle II experi-
ment [17]. This future might actually start soon, since the Belle II detector begins
its operation early next year.
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Abstract. We investigate two mechanisms for the formation of the Roper resonance: the
excitation of a valence quark to the 2s state versus the dynamically generation of a quasi-
bound meson-nucleon state. We use a coupled channel approach including the πN, π∆
and σN channels, fixing the pion-baryon vertices in the underlying quark model and us-
ing a phenomenological form for the s-wave sigma-baryon interaction. The Lippmann-
Schwinger equation for the K matrix with a separable kernel is solved to all orders which
results in the emergence of a quasi-bound state at around 1.4 GeV. Analysing the poles in
the complex energy plane using the Laurent-Pietarinen expansion we conclude that the
mass of the resonance is determined by the dynamically generated state, but an admix-
ture of the (1s)2(2s)1 component is crucial to reproduce the experimental width and the
modulus of the resonance pole.

This work has been done in collaboration with Simon Širca from Ljubljana, Hedim
Osmanović from Tuzla and Alfred Švarc from Zagreb.

The recent results of lattice QCD simulation in the P11 partial wave by the
Graz-Ljubljana group [1] including besides 3q interpolating fields also operators
for πN in relative p-wave and σN in s-wave, has revived the interest in the na-
ture of the Roper resonance. Their calculation and a similar calculation by the
Adelaide group [2] show no evidence for a dominant 3q configuration below
1.65 GeV and 2.0 GeV, respectively, that could be interpreted as a three-quark
Roper state, and therefore support the dynamical origin of the Roper resonance.

In our work [3] we study the interplay of the dynamically generated state
and the three-quark resonant state in a simplified model incorporating the πN,
π∆ and σN channels. The choice of the channels as well as of the parameters of
the model is based on our previous calculations of the scattering and the meson
photo- and electro-production amplitudes for several partial waves in which all
relevant channels as well as most of the nucleon and ∆ resonances in the inter-
mediate energy regime have been included [5–9]. The bare octet-meson–baryon
vertices are calculated in the Cloudy Bag Model while the parameters of the σ-
baryon interaction are left free: apart of its strength, the Breit-Wigner mass and
the width of the σ are varied. We have been able to consistently reproduce the
results in the S and P partial waves; only the D waves typically require an in-
crease in the strength of the meson-quark couplings compared to those predicted
by the underlying quark model. The results presented here are obtained with the
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σ mass and width both equal to 600 MeV, and only the σNN coupling is varied.
Very similar results have been obtained for the mass and width of 500 MeV.

The central quantity in our approach is the half-on-shell K matrix1 that con-
sists of the resonant (pole) terms and the background (non-pole) term D:

χαγ(k, kγ) =
VγN(kγ)VαN(k)

mN −W
+
VγR(kγ)VαR(k)

mR −W
+Dαγ(k, kγ) . (1)

Indices α, β, γ . . . denote the three channels, the first term corresponds to the
nucleon pole, the second term is optional and generates an explicit resonance
with the K-matrix pole atW = mR. The Lippmann-Schwinger equation (LSE) for
the Kmatrix splits into the equation for the dressed N→ α vertex,

VαN(k) = V(0)
αN(k) +

∑
β

∫
dk ′

Kαβ(k, k ′)VβN(k ′)
ωβ(k ′) + Eβ(k ′) −W

, (2)

and the equation for the background,

Dαδ(k, kδ) = Kαδ(k, kδ) +
∑
β

∫
dk ′
Kαβ(k, k ′)Dβδ(k ′, kδ)
ωβ(k ′) + Eβ(k ′) −W

. (3)

If the resonant state is included, an equation analogous to (2) holds for the R→ α

vertex. Let us note that the splitting of the K matrix is similar to the splitting
used in approaches computing directly the T matrix, but is not equivalent. In
the K-matrix approach the T matrix is obtained by solving the Heitler equation,
T = K+ iKT , which necessarily mixes the pole and the non-pole terms.

Our approximation consists of assuming a separable form for the kernelKαβ:

Kαβ(k, k ′) =
∑
i

ϕαβi(k) ξ
β
αi(k

′) , (4)

ϕαβi(k) =
mi

Eβ
(ωβ + εβiα)

Vαiβ(k)

ωα(k) + εαiβ
fiαβ ,

ξβαi(k
′) =

Vβiα(k
′)

ωβ(k ′) + ε
β
iα

, εβiα =
m2i −m

2
α − µ2β

2Eα
,

where i runs over intermediate N and ∆, f are the corresponding spin-isospin
factors, Vαiβ corresponds to the decay of the baryon in channel β into the inter-
mediate baryon and the meson in channel α, and m (E) and µ (ω) stand for the
baryon and the meson mass (energy), respectively. Kαβ(k, k ′) reduces to the u-
channel exchange potential when either k or k ′ takes its on-shell value. This type
of approximation has been used in our previous calculations and has lead to con-
sistent results. Let us mention that neglecting the integral terms in (2) and (3)
corresponds to the so called K-matrix approximation.

1 χ is proportional to the Kmatrix (satisfying S = (1+ iK)/(1− iK)) by a kinematical factor
which is not relevant for the present discussion.
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Equation (2) and (3) can be solved exactly by the ansatz:

VαN(k) = V(0)
αN(k) +

∑
βi

xαβiϕ
α
βi(k) , (5)

Dαδ(k) = Kαδ(k, kδ) +
∑
βi

zαδβi ϕ
α
βi(k) , (6)

with coefficients x and z satisfying sets of algebraic equations of the form∑
γj

Aβαi,γj x
β
γj = b

β
αi ,

∑
γj

Aβαi,γj z
βδ
γj = cβδαi .

Note that both equations involve the same matrix A = I+M, M = [M]βαi,γj where

Mβ
αi,γj = −

∫
dk

ξβαi(k)ϕ
β
γj(k)

ωβ(k) + Eβ(k) −W
. (7)

For sufficiently strong interaction, the matrix A becomes singular and one or more
poles appear in the background part of the Kmatrix which signals the emergence
of a dynamically generated state. In fact, poles at the same energies appear also
in the corresponding resonant terms of the K matrix, in addition to the nucleon
pole and the (optional) pole atmR. The mechanism of this process can be studied
by performing the singular value decomposition A = UWVT where W is a diagonal
matrix containing the singular values wi. The singular values remain close to
unity with exception of one which approaches zero as the interaction increases
(Fig. 1 a) and eventually becomes negative for sufficiently strong gσNN (Fig. 2 a).
We claim that it is this value, wmin, and the corresponding singular vector Umin,
that determine the properties of the quasi-bound molecular state. This state is
dominated by the σN component. For the invariant energiesW for whichwmin is
close to zero, the solutions (5) and (6), in the absence of the resonant state R, can
be cast in the form

VαN(kα) ≈ V(0)
αN(kα) +

aα

wmin
, Dαδ(kα, kδ) ≈ Kαδ(kα, kδ) +

dαδ

wmin
. (8)

Similarly, the nucleon self energy acquires the form

ΣN(W) =
∑
β

∫
dk

VβN(k)V(0)
βN(k)

ωβ(k) + Eβ(k) −W
≈ (mN −W)

(
Σ′N(W) +

b

wmin

)
. (9)

Just above the πN threshold, the D term is dominated by the u-channel N ex-
change processes which is reflected in a large peak in ImT (the non-pole term in
Fig. 1 b). This term has the opposite sign with respect to the nucleon-pole term;
these two terms almost cancel each other. In the energy region wherewmin reaches
its minimum the second terms in (8) and (9) dominate and the leading contribu-
tion to the Kmatrix reads

Kαδ ≈
aαaδ

b

1

(mN −W)wmin
+
dαδ

wmin
.
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The two terms generate a resonance peak at the minimum ofwmin (dashed-dotted
line in Fig. 1 b); the real part, ReWp, of the corresponding S-matrix pole in Table 1
appears slightly belowW of the minimum ofwmin. Increasing gσNN,wmin crosses
zero twice and two poles of the S-matrix appear with ReWp close to the intersec-
tions (see Fig. 1 a and Table 1 for gσNN = 2.05).

If we include the resonant state by imposing a fixed value for mR in the
second term of (1), the position of the peak almost does not change for a value of
mR as low as 1530 MeV (solid line in Fig. 1 b). The effect of the resonant state is
reflected in the increased width of the resonance rather than in the change of its
position. This general scenario does not change if we decrease gπNN in order to
reproduce the experimental values of ReT and ImT (Fig. 2 b). While the peak in
ImT moves to somewhat higher W, the position of the minimum of wmin as well
as of the real part of the S-matrix pole stay almost at the same value (see Table 1).
Also, varying the value of mR between 1520 MeV and 2000 MeV has almost no
influence on the behaviour of the amplitudes and the position of the S-matrix
pole.
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Fig. 1. (Color online) a) The six lowest singular eigenvalues of the A matrix for gσNN = 2.0.
b) The real and imaginary parts of the T matrix calculated from the background (non-pole)
term alone (dashed lines), from the background plus the nucleon pole term (dash-dotted
lines), and from including the resonant state either at mR = 1530 MeV (solid lines), or at
mR = 2000MeV (short-dashed lines) for gσNN = 2.0.

We can summarize the results obtained in our simplified model as follows:

• The main mechanism for the Roper resonance formation is the dynamical
generation through a quasi-bound meson-baryon state aroundW ≈ 1400MeV
dominated by the σN component. Its mass is rather insensitive to variations
of the gπNN coupling.
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Fig. 2. (Color online) a) The lowest singular value of the W matrix, wmin, for four values of
gσNN. b) Same as Fig. 1 b, except for gσNN = 1.55.

Table 1. S-matrix pole position and modulus for the model without the resonant state
(mR = ∞), and the model with the resonant state for two values of the K-matrix pole
mass. The PDG values are taken from [10].

gσNN mR ReWp −2ImWp |r| ϑ

[MeV] [MeV] [MeV]

PDG 1370 180 46 −90◦

1.80 ∞ 1397 157 11.2 −78◦

2.00 ∞ 1358 111 20.6 −81◦

2.05 ∞ 1331 44 7.3 −62◦

1438 147 18.6 −17◦

2.00 ∞ 1342 285 18.8 −11◦

gπN∆ = 0

1.55 2000 1368 180 48.0 −87◦

1.55 1530 1367 180 47.5 −86◦

• The real part of the S-matrix pole, ReWp, remains close to or slightly below
the mass of the quasi-bound state and is almost insensitive to the presence
of a three-quark resonant state, while the PDG value of the imaginary part,
ImWp, is reproduced only if the three-quark resonant state is included.

• The S-matrix pole emerges with ReWp close to the minimum of wmin even if
(positive) wmin stays relatively far from zero; in this case the corresponding
pole is not present in the Kmatrix.
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• The mass of the quasi-bound molecular state is most strongly influenced by
the σN component and lies ∼ 100 MeV below the nominal σN threshold; re-
moving the π∆ component has little influence on the mass (see gπN∆ = 0

entry in Table 1).
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9. B. Golli, S. Širca, Eur. Phys. J. A 52, 279 (2016).

10. C. Patrignani et al. (Particle Data Group), Chin. Phys. C 40, 100001 (2016) and 2017
update.



BLED WORKSHOPS
IN PHYSICS
VOL. 18, NO. 1
p. 82

Proceedings of the Mini-Workshop
Advances in Hadronic Resonances

Bled, Slovenia, July 2 - 9, 2017

Possibilities of detecting the DD* dimesons at Belle2

Mitja Rosina

Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, P.O. Box 2964,
1001 Ljubljana, Slovenia
and J. Stefan Institute, 1000 Ljubljana, Slovenia

Abstract. The double charm dimeson DD* represents a very interesting four-body prob-
lem since it is a delicate superposition of a molecular (dimeson) and an atomic (tetraquark)
configuration. It is expected to be either weakly bound or a low resonance, depending on
the model. Therefore it is a sensitive test how similar are the effective quark-quark inter-
actions between heavy quarks and light quarks.

After the discovery of the Ξ+cc = ccd baryon at LHCb, there is a revived interest for
the search of the double charm dimesons. There is, however, no such clear production
and decay process available as it was for Ξ+cc. Therefore we argue that it is, compared to
LHCb, a better chance for the discovery of the DD* dimeson at the upgraded Belle-2 at
KEK (Tsukuba, Japan) after 2019.

1 Introduction

While the BB* dimeson (tetraquark) is expected to be strongly bound (>100 MeV)
due to the smaller kinetic energy of the heavy quarks, the DD* dimeson is ex-
pected to be weakly bound (possibly at ∼2 MeV) or a low resonance, depend-
ing on the model. Therefore it is a sensitive test of the effective quark-quark and
quark-antiquark interactions. For example, can we assume Vuu = Vcu = Vcc =
Vcū (apart from mass dependence of spin-dependent terms)?

There is no such clear production and detection process available for the
DD* intermediate state as it was for Ξ+cc which was recently discovered at LHCb
analysing the resonant decay to Λ+

c K−π + π+ where the Λ+
c baryon was recon-

structed in the decay mode pK−π+.
Therefore we have started a study which production mechanism could en-

able the discovery of the DD* dimeson at the upgraded Belle-2 at KEK (Tsukuba,
Japan) after 2019. For the time being, we summarize our old calculations of the
DD* binding energy [1] and explain several tricky features of this interesting four-
body system.

2 Comparison of charmed dimesons with the hydrogen
molecule

It is interesting to compare the molecule of two heavy (charmed) mesons with the
hydrogen molecule. At short distance, the two protons in the hydrogen molecule
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are repelled by the electrostatic interaction, while the two heavy (charm) quarks
in the mesonic molecule are attracted by the chromodynamic interaction because
they can recouple their colour charges.

Fig. 1. Difference between atom-like and molecular configurations

Fig. 2.
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3 Is the D+D* dimeson bound?

In the restricted 4-body space assuming ”cc” in a bound diquark state and the u
and d quarks in a general wavefunction, the energy is above the D+D* threshold.
In the restricted ”molecular” 4-body space with the two c quarks far apart and a
general wavefunction of ū and d̄ (as assumed by several authors), the energy is
also above the D+D* threshold. Only combining both spaces (we took a rich 4-
body space) brings the energy below the threshold. We should verify whether it
happens also for other interactions ( we have used the one-gluon exchange+linear
confinement [1]).

We failed to calculate the energy of the hidden charm (charmonium-like)
meson X(3872) using the same method and interaction as for DD* [2]. The reason
is that a perfect variational calculation in a rather complete 4-body space finds the
absolute minimum of energy which corresponds to J/psi+eta rather than DD̄∗. A
demanding coupled channel calculation would be needed for a reliable result,
and we have postponed it.

It is an interesting question whether in the first step ”cc” diquark is formed
and later automatically dressed by u or d or ū and d̄ , or is the first step to form
D + D* which merge into DD*. The later choice can profit from resonance for-
mation, but due to the dense environment it is a danger that the D + D* system
would again dissociate before really forming the dimeson. We intend to see which
formalism would be appropriate for this.

Fig. 3. The estimated probability of formation of the atomic tetraquark configuration com-
pared to the Ξcc production

Once the ”cc” diquark is formed, it is probably dressed with one light quark
into the Ξcc baryon and only with about 9% probability into the ”atomic” (cc)ūd̄
configuration. We have estimated this probability by analogy with the dressing of
the b quark [3] into theΛb baryon compared to the production of B mesons (fig. 3).
This percentage is further reduced by the evolution of the ”atomic” configuration
(cc)ūd̄ into the ”molecular” configuration of DD*.
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4 The decay of the DD* dimeson

The DD* dimeson is stable against a two-body decay into D+D due to its quantum
numbers I=0, J=1. It can decay, however, strongly in D+D+π, or electromagneti-
cally in D+D+γ, via the decay of D*. The strong decay is very slow (comparable
to the electromagnetic decay) due to the extremely small phase space for the pion.
Therefore, the DD* dimeson is ”almost stable” and very suitable for detection.

We are looking for convenient methods of detection. One possibility is re-
lated to the small phase space of the pionic decay [1] (fig. 4). The ratio between
the pionic and gamma decay will strongly depend on the binding or resonance
energy of the dimeson.

Alternative suggestions are needed in order to have a reliable signature or
tagging. We encourage the reader to come forth with new ideas!

Fig. 4. Dalitz plot for the DD* decay depending on the binding or resonance energy; the
area of the contours is proportional to the decay probability into pion
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5 Conclusion

Considering a rather large production cross section of double cc̄ pairs at Belle,
we expect a sufficient production rate of cc diquarks which get dressed by a light
quark into a Ξcc baryon. Once this expectation is verified, it is promising to search
for the DD* dimesons, especially if they proceed via cc + ū + d̄→ (cū)(cd̄).

The motivation is twofold.

• Since the DD* dimeson is a delicate system, it is barely bound or barely un-
bound, it would distinguish between different models.

• Its production rate might help to understand the mechanism of the high pro-
duction rate of double cc̄ pairs at Belle.

Work is in progress to study different production and decay mechanisms in
order to find a tell-tale signature in the decay products.
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Investigations of the structure of the Roper resonance by using coincident elec-
tron scattering have been presented at several previous Mini-Workshops, and the
most recent result on double-polarized pion electroproduction in the energy re-
gion of the Roper has recently been published [1]. This extended abstract is there-
fore just a reminder of the basic features of this experiment and just lists the high-
lights of that paper.

Our experimental study of the p(e, e ′p)π0 process was performed at the
three spectrometer facility of the A1 Collaboration at the Mainz Microtron (MAMI).
The kinematic ranges covered by our experiment were W ≈ (1440± 40)MeV for
the invariant mass, θ∗p ≈ (90 ± 15)◦ and φ∗p ≈ (0 ± 30)◦ for the CM scattering
angles and Q2 ≈ (0.1 ± 0.02)(GeV/c)2 for the square of the four-momentum
transfer.

We have extracted the two helicity-dependent recoil polarization compo-
nents, P ′x and P ′z, as well as the helicity-independent component Py, and com-
pared them to the values calculated by the state-of-the-art models MAID [2],
DMT [3] and the partial-wave analysis SAID [4]. With the possible exception of
Py at high W which is reproduced by neither of the models, MAID is in very
good agreement with the data, while DMT underestimates all three polarization
components and even misses the sign of P ′x. The SAID analysis agrees less well
with the P ′x data, while it exhibits an opposite trend in Py and is completely at
odds regarding P ′z. This might be a consequence of very different databases used
in the analysis and calls for further investigations within these groups.

We were also able to determine the scalar helicity amplitude S1/2 in a model-
dependent manner. In contrast to its transverse counterpart,A1/2, this amplitude
is accessible only by electroproduction (Q2 6= 0) and becomes increasingly dif-
ficult to extract at small Q2. This is a highly relevant kinematic region where
many proposed explanations of the structure of the Roper resonance and mecha-
nisms of its excitation give completely different predictions. This is also a region
in which large pion-cloud effects are anticipated. In the most relevant region be-
low Q2 ≈ 0.5 (GeV/c)2 where quark-core dominance is expected to give way to
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manifestations of the pion cloud — and where existing data cease — the predic-
tions deviate dramatically.

Given that the agreement of our new recoil polarization data with the MAID
model is quite satisfactory and that the transverse helicity amplitude A1/2 is rel-
atively much better known, we have performed a Monte Carlo simulation across
the experimental acceptance to vary the relative strength of S1/2 with respect to
the best MAID value for A1/2 and made a χ2-like analysis with respect to our
experimentally extracted P ′x, Py and P ′z, of which Py was the most convenient
for the fit. Fixing A1/2 to its MAID value and taking SMAID

1/2 as the nominal best
model value, we have been able to express S1/2 from our fit as the fraction of
SMAID
1/2 , yielding

S1/2 =
(
0.80+0.15−0.20

)
SMAID
1/2 =

(
14.1+2.6−3.5

)
· 10−3Ge−1/2 .

This result is shown in Fig. 3 of Loather Tiator’s contribution to these Proceed-
ings.
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Fotoprodukcija mezonov η in η′ z modelom EtaMAID
upoštevajoč Reggejevo fenomenologijo

Viktor L. Kashevarov, Lothar Tiator, in Michael Ostrick

Institut für Kernphysik, Johannes Gutenberg-Universität, D-55099 Mainz, Germany

Predstavimo novo verzijo modela EtaMAID za fotoprodukcijo mezonov η in η′ na
nukleonih. Model vsebuje 23 nukleonskih resonanc, ki jih opišemo z obliko Bre-
ita in Wignerja. Ozadje opišemo z izmenjavo vektorskih in aksialno-vektorskih
mezonov v kanalu t upoštevajoč fenomenologijo Reggejevega reza. Parametri
resonanc so bili prilagojeni znanim eksperimentalnim podatkom za fotoproduk-
cijo mezonov η in η′ na protonih in nevtronih. Razpravljamo o naravi najzan-
imivejših zapažanj.

Vloga nukleonske resonance pri asimetriji nevtronov, ki se
gibljejo izrazito naprej pri trkih visokoenergijskih polariziranih
protonov na jedrih

Itaru Nakagawa za kolaboracijo PHENIX

RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan

Odkrili smo presenetljivo močno odvisnost od mase pri enojni spinski asimetriji
nevtronov, ki se gibljejo izrazito naprej pri trkih prečno polariziranih protonov na
jedrih pri energiji 200 GeV pri eksperimentu PHENIX na pospeševalniku RHIC.
Takšna drastična odvisnost prekaša vsa pričakovanja običajnih hadronskih in-
terakcijskih modelov. Odvisnost asimetrije od mase smo skušali teoretično raz-
ložiti v okviru ultra perifernih trkov (efekt Primakoffa) z unitarnim izobarnim
modelom (Mainz - MAID 2007). Računi dajo dobro ujemanje. Račune z elektro-
magnetno interakcijo potrjuje slika, skladna z znanimi asimetrijskimi rezultati pri
procesu p↑ + Pb→ π0 + p + Pb v Fermilabu.
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Analiza delnih valov pri fotoprodukciji mezonov η pri dani
energiji – ilustracija z namišljenimi podatki

H. Osmanović1,∗, M. Hadžimehmedović1, R. Omerović1, S. Smajić1, J. Stahov1,
V. Kashevarov2, K. Nikonov2, M. Ostrick2, L. Tiator2 and A. Švarc3

1 University of Tuzla, Faculty of Natural Sciences and Mathematics,
Univerzitetska 4, 75000 Tuzla, Bosnia and Herzegovina
2 Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Ger-
many
3 Rudjer Bošković Institute, Bijenička cesta 54, P.O. Box 180, 10002 Zagreb, Croatia

Z iterativnim postopkom kombiniramo analizo amplitud pri določenem t s kon-
vencionalno analizo delnih valov pri določeni energiji na tak način, da rezultat
ene analize služi kot omejitev pri drugi. Delovanje naše metode prikažemo na do-
bro definirani popolni zbirki namišljenih podatkov, ki smo jih proizvedli v okviru
modela EtaMAID15.

Ločljivost gruč pri relativističnih problemih malo teles

Nikita Reichelt1, Wolfgang Schweiger1 in William H. Klink2

1 Institute of Physics, University of Graz, A-8010 Graz, Austria,
2 Department of Physics and Astronomy, University of Iowa, Iowa city, USA

Relativistična kvantna mehanika je prikladen okvir za obravnavo zgradbe in di-
namike hadronov v območju energij več GeV. Drugače kot pri relativistični kvantni
teorija polja zadošča tu določeno, ali vsaj omejeno, število prostostnih stopenj, da
zagotovimo relativistično invarianco. Za sistem sodelujočih delcev to dosežemo s
tako imenovano Bakamjian-Tomasovo konstrukcijo, ki sistematsko vgradi inter-
akcijske člene v generatorje Poincaréjeve grupe, tako da se ohranja njihova alge-
bra. Ta metoda pa se sooči s fizično zahtevo ločljivost gruč, čim imamo več kot
dvs delca. Ločljivost gruč, včasih jo imenujejo tudi “makroskopska kavzalnost”,
pomeni, da se ločena podsistema na dovolj veliki razdalji obnašata avtonomno.
V tem prispevku razpravljamo o tem problemu in nakažemo rešitev.

Analiza delnih valov pri fotoprodukciji mezonov η pri dani
energiji – eksperimentalni podatki

J. Stahov1,∗, H. Osmanović1,∗, M. Hadžimehmedović1, R. Omerović1, V. Kashe-
varov2, K. Nikonov2, M. Ostrick2, L. Tiator2 and A. Švarc3

1 University of Tuzla, Faculty of Natural Sciences and Mathematics,
Univerzitetska 4, 75000 Tuzla, Bosnia and Herzegovina
2 Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Ger-
many
3 Rudjer Bošković Institute, Bijenička cesta 54, P.O. Box 180, 10002 Zagreb, Croatia
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Analiza delnih valov pri fotoprodukciji mezonov η brez omejitev, v enem kanalu,
pri eni energiji vodi do nezveznosti v energiji. Zveznost od točke do točke dose-
žemo z zahtevo po analitičosti pri fiksnem t na modelsko neodvisen način z
uporabo razpoložljivih eksperimentalnih podatkov in pokažemo, da dosedanja
baza podatkov ne zadošča za enolično rešitev. Analitičost pri fiksnem t pri anal-
izi amplitud s fiksnim t zagotovimo z metodo razvoja Pietarinena, ki je znana
iz analize sipanja piona na nukleonu (Karlsruhe - Helsinki). Predstavimo analizo
delnih valov z analitično omejitvijo za eksperimentalne podatke za štiri observ-
able, ki so jih nedavno merili na pospeševalnikih MAMI in GRAAL v energijskem
območju od praga do

√
s = 1.85 GeV.

Ekskluzivna fotoprodukcija pionov na vezanih nevtronih

Igor Strakovsky

The George Washington University, Washington, USA

Podan je bil pregled dejavnosti skupine GW SAID pri analizi fotoprodukcije pi-
onov na nevtronski tarči. Razvozlanje izoskalarnih in izovektorskih elektromag-
netnih sklopitev resonanc N* in ∆* zahteva sprejemljive podatke na obojnih, pro-
tonskih in nevtronskih tarčah. Interakcije med končnimi stanji igrajo kritično
vlogo pri sodobni analizi reakcije γn → πN na devteronski tarči. Resonančne
sklopitve smo določili z metodo SAID PWA in jih primerjali s prejšnimi izsledki.
Reakcije na nevtronih predstavljajo znaten delež študij v laboratorijih JLab,
MAMI-C, SPring-8, ELSA in ELPH.

Resonance in jakostne funkcije sistemov malo teles

Yasuyuki Suzuki

Department of Physics, Niigata University, Niigata 950-2181, Japan
and RIKEN Nishina Center, Wako 351-0198, Japan

Resonance nudijo preizkusni teren za dinamiko sistemov malo teles. Podrobno
razpravljam o dveh tipih resonanc. Prva je ozka Hoylova resonanca v 12C, ki
igra bistveno vlogo pri sintezi ogljika v zvezdah. Drugi tip pa so široke, visoke
resonance z negativno parnostjo pri jedrih z masnim številom 4: 4H, 4He in 4Li.
Pri prvem tipu je glavna coulombska sila treh delcev alfa na velikih razdaljah,
pri drugem tipu pa imamo jedrske sile kratkega dosega. Strukturoteh resonanc
opišem z različnimi pristopi, in sicer z adiabatsko hipersferično metodo in kore-
liranimi Gaussovimi funkcijam pri računih jakostnih funkcij. Resonance uspešno
lokaliziramo s kompleksnim absorpcijskim potencialom, ozioma z metodo kom-
pleksnega skaliranja.
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Od modela neodvisna pot od eksperimentalnih podatkov do
parametrov polov
(Večličnost kotne odvisnosti kontinuuma ter razvoj Laurenta in
Pietarinena)

Alfred Švarc

Rudjer Bošković Institute, Bijenička cesta 54, P.O. Box 180, 10002 Zagreb, Croatia

Kot je znano, da neomejena analiza delnih valov z eno energijo mnogo enakovred-
nih nezveznih rešitev, zato rabimo omejitev povezano s primernim teoretičnim
modelom. Če ne specificiramo kotne odvisnosti faze, ki povzroča večličnost kon-
tinuuma, se mešajo multipoli; če pa izberemo fazo, rešimo enoličnost rešitve na
modelsko neodvisen način. Doslej ni bilo zanesljive metode, kako izvleči parame-
tre polov iz tako dobljenih delnih valov, vendar smo pred kratkim razvili novo
preprosto metodo z enim kanalom (razvoj Laurenta in Pietarinena), ki je uporabna
tako za zvezne kot diskretne podatke. Uporabimo Laurentov razvoj amplitude
delnih valov, neresonantno ozadje pa razvijemo v potenčno vrsto za konformno
preslikavo. Tako dobimo hitro konvergentno potenčno vrsto za preprosto anal-
itično funkcijo z dobro definiranimi analitičnimi lastnostmi delnih valov, ki se
ujemajo z vhodnimi podatki. Razvili smo tudi posplošitev na več kanalov. Če
poenotimo obe metodi , lahko izpeljemo parametre polov neposredno iz eksper-
imentalnih podatkov brez sklicevanja na katerikoli model.

Prehodni oblikovni faktorji barionov od prostorskega pa do
časovnega območja

Lothar Tiator

Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany

Predstavili smo razširitev neelastičnih oblikovnih faktorjev za foto- in elektropro-
dukcijo pionov na nukleonih iz območja negativnih kvadratov četvercev prenosa
gibalne količine q2 v območje s pozitivnihQ2, vse tja do tako imenovanega psev-
dopraga. V teh kinematičnih režimih je mogoče določiti pomembne fizikalne ome-
jitve za vijačnostne amplitude, ki sicer z neposredno meritvijo ne bi bile dostopne.
S to metodo smo lahko nedavno določili tudi skalarno vijačnostno amplitudo
S1/2 za Roperjevo resonanco.
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Matematične značilnosti večličnosti faznih zasukov pri analizah
delnih valov

Yannick Wunderlich

Helmholtz-Institut für Strahlen- und Kernphysik, Universität Bonn, Germany

Observable pri sipanju dveh teles v enem kanalu se ne spremenijo, če pomnožimo
amplitudo s skupno od energije in kota odvisno fazo. Ta invarianca je znana pod
imenom večličnost kontinuuma. Poleg tega nastanejo znane diskretne večličnosti
zaradi kompleksne konjugacije korenov, zlasti pri okrnjeni analizi delnih valov.
V tem prispevku pokažem, da splošna večličnost kontinuuma meša delne val-
ove in da so za skalarne delce diskretne večličnosti podmnožica kontinuumskih
večličnosti s specifično fazo. Na kratko orišem numerično metodo, ki lahko določi
ustrezne povezovalne faze.

Novejši rezultati spektroskopije hadronov pri eksperimentu
Belle

Marko Bračko

Univerza v Mariboru, Smetanova ulica 17, 2000 Maribor, Slovenija
in Institut Jožef Stefan, Jamova cesta 39, 1000 Ljubljana, Slovenija

V tem prispevku so predstavljeni nekateri novejši rezultati spektroskopije hadro-
nov pri eksperimentu Belle. Meritve so bile opravljene na vzorcu izmerjenih po-
datkov, ki ga je v času svojega delovanja – med letoma 1999 in 2010 – zbral
eksperiment Belle, postavljen ob trkalniku elektronov in pozitronov KEKB, ki je
obratoval v laboratoriju KEK v Cukubi na Japonskem. Zaradi velikosti vzorca in
kakovosti izmerjenih podatkov lahko raziskovalna skupina Belle še sedaj, ko je
od zaključka delovanja eksperimenta minilo že skoraj desetletje, objavlja rezultate
novih meritev. Izbor novejših rezultatov, predstavljenih v tem prispevku, ustreza
okviru delavnice in odraža zanimanje njenih udeležencev.

Roperjeva resonanca – trikvarkovsko ali dinamično tvorjeno
resonančno stanje?

B. Golli

Pedagoška fakulteta, Univerza v Ljubljani, Ljubljana, Slovenija
in Institut J. Stefan, Ljubljana, Slovenija

Raziskujemo dva mehanizma za tvorbo Roperjeve resonance: vzbuditev valen-
čnega kvarka v orbitalo 2s v primerjavi z dinamično tvorbo kvazivezanega stanja
mezona in nukleona. Uporabimo pristop sklopljenih kanalov s tremi kanali πN,
π∆ in σN, pri čemer določimo v kvarkovskem modelu pionska vozlišča z bar-
ioni, za vozlišče z mezonom σ pa vzamemo fenomenološko obliko. Lippmann-
Schwingerjevo enačbo s separabilnim jedrom za matriko K rešimo v vseh redih,
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kar lahko vodi do nastanka kvazivezanega stanja v bližini 1.4 GeV. Pole v kom-
pleksni energijski ravnini analiziramo z Laurent-Pietarinenovim razvojem in ugo-
tovimo, da je masa resonance določena z dinamično tvorjenjim stanjem, medtem
ko je primes komponente (1s)2(2s)1 ključna za ujemanje z eksperimentalno dolo-
čeno širino resonance in njenim modulom.

Možnosti za odkritje dimezona DD* na detektorju Belle2

Mitja Rosina

Fakulteta za matematiko in fiziko, Univerza v Ljubljani,
Jadranska 19, P.O.Box 2964, 1001 Ljubljana, Slovenija
in Institut Jožef Stefan, 1000 Ljubljana, Slovenija

Dvojno čarobni dimezon DD* predstavlja zelo zanimiv problem štirih teles, ker je
občutljiva superpozicija molekularne (dimezonske) in atomske (tetrakvarkovske)
konfiguracije. Pričakujemo, da je bodisi šibko vezan, bodisi nizka resonanca, kar
je odvisno od modela. Zato je občutljivo merilo, koliko so si podobne efektivne
interakcije med težkimi in lahkimi kvarki.

Po odkritju bariona Ξ+cc = ccd na velikem hadronskem trkalniku LHCb v
CERNu je ponovno zaživelo zanimanje za iskanje dvojno čarobnih dimezonov.
Žal pa ni na voljo tako očitnih procesov kot za produkcijo in razpad bariona Ξ+cc.
Zato predlagamo, da so boljši izgledi za odkritje dimezona DD* na povečanem
detektorju Belle-2 v laboratoriju KEK v Tsukubi na Japonskem, ko bodo stekle
meritve leta 2019.

Študij Roperjeve resonance v dvojnopolarizirani
elektroprodukciji pionov

Simon Širca

Fakulteta za matematiko in fiziko, Univerza v Ljubljani,
Jadranska 19, P.O.Box 2964, 1001 Ljubljana, Slovenija
in Institut Jožef Stefan, 1000 Ljubljana, Slovenija

Roperjeva resonanca in njena elektromagnetna struktura sodita med pomem-
bne nerešene uganke sodobne hadronske fizike. Lastnosti tega najnižjega vzbu-
jenega stanja nukleona z istimi kvantnimi števili so težko dostopne, saj je reso-
nanca skrita pod velikim ozadjem sosednjih resonanc. V prispevku smo poročali
o meritvi polarizacijskih komponent odrinjenega protona iz procesa p(e, e ′p)π0,
in sicer od vijačnosti odvisnih P ′x, P ′z ter od vijačnosti neodvisne Py. Rezultate
smo primerjali z modelskimi izračuni MAID, DMT in SAID ter ugotovili neuje-
manje zlasti pri slednjih dveh. Ob določenih modelskih privzetkih smo določili
tudi skalarno vijačnostno amplitudo S1/2.
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