
38

SUITABILITV OF »ČASE« METHODS AND
TOOLS FOR COMPUTER CONTROL SVSTEM

INFORMATICA 1 /90

Keywords: čase methods, computer control,
tools

Janko Černetič
Institut »Jožef Štefan«, Ljubljana

Some questions are considered concerning the introduction of ČASE (Computer-
Aided Sofware Engineering) methods and tools into the development of computer-based
control systems, with particular emphasis to process control and the domestic
working environment. In the first part of the paper, the advantages of using ČASE
are discussed: the general ones, corresponding to any computer-based system, and
the specific ones, corresponding to computer control systems. In the second part of
the paper, a short review of real-time ČASE methodology is given atid the maln
benefits and problems occurring during the practical use of ČASE are mentioned.

PRIMJEBNOST 'ČASE' METODA I ORUDA ZA SISTEME R A C U N A R S K E A O T O M A T I Z A C I J E . U radu
su razmatrana pitanja u vezi sa uvodenjem ČASE (Computer - Aided Software
Engineering) metoda i oruda pri razvoju raCunarskih sistema vodenja, s posebnim
osvrtom na sisteme procesne automatizacije i na domače uvjete rada. U prvom dijelu
rada spominju se prednosti ČASE; najprije one opcije, koje vaze za bilo koji ra-
čunarski projekt, a zatim i specifične prednosti za projekte raCunarske automa-
tizacije. U drugom dijelu rada spomenute su glavne koristi i problemi pri uvodenju
tih metoda i oruda.

INTRODUCTION

In the last few years, the acronym ČASE,
denoting Computer- Aided Software £ngineering,
has become a significant keyword for the modern
software engineering community. According to
E.J. Chikofsky (1988), "ČASE is primarily a
production - oriented integration technology to
meaningfully improve software and systems
development". In fact, ČASE inteerates methods,
computer-aided tools and an appropriate working
environment. It is effectivity- and production-
oriented. therefore it can be seen as a sort of
engineering.

In this paper we wish to consider briefly
the above-mentioned trends, particularly in the
context of using ČASE within the development of
computer-based control systeras. The interested
reader should also refer to our associated
paper (Rihar and Černetič, 1989) which will
give more details on the practical use of ČASE
tools.

Before we begin, let us explain why ČASE is
interesting in the area of modern control

systems. As a rule, such systems are ali compu
ter-based and are being classified into the
broad category of real-time systems (Hindin and
Rauch- Hindin, 1983). If it is satd that "the
tar pit of software engineering will be stioky
for some tirne to come" (adapted from Weiss,
1985, citing Brooks, 1982), this is the more
true in the čase of real-time and control
systems, respectively. In this situation, ČASE
is giving some hope to the worried project
managers.

Because a national development project has
been launched also in Yugoslavia (U S , 1988),
with the aim to improve the current engineering
practices in the development of process
control systems for the chemical and other
Processing Industries, our opinion is that we
can not afford blindly to ignore ČASE.

2. SOME FEATURES OF 'ČASE'

In brief, the main features of ČASE are the
following. First, they are historically based
on the well known methods of structured systems

39

nnalysis and systems (and software) design (De
Marco, 1978; Page-Jones, 1980). Second, they
are characterized by: a systematic definition
and analysis of the problem, lucid graphic
representations of the concerned system,
black-box simplification and raultilevel
hierarchlcal structuring of systein functions
and strict criteria to assess the quality of
resulting design solutions.

Third, ČASE methods are - at least princi-
pally - independent of computer type, program-
ming langiiage and sort of application. The
corresponding strategies are recognizing the
need for iterative system developraent, whereby
they are separating the design phase from the
ana]ysis and specification of requirements. In
addition, they introduce procedures for the
verification of resulting documents with regard
to coinpleteness, correctness and consistency.

Ali the above-mentioned features of ČASE
methods and strategies can be properly extended
to ČASE (software) tools. They support the
methods by means of efficient graphics,
friendly human interface, their extensive data
Processing and storage capabilities, as well as
options for easier documentation.

From the features mentioned above, one can
quickly derive the basic benefitS of ČASE in
the development of general computei—based
systems or corresponding softuare. Right at the
beginning of the project, the designers are
supported in the development of concise
functional specifications, which can be
verified almost automatically. Then, at the
design phase, they can derive a sound system
design from the specifications, following
formalized rules and guidelines. Any changes in
basic system specifications or design
.improveraents can be introduced in a controlled
and ordely manner, whereby ali corresponding
diagrams and documents are much easily modified
than with the "paper-and-pencil" method.

In summary, then, it can be concluded that
the use of ČASE results in a system and
software which is of a good quality, has an
updated and clear documentation, and is easy
(i.e. cheap!) to maintain.

3. 'ČASE' ALSO FOR CONTROL SVSTEMS?

The control systems, being a specific
subset of real-time systems, must incorporate
ali the quality attributes associated with
general computer-based systems, but, however,
stili some more. Similarly as with real-time

systems, there are a few specific functional
and performance requirements (Pressman, 1987)
which are not easy to satisfy, namely:

- response tirne constraints,
- data transfer rate and throughput,
- interrupts and context switching,
- resource allocation and prioritles,
- error handling and fault recovery,
- task sychronisation and
- inter-task communication.

As Pressman puts it for the čase of real-
time systems, "each of these performance at
tributes can be specified, but it is extremely
difficult to verify if systems elements will
achieve desired responses, if system reso'urces
will be sufficient to satisfy computational
requirements, or if processing algorithms will
execute with sufficent speed". Ali in iall,
"the design of real-time computing systems is
the most challenging and complex task that can
be undertaken by a software engineer. By its
very nature, software for real-time systems
makes demands on analysis, design, and testing
techniques that are unknown in other applica
tion areas" (Pressman, 1987).

For the čase of process control systems, we
may admit that their performance requirements
usually are not so severe, regarding only the
systera response time and data throughput rates
(Hindin and Rauch- Hindin, 1983). Unlike most
other real-time systems, they are complex in
terms of the extent of communication with their
environment (process operators, sensors and
actuators) and because of some sophisticated
(advanced) control algorithms.

Nowadays, the control algorithms for t>ie
processing Industries are being designed and
partly verified by simulation, using separate
CACSD (Computer- Aided Control System Design)
packages. In a sense, there is a specific ap-
proach in deriving the functional requirements
of modern process control systems which include
advanced control techniques, such as e.g.
optimizing control. At the time being, there
are no indications that ČASE and CACSD can
somehoK be "married", but, in our opinion, this
process must take plače in the near future.

Nevertheless, side by side with-CACSD, ČASE
seems to be the right "tool-box" also for
process control systems, particularly because
there are some methodological approaches
addressing the above mentioned peculiarities of
real-time systems. We will mention them shortly
in the next paragraph.

40

4. A SHORT REVIEW OF 'ČASE' METHODOLOGV

In a short article about the benefits of
ČASE for software engineering managers, Collard
(1988) States that in the past few years, ČASE
has evolved from a concept to an industry. It
is hard to believe and imaglne such an explo-
sive progress without knowing that the funda-
mental methodology behind ČASE already has
quite a history. With the Incliision of some
important keywords and bibliographical refer-
ences, a short past and future evolution of
general-purpose ČASE can be given in Fig. 1.

"original" direction is developing an entire
new franework to deal with real-tirae problems.

In the following, we wil] briefly present
three typical real-tirae ČASE approaches (or
strategies), covering the spectrum from origi
nal to the extended. Their authors are:
a) Hassan Gomaa, b) Ward and Mellor, and c)
Hatley and Pirbhal, respectively. Ali three
have based their functional system representa-
tions upon the well-known "data-flow" diagrams
and structured systeras analysis/design (De Mar-
co, 1978).

STHUCTUHED PnOGRAMMlNG
(Dahl, Dijkstra and Hoare, 1972)

STHUKTUKliU ANALVSIS (De Marco, 1970)
STRUCTURED DESIGN

(Vourdon and Constnntine, 1975;
Page-Jonea, 1980)

SOFTVVARE ENGINEERING (Boohm, 1976)
SVSTKM ENGINEERING (Blanchord, 1987)

FIRST GKNERATION 'CASK'
(C'hikofsky and Rubenstein, 1988)

INTKGRATKU ČASE {C.F-. Mar t in , 1988),
Xntegra ted £ r o j e c t S.upport E^nvironmeii-t

< '
Comput er-Aided Sygtems EnKineerini?,

C.oniputci—A.ided Development and
Maintenaiice E.nvironmeiit (Acly, 1988)

Fig. 1. The evolution of ČASE methodology

As the interested reader can obtain some
good surveys of general ČASE methods in this
Journal and other readily accessible literature
(e.g. Gyorkos and coworkers, 1988; or Pressman,
1987), we can limit ourselves to mentipn
real-time ČASE methods and tools.

In general, there are two approach
directions to real-time ČASE, the obvious and
the original. The obvious and the more frequent
one is extending the general ČASE methodology
by existing eleraents, to cover the specific
real-time Rystem requirements, raentioned in
chapter 3 of this paper. In contrast, the

a) The flesign Approach for Real- Time
Systems (PARTS) . of Gomaa (1984, 1986) seems to
be the most original one, as it specifically
addresses the most important problems of real-
time systems, i.e.:

- concurrency and task design,
- inter-task communication and synchronizati-

on, and
- State dependency and transaction processing.

In the DARTS, an entire life-cycle project
phase is devoted to the design of tasks, i.e.
structuring of software modules into concurrent
processing units. Inter-task communication and
synchronization is defined by means of special
task interface modules, and a corresponding
graphical notation is introduced (Fig. 2).

Because many real-time systeras incorporate
some degree of transaction processing, Gomaa
has introduced an original solution to the
problem of implementing a transaction which is
dependent not only on the inooming data but
also on the current state of the system (the
so-called State Transition Manager module).

Another such useful representation, called
the Event Sequence Diagram, shows the sequence
of actions that are expected to take plače when
an external event occurs. There are stili some
interesting guidelines in DARTS for project
organization, planning and management, such as
the system architect and increroental develop
ment concepts, the former being taken from
Brooks (1975).

b) In the Ward/Mellor approach. (Ward and
Mellor, 1985; Ward, 1986), the authors propose
the following, in addition to the previously
known data-flow system modelling elements:

- extended notation to include control
processes and floMS,

41

- formation riiles for a transformation schema
to restrict ambiguous descriptions,

- execution rules for a transformation schema
which are loosely based on the modified exe-
ciition of a Petri,net and visualized in
terms of token placement,

- execution plans to manage the execution
rules,

- extensions of the data-flow system model
representing methods for dealing with
certain problems of control transformations,

- separation of essential (i.e. functional)
and implementation system models,

- hierarchies of transformation schemas to
simplify the representation of complex
systems.

Typical for this approach is that the
control f]ows and processes appear together
with data flows and processes on the same
diagrams (Fig. 3). Each control process
(transformation) must be associated with a
State machine which, in turn, is being
represented by a state-transition diagram or a
corresponding state-transition matrix. In
addition to ordinary data stores, used in the
schema to indicate storage delays among
transformationsI buffers are introduced for
exc]usively storing Information about discrete
signals, implying destructive reading of its
contents.

c) The Hatlev/Plrbhai strategv (Hatley and
Pirbhai, 1987) has some features in coramon with
the Vfard/Mellor approach, although - up to now

it has been elaborated more in detail
primarily for syBtem specification. The main
features in common are:

- representation of control processes,
- representation pf state transitions,
- part of formation rules,
- separation of requirementš from

implementation and
- hierarchical representation of complex

systems.

In contrast to Ward and Mellor, Hatley and
Pirbhai represent data flow (DFD) and control
flow (CFD) separately. Moreover, they have
devised detailed guidelines for how to separate
the so-called "requirements model" from imple
mentation, that is the "architecture model".
The latter is being represented by a modified
requirements model, augmented with iraplementa-
tion-technology dependent system features, such
as: user interface processing, input/ output

processing and maintenance, selftest and
redundancy management processing (Fig. 4) .

As depicted in Fig. 4, the requirements
model consists of the process model and the
control model. In addition, both are supported
by a reguirements dictionary. The process model
is developed in a top-down fashion, beginning
from the "context data-flow diagram", which is
progressively broken down into a multi-leveled
hierachy of more specific data-flow diagrams,
with increasingly greater extent of details.
The bottom level of the process model is simply
described by short narrative, ,tabular or dia-
grammatic "process specifications" (PSPECS).

The control model looks similar to the
process model, with the exception that it is
completed by timing specifications and control
specifications. The timing specification give
the system timing contraints relative to its
environment, whereas the control specifIcations
define "trigger" signals to activate or
deactivate particular processes in the process
model. On the other hand, the primitive process
specifications optionally define the so-called
"data conditions", essentially control signals
linking a data-flow diagram with a
corresponding control-flow diagram. The
structure of the requirements model is given in
Fig. 5.

5. BENEFITS, PROBLEMS AND LIMITATIONS

The most complete qualitative representa
tion of ČASE benefits can be obtained from the
features given in chapter 3. In addition to
these, we could stili mention better user
involvement. As a representative of a major
ČASE tools developer and vendor (Arthur
Andersen and Co.) says, "Automated design and
prototyping tools play a powerful role in
encouraging users to participate actively in
... (systems) design (R. 0'Mahony, 1987).

A quantitative impression of ČASE benefits
can be derived from Fig. 6. Here data are
depicted from a not so recent survey (1986)
where the users by themselves have estimated
the productivity improveroent resulting from. the
use of Excelerator, the ČASE tool of Index
Technology Corporation (Chikofsky and Ruben-
stein, 1988). It is evident that, at that tirne,
ČASE had appeared to be the most valuable in
the initial project phases. Other authors, e.g.
Voelcker (1988), quote similar figures for
productivity improvements.

42

Bui, uriforUiinatelv and in spite of proven
benefits, it is reported that there are many
problems associated with the introduction of
ČASE (see e.g. again Voelcker, 1988; or Shear,
1988). The main source of these problems is
prbbably the novelty of ČASE itself: "... there
is nothing more difficult to take in hand,
more periloiis to conduct or more uncertain in
its success, than to take the lead in the
introduction of a new order of things ... " (a
borrowed quotation from Pressman, 1987). No
doiibt that ČASE is introducing "a new order of
things" into the systems development process
and, consequently, nobody likes to abandon his
firmly established working habits, especially
when this is associated with new learning
effort and unclear future benefits. In the čase
of Computer programming, the "moment of
inertia" is stili worse, as this profession is
considered to be an intellectual art, impos-
sible to fit in any ordered methodological
framework.

Most often, this is the main problem behind
the most common objections against ČASE, just
like the following few:

- if we do not begin with coding immediately,
we will be late in delivery;

- the system user will not accept this way of
do ing;

- let the university people play with the
"methods and approaches";

- we are working effectively without such
guidelines;

- we will write system documentation later.

On the other side, there are some serious
objections worth attention, because they are
pointing to some general or specific limitation
of (current-generation) ČASE. Typical for this
class are:

- productivity in system development is due
mainly to good raanagement.

- ČASE is profltable only in "great" projects;
- hov* can T find a method suitable for my

problem?

The first of these statements is absolutely
true: ČASE is no substitute for the skilled
management of people, similarly as it cannot
replace sound reasoning, although it supports
both very well.

The second statement becomes true if the
attribute "great" is defined in terms of system
complexlty. Indeed, ČASE seems to be good for
breaking down the requirements and the design

of complex systems, such as typically are many
modern computer-based process control systems.

The third of these objections, in the form
of a question, can be resolved only by a good
knowledge of available methods and tools.

In the context of our interest in ČASE, we
are perceiving two additional problems which,
most probably, are stili open. The first one
has been already mentioned: there is a need to
make a proper connection between the CACSD and
ČASE tools. The other is more specific: how to
use or adapt ČASE a) in our domestic social and
working environment; and b) in typical
research- intensive projects.

6. CONCLUSION

In our paper we tried to focus our
reflections on the possible use of ČASE in the
development of process control systems. The
statements given here represent a collection
from the recently available foreign knowledge,
mixed with some of our own opinions that were
forraed during a detailed study and numerous
discussions of this topic.

This study has been started, and will be
continued, in the framework of our efforts to
find better ways of doing process control
projects which will, hopefully, result in the
advancement of our (control-science based)
engineering profession and, second, in the
conviction among our colleagues in industry,
that it is worth-while to invest in domestic
knowledge, instead of buying - and staying
dependent of - foreign patents and licenses.

The preliminary results of our study
indicate that ČASE certainly is suitable for
the development of computer-based process
control systems, but, stili some general and
some specific problems concerning its
introduction must be solved, before it can be
used most effectively.

It would be to our sincere satisfaction if
this knowledge can be of some value to any
other professionals, dealing with the develop
ment in the demanding area of computer systems
engineering.

Acknowledgment: The author is grateful to
Dušan Osojnik, Rajko Kolar and Kordija Stiglic
for valuable initial Information; and further
also to Marjan Rihar, Matjaž Subelj and other
colleagues for many stimulating discussions
about ČASE and software/systems engineering.

43

REFERENCES

Acly E., Looklng beyond ČASE, IEEE Software,
Harch 1988, 39-43.

Blanchard B.S., Development of systems and
eijuipment: Systems Engineering, Systems &
Control Encyclopedia (Editor M.G. Singh),
Pergamon Press, Oxford, 2, 995-1003.

Boehm B.W., Software Engineering, IEEE Trans.
on Computers, C-25. 12(Dec. 1976),
1226-12'lli

Brooks F.P., Jr., The Mythical Man-Month:
Essays on Software Engineering, Addison-
Wesley, Reading, MA, 1975, 1982.

Chikofsky E.J., Software technology people,
IEEE Software, March 1988, 8-10.

Chikofsky E.J. and B.L. Rubenstein, ČASE:
Reliability engineering for information
systems, IEEE Software, March 1988, 11-16.

Collard D., Selling ČASE to your staff, Soft-
ware Management, November 1988, 10.

Dahl O.-J., E.W. Dijkstra and C.A.R. Hoare,
Structured Programming, Academic Press,
London, 1972.

De Marco T., Structured Analysis and Systera
Specification, Vourdon Press / Prentice-
Hall, Englewood Cliffs, 1978.

Gomaa H., A software design method for real-
time systems, Communications of the ACM,
21, 9 (Sept. 1984), 938-949.

Gomaa H., Software development of real-time
systems, Communications of the ACM, 29_, 7
(July 1986), 657-668.

Gydrkds J., I. Rozman and T. Welzer, A survey
of most important and outstanding methods
for software engineering, Informatica, 12•
2 (1988), 24-30.

Hatley D..J. and I.A. Pirbhai, Strategies for
Real-Time System Specification, Dorset
House Publishing, New York, 1987.

Hindin H.J., and W.B. Rauch-Hindin, Real-time
systems, Electronic Design, January 6,
1983, 288-318.

Humphrey W.S., Characterizing the software
process: a maturity framework, IEEE Soft-
ware, March 1988, 73-79.

IJS (Institut "Jožef Štefan", Ljubljana),
Prijedlog za poticanje projekta "Računal-
ska autoraatizacija procesa u kemijskoj i
procesnoj industriji, Ljubljana, april
1988; accepted for funding by the Vugoslav
federal committee for science and
technology, under the code PR-24.

Martin C.F., Second-generation ČASE tools: a
challenge to vendors, IEEE Software, March
1988, 46-49.

0'Mahony R., Successful systems: new ways to
involve users, The Consultant Forum, 4., 2
(1987, Digital Equipment Corporation),
11-13.

Page-Jones M., The Practical Guide to Struc
tured Systems Design, Vourdon Press, New
York, 1980.

Pressman R.S., Software Engineering - A Prac-
titioner's Approach, (2-nd Ed.) McGraw-
Hill, New York, 1982, 1987.

Rihar M. and J. CernetiC, Some practical
aspects of using ČASE tools, Informatica,
1989.

Shear D., ČASE shows promise but confusion
stili exists, Electronic Design News,
December 1988, 164-172.

Voelcker J., Automating SW: proceed with
caution, IEEE Spectrum, July 1988, 25- 27.

Ward P.T, and S.J. Mellor, Structured
Development for Real-Time Systems, Vourdon
Press, New Vork, 1985.

Ward P.T., The transformation schema: An
extension of the data flow diagram to
represent control and timing, IEEE Trans,
on Software Engineering, SE-12. 2, (Feb.
1986), 198-210.

Weiss E.A., The permanent software crisis -
recommended classics for those in the
ever- sticky software engineering tar pit,
ABACUS, 1, 1, Fall 1985.

Vourdon E. and L.L. Constantine, Structured
Design: Fundamentals of a Discipline of
Computer Program and Systems Design, Pren-
tice-Hall, Englewood Cliffs, 1975.

Loosely coupled
(Message communicatlon module)

Producer, P:
send message (C,M)

Message
queue Consumer, C:

recelve message (P,M)

Closely coupled
(Message communicatjon module)

7 Message (M) i m
Producer, P:

send message(C,M)
walt reply (C,R)

Reply (R)
Consumer, C:

recelve message (P,M)
send reply (P,R)

Fig. 2. a) DARTS notation for inter-task com
municatlon

44

Data

/ ,
/ '

•~7 •
/ wrltten

/_ Data

Data
store

Data ^j
read /

, /
• /

read

Source, S:
signal event (E)

DesUnallon, D:
wait event (E)

Fig. 2. b) DARTS notation for information
hiding and task synchronization.

» B O B T U) ' . '

REACnON ecuS.Era5 ', .-' ' 1
PARAMOCRS * " i COt̂ TROL » - - - " •DOMt ,'

" REACnON

Fig . 3 . Transformat ion schetna, drawn in the
Ward/Mellor n o t a t i o n , for a s imple
p roces š c o n t r o l system.

DATA

n

DFD

COHTnOL

i t
PROCESS

CONTROLS
CSPEC COhfTROL

FLOW

DATA
FLOVV

DATA
FLOW

PSPECS
DATA C0NDITI0N3 f

I

CONTnOL
FLOW

REDUIREMENTS DICTIONARV

Fig . 5. The s t r u c t u r e of the r egu i remen t s model
by Hat ley and P i r b h a i .

-P
C
0) t
41
O
%.
%
£

X

40-1
35-
3fl-
25-
28-
15-
18-
5- I

F R D C I n

Developnent FKase

Fig. 6. Productivity improvement in particular
systetn development phases (F - M) when
using the ČASE tool Excelerator (Data
froma a user survey).

Legend: F = Feasibility study; R = Requirements
specification; D = Analysis and design;
C = Coding; T = Testing; M = Maintenan-
ce.

Sysiem Specification Model

Archiloclure Model

Reguiroments Model

Piocess Model

Conifoi Modoi

*

UsGr Intertaco

Input
Processing

Process Moiael

Coniro) Modol

Output
P/ocossing

Mainionanco. Sell-Test. and Rodundancy
Monagomonl Prooosiing

Fig. 4. Overall structure of the system speci-
fication model by Hatley. and Pirbhai.

