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Abstract. Weapply a coupled channel formalism incorporating quasi-bound quark-model

states to calculate the S11 and D13 scattering amplitudes. The meson-baryon verteces for

πN, ηN, π∆, ρN and KΛ channels are determined in the Cloudy Bag Model. Using the

same values for the model parameters as in the case of the P11 and P33 amplitudes the

elastic as well as most of the inelastic amplitudes are reasonably well reproduced.

1 Introduction

This work is a continuation of a joint project on the description of baryon reso-
nances performed by the Coimbra group (Manuel Fiolhais, Luis Alvarez Ruso,

Pedro Alberto) and the Ljubljana group (Simon Širca and B. G.)

We have developed a general method to incorporate excited baryons repre-
sented as quasi-bound quark-model states into a coupled channel formalism us-

ing the K-matrix approach [1]. In our method, the meson-baryon and the photon-

baryon verteces are therefore determined by the underlying quark model rather
than fitted to the experimental data as is the case in phenomenological approaches.

The method can be applied to meson scattering as well as to electro and weak-
production of mesons.

In the previous work we have investigated the P33 and P11 amplitude dom-

inated by the low lying positive parity resonances ∆(1232), ∆(1600) and N(1440)

[1,2]. We have found a good agreement between the model prediction and exper-

iment for the scattering as well as the electro-production amplitudes. We have

shown that the pion and the σ-meson considerably contribute in particular to the
scattering amplitudes in the energy region just above the two pion threshold and

to the electro-excitation amplitudes in the region of lowQ2 transfer. In the present

work we investigate the extension of the approach to low lying negative parity
resonances. This implies the inclusion of new channels involving the s-wave and

the d-wave pions, the η and the ρmesons, and the K Λ channel.

In the next section we give a short review of the method and in the following
sections we discuss in more detail scattering in the S11 and D13 partial waves.
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2 A short overview of the K-matrix approach

We consider a class of chiral quark models in which mesons couple linearly to the

quark core:

Hmeson =

∫
dk

∑

lmt

{
ωk a

†
lmt(k)almt(k) +

[
Vlmt(k)almt(k) + V

†
lmt(k)a

†
lmt(k)

]}
,

(1)

where a†lmt(k) is the creation operator for a meson with angular momentum l its
third components m and isospin t (absent in the case of s-waves and isoscalar

mesons). Here Vlmt(k) is a general form of the meson source involving the quark
operators and is model dependent. In the following section we give a few exam-

ples for Vlmt(k) in the Cloudy Bag Model.

We have shown [1] that in such models the elements of the K matrix in the

basis with good total angular momentum J and isospin T take the form:

KJTM ′B ′MB = −πNM ′B ′〈ΨMBJT ||VM ′(k)||Ψ̃B ′〉 , NMB =

√
ωMEB

kMW
, (2)

where ωM and kM are the energy and momentum of the incoming (outgoing)
meson, EB is the baryon energy and W is the invariant energy of the meson-

baryon system. In addition, the channels are specified by the relative angular

momentum of the meson-baryon system and parity. Here |ΨMB〉 is the principal
value state and assumes the form:

|ΨMBJT 〉 = NMB
{

[a†(kM)|Ψ̃B〉]JT +
∑

R
cMBR |ΦR〉

+
∑

M ′B ′

∫
dk χM

′B ′MB(k, kM)

ωk + EB ′(k) −W
[a†(k)|Ψ̃B ′〉]JT

}
. (3)

The first term represents the free meson (π, η, ρ, K, . . . ) and the baryon (N, ∆,

Λ, . . .) and defines the channel, the next term is the sum over bare tree-quark
states ΦR involving different excitations of the quark core, the third term intro-

duces meson clouds around different isobars, E(k) is the energy of the recoiled
baryon. In our approachwe assume the commonly used picture in which the two

pion decay proceeds either through an unstablemeson (ρ-meson, σ-meson, . . . ) or

through a baryon resonance (∆(1232), N∗(1440) . . . ). In such a case the state ΨMB

depends on the invariant mass of the subsystem (either ππ or πN) and the sum

overM ′B ′ in (3) implies also integration over the invariant mass. The state Ψ̃B is
the asymptotic state of the incoming (outgoing) baryon; in the case it corresponds

to an unstable baryon it depends on the invariant mass of the πN subsystem,MB,

and is normalized as 〈Ψ̃B(M ′
B)|Ψ̃B(MB)〉 = δ(M ′

B−MB), whereMB is the invari-

ant massMB of the Nπ subsystem. The meson amplitudes χM
′B ′MB(k, kM) are

proportional to the (half) off-shell matrix elements of the K-matrix

KM ′B ′MB(k, kM) = πNM ′B ′NMB χM
′B ′MB(k, kM) (4)
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and obey a Lippmann-Schwinger type of equation:

χM
′B ′MB(k, kM) = −

∑

R
cMBR VM

′

B ′R(k) + KM ′B ′MB(k, kM)

+
∑

M ′′B ′′

∫
dk ′ KM

′B ′M ′′B ′′

(k, k ′)χM
′′B ′′MB(k ′, kM)

ω ′
k + EB ′′(k ′) −W

, (5)

where

KM ′B ′MB(k, k ′) =
∑

B ′′

fB
′′

BB ′

ṼM ′

B ′′B ′(k ′) ṼMB ′′B(k)

ωk +ω ′
k + EB ′′(k̄) −W

, (6)

fCAB =
√

(2JA + 1)(2JB + 1)(2TA + 1)(2TB + 1)W(1JAJB1; JC, J)W(1TATB1; TC, T) .

The coefficients cMBR obey the equation

(W −M
(0)

R )cMBR = VMBR(kM) +
∑

M ′B ′

∫
dk
χM

′B ′MB(k, kM)VM
′

B ′R(k)

ωk + EB ′(k) −W
. (7)

Here VMBR(k) are the matrix elements of the quark-meson interaction between

the baryon state B and the bare 3-quark state ΦR, andM
(0)

R is the energy of the

bare state. Solving the coupled system of equations (5) and (7) using a separable

approximation [1] for the kernels (6), the resulting amplitudes take the form

χM
′B ′MB(k, kM) = −

∑

R
c̃MBR ṼM ′

B ′R(k) + DM ′B ′MB(k, kM) , (8)

where the first term represents the contribution of various resonances while

DM ′B ′MB(k) originates in the non-resonant background processes. Here

c̃MBR =
ṼMBR

ZR(W)(W −MR)
, (9)

ṼMBR is the dressed matrix element of the quark-meson interaction between the

resonant state and the baryon state in the channel MB, and ZR is the wave-

function normalization. The physical resonant state R is a superposition of the
dressed states built around the bare 3-quark states ΦR ′ . The T matrix is finally

obtained by solving the Heitler’s equation

T = K+ iTK . (10)

In this work we concentrate on the negative parity partial waves S11 and

D13; in both cases the amplitudes are dominated by two rather closely lying res-

onances, either the N(1535) S11 and N(1650) S11, or the N(1520)D13 and N(1700)
D13. We have performed the calculation of the scattering amplitudes in the same

model, the Cloudy Bag Model (CBM), with the same choice of model parameters
as in the case of positive parity resonances. For the bag radius we use R = 0.83 fm

and fπ = 76 MeV for the parameter determining the interaction strength, while

the energies of the bare states are taken as free parameters.
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3 The meson coupling to negative parity states in the CBM

We have used the bag model description for the resonances assuming that one of

the three quarks is excited from the 1s state to the 1pj state with the total angular

momentum j either 1/2 or 3/2. The relevant quark bispinors in the jmj basis are

ψs(r) =
Ns√

4π j0(ωs)

(
−i j0(ωsr/R)

σ · r̂ j1(ωsr/R)

)
χmj

,

ψp1/2
(r) =

Np1/2√
4π j0(ωp1/2

)

(
i j1(ωp1/2

r/R)σ · r̂
j0(ωp1/2

r/R)

)
χmj

,

ψp3/2
(r) =

Np3/2√
6π j1(ωp3/2

)

(
−i j1(ωp3/2

r/R)

σ · r̂ j2(ωp3/2
r/R)

)
∑

msm

χms
r̂mC

3
2
mj

1
2
ms1m

.

Here χm is the spinor for spin 1
2
, R is the bag radius, ωs = 2.043, ωp1/2

= 3.811,

ωp3/2
= 3.204, and

N2s =
ωs

2R2(ωs − 1)
, N2p1/2

=
ωp1/2

2R2(ωp1/2
+ 1)

, N2p3/2
=

9ωp3/2

4R2(ωp3/2
− 2)

.

The wave function of the negative parity states in the j–j coupling scheme are

taken from [5].

For the quark pion couplingwe use the usual CBM form yielding

Vπl=0,t(k) =
1

2fπ

√
ωp1/2

ωs

(ωp1/2
+ 1)(ωs − 1)

1

2π

k2√
ωk

j0(kR)

kR

3∑

i=1

τt(i)Psp(i) ,

Vπ1mt(k) =
1

2fπ

ωs

(ωs − 1)

1

2π

1√
3

k2√
ωk

j1(kR)

kR

3∑

i=1

τt(i)

×
(
σm(i) + rp1/2

S
[ 1

2
]

1m(i) + rp3/2
S

[ 3
2

]

1m(i)
)
,

Vπ2mt(k) =
1

2fπ

√
ωp3/2

ωs

(ωp3/2
− 2)(ωs − 1)

√
2

2π

k2√
ωk

j2(kR)

kR

3∑

i=1

τt(i)Σ
[ 1

2
3
2

]

2m (i) .

Here

Psp =
∑

mj

|smj〉〈p1/2mj| , S
[ 1

2
]

1m =
√
3

∑

mjm
′

j

C
1
2
mj

1
2
m ′

j
1m

|p1/2mj〉〈p1/2m ′
j | ,

Σ
[ 1

2
3
2

]

2m =
∑

msmj

C
1
2
ms

3
2
mj2m

|sms〉〈p3/2mj| , S
[ 3

2
]

1m =
√
15
2

∑

mjm
′

j

C
3
2
mj

3
2
m ′

j
1m

|p3/2mj〉〈p3/2m ′
j | ,

and

rp1/2
=
ωp1/2

(ωs − 1)

ωs(ωp1/2
+ 1)

, rp3/2
=
2ωp3/2

(ωs − 1)

5ωs(ωp3/2
− 2)

.

The ρ meson coupling to quarks is similar to the EM coupling. For the cou-

pling of negative parity states to ρN, the dominant contribution is expected to
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arise from the transverse ρ-mesons with the total J = 1 and the orbital angular

momentum of the ρN system equal to either 0 or 2. In the spirit of the CBMmodel

we assume that the ρmeson couples to the quarks only on the bag surface [6]. As-
suming further a pure vector coupling γµρµ we find (note thatm in (1) and below

refers to the total angular momentum rather than to the orbital one):

V
ρ
l=0mt(k) =

1

2fρ

√
ωs

(ωs − 1)

1

2π

k2√
ωk

j0(kR)

kR

∑

i

τt(i)

×
(√

8

3

√
ωp1/2

ωp1/2
+ 1

Σ
[ 1

2
]

1m + 3

√
ωp3/2

ωp3/2
− 2

Σ
[ 1

2
3
2

]

1m (i)

)
,

V
ρ
l=2mt(k) =

1

2fρ

√
ωp3/2

ωs

(ωp3/2
− 2)(ωs − 1)

1

2π

1

3

k2√
ωk

j2(kR)

kR

3∑

i=1

τt(i)Σ
[ 1

2
3
2

]

1m (i) .

Here

Σ
[ 1

2
]

1m =
∑

msmj

C
1
2
ms

1
2
mj1m

|sms〉〈p1/2mj| , Σ
[ 1

2
3
2

]

1m =
∑

msmj

C
1
2
ms

3
2
mj1m

|sms〉〈p3/2mj| ,

and fρ is the ρ-meson decay constant with the experimental value 208 MeV. For

the coupling of the ρ meson to the nucleon we obtain a similar expression as for
the coupling of the p-wave pions, with fπ replaced by fρ, yielding gπNN/gρNN =

fρ/fπ which is experimentally well fulfilled. The choice of the above form with

fρ ≈ 200MeV is therefore not insensible.

For the s-wave η and K mesonswe assume the SU(3) symmetry yielding

Vη(k) =
1

2fπ

√
ωp1/2

ωs

(ωp1/2
+ 1)(ωs − 1)

1

2π

k2√
ωk

j0(kR)

kR

3∑

i=1

λ8(i)Psp(i) ,

VKt (k) =
1

2fπ

√
ωp1/2

ωs

(ωp1/2
+ 1)(ωs − 1)

1

2π

k2√
ωk

j0(kR)

kR

3∑

i=1

(Vt(i) +Ut(i))Psp(i) ,

with t = ±1
2
, and V±t = (λ4 ± iλ5)/

√
2 and U±t = (λ6 ± iλ7)/

√
2.

The peculiar oscillating shape of the CBM form factor has little influence in

the case of the p and d-wave pions but leads to the unphysical behaviour of the
s-wave scattering amplitude since it crosses zero already at W ∼ 1950 MeV. We

have cured this problem by replacing j0(kR) by an exponential tail for k > 1.6/R

in such a way as not to alter the value of the self energy integral.

4 S11 resonances

For the S11 partial wave we have included the πN, π∆, πN(1440), ρN and KΛ

channels and the N(1535) and N(1650) resonances. We have used the quark-
model wave-functions for the negative-parity states using the j–j coupling scheme

[5]:

ΦR = cRA |(1s)2(1p3/2)
1〉 + cRP |(1s)2(1p1/2)

1〉1 + cRP ′ |(1s)2(1p1/2)
1〉2 ,
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where the mixing coefficients cRA , c
R
P , and c

R
P ′ can be expressed in terms of the

mixing angle ϑs between the spin-1/2 and spin-3/2 3-quark configurations. The

mixing is a consequence of the gluon and the meson interaction; since the quark-
gluon interaction is not included in the model, the mixing angle due to gluons is

taken as a free parameter independent ofW. In the energy region of the N(1535)

andN(1650) resonances we obtain the best results using ϑs = −34◦ in agreement

with the phenomenological analysis [7].

Resonance Γtot [MeV] Γi/Γtot

πN ηN π∆ KΛ ρ1N πN(1440)

N(1535) 165 0.29 0.69 0.01 - 0.01 0

PDG 125 – 175 0.35 – 0.55 0.53 0.01 - 0.02 0

N(1650) 188 0.59 0 0.19 0.13 0.04 0.04

N(1650)mod 156 0.72 0 0.08 0.10 0.05 0.04

PDG 150 – 180 0.60 – 0.95 0.02 0.02 0.03 0.01 0.03

Table 1. The total and the partial widths for the N(1535) and the N(1650) resonance at

the K-matrix pole (1545 MeV and 1695 MeV, respectively) using the unmodified and the

modified (mod) quark-model values for the quark-meson couplings. The PDG values are

from [3].
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Fig. 1. The real and the imaginary part of the scattering amplitudes for the S11 wave.

Dotted lines are for the elastic channel with unmodified quark-model verteces, full lines

are those with the modified values, dashed lines correspond to the ηN channel. The data

points for the elastic channel are from the SAID πN → πN partial-wave analysis [4], those

for the inelastic one are taken from [9].

In the vicinity of the lower resonance, just above the ηmeson threshold, the

elastic and inelastic amplitudes are dominated by the s-wave ηN channel. In the
energy region of the upper resonance, additional channels open or become more

important. We have considered the following additional channels: the π∆(1232)

channel with l = 2, the KΛ(1116) channel with l = 0, two channels involving the
ρmeson with l = 0 (ρ1N) and l = 2 (ρ3N), and the πN∗(1440) channel with l = 0.
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Fig. 2. The real and the imaginary part of the inelastic amplitudes for S11 partial wave. The

experimental points are from [8].

Using the quark-model values for the quark-meson coupling as introduced in
the previous section we obtain a good agreement between the model prediction

and the experimental analysis for the lower resonance; for the upper resonance

the agreement is worse. Though the extraction of the experimental data is less
reliable and considerably differs between different authors, it clearly indicates

that the strengths of the π∆ (d-wave) vertex is overestimated in our model; the
same is probably true also for the KΛ (s-wave) channel (Table 1). Multiplying the

strength of the π∆ and the KΛ vertex by 0.6 and 0.8, respectively, yields a better

agreement in particular for the imaginary part of the T matrix (Figs. 1 and 2).

5 D13 resonances

In the D13 partial wave the model yields a consistent picture for the upper res-

onance but fails to reproduce the behaviour of the scattering amplitudes for the
lower resonance. In the latter case, the quark-model values for the d-wave πN

vertex and the s-wave π∆ vertex are of comparable strength and relatively weak.
Dressing the verteces and introducing the mixing of the two (bare) resonances

considerably enhances the verteces. However, the enhancement is stronger in the

case of the π∆ channel and, as a consequence, the resonance disappears in the
elastic channel. A reasonable agreement is obtained if the quark-model strength

of the π∆ is multiplied by 0.3 (Table 2 and Fig. 3).

Resonance Γtot [MeV] Γi/Γtot

πN π∆ (s-wave) π∆ (d-wave) ρN (s-wave)

N(1520) 64 0.56 0.40 0.00 0.03

PDG 100 – 125 0.55 – 0.65 0.15 0.11 0.09

N(1700) 55 0.02 0.10 0.70 0.18

PDG 50 – 150 0.05 – 0.15 0.11 0.79 0.07

Table 2. The total and the partial widths for the N(1520) and the N(1700) resonance at the

K-matrix pole (1515 MeV and 1700 MeV, respectively) using the unmodified quark-model

values for the quark-meson couplings except for the s-wave π∆ coupling which is taken

with only 30 % of the model strength. The PDG values are from [3].
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Fig. 3. The real and the imaginary part of the elastic and the dominant inelastic scattering

amplitudes for the D13 wave. The data points for the elastic channel are from [4]

For the upper resonance (N(1700)), the model predicts the dominance of the

d-wave π∆ channel in agreement with the phenomenological analysis.

6 Concluding remarks

The model reasonably well reproduces the behaviour of the amplitude in the S11
partial wave. The bare quark values for themeson verteces are generally tooweak

but are considerably enhanced through the meson cloud effects and the mixing
of the bare quark resonances. At higher energies around and above N(1650), the

model amplitudes are too small; here the contribution of higher resonances not

included in our model becomes important as suggested by the phenomenological
analysis [9]. The background contribution is in our model generated by the u-

channel processes. We have not considered the Weinberg-Tomazawa term which
would enhances the behaviour of the amplitudes near the pion threshold.

The situation is less favourable for the D13 partial wave. The model fails to

reproduce a rather intriguing behaviour of the s and d-wave π∆ amplitudes in

the energy region of the N(1520) resonance. Here the phenomenological analysis
suggests that they are comparable in strength which is difficult to explain in a

model calculation where at relatively low pion momenta the l = 0-wave coupling
is strongly favoured over the l = 2 one.
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