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Comparing the “Typical Score” Across
Independent Groups Based on Different Criteria
for Trimming

S.S. Syed YahayaA.R. Othmad, and H.J. Keselmé&n

Abstract

Nonnormality and variance heterogeneity affect thieditg of the traditional tests
for treatment group equality (e.g. ANOVRA-test andt-test), particularly when
group sizes are unequal. Adopting trimmed meangeats of the usual least
squares estimator has been shown to be mostly affedh combating the
deleterious effects of nonnormality. There are, heave practical concerns
regarding trimmed means, such as the predetermia@dunt of symmetric
trimming that is typically used. Wilcox and Keselmamoposed the Modified One-
Step M-estimator MIOM) which empirically determines the amount of trimiguin
Othman et al. found that when this estimator is duseith Schrader and
Hettmansperger'H statistic, rates of Type | error were well conteall even
though data were nonnormal in form. In this papeg, modified the criterion for
choosing the sample values f&tOM by replacing the default scale estimator,
MAD,, with two robust scale estimators, andT, , suggested by Rousseeuw and
Croux (1993). To study the robustness of the modiiieethods, conditions that
are known to negatively affect rates of Type | en@re manipulated. As well, a
bootstrap method was used to generate a betteosippate sampling distribution
since the null distribution oMOM-H is intractable. These modified methods
resulted in better Type | error control especiallyewhdata were extremely
skewed.
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1 Introduction

Parametric procedures for testing the equality oftiad tendency measures, such
as the ANOVAF-test and Student’s two-sampldest, are adversely affected by
nonnormality, variance heterogeneity, particularly whbe design is unbalanced
(i.e, groups sizes are unequal). Specifically, wiolkas by any of these assumptions
can seriously inflate Type | error rates; that isurspus rejections of null
hypotheses of equal means can increase. NeverthalessANOVA F-test, for
example, is often used in statistical practice ewdren the data suggest that
population variances are unequal (Kulinskaya, Stauét Guo, 2003), and even
though it is well established that the ANOVA is mobust when the homogeneity
assumption does not ho{@Wilcox, Charlin, & Thompson, 1986).

In order to overcome the biasing effects of nonraity and variance
heterogeneity, alternative methods have been recomete Cochran (1937), as
noted by Kulinskaya et al. (2003), suggested weightime terms in the sum of
squares explained by the respective inverses o$dhgple variances, and provided
a chi-square test for equal means based on a tnanafion of the ANOVAF-test.
However, the design still has to be balanced. Kaaya et al. (2003) also noted
that for unbalanced designs, the James (1951) amdchWV(1951) procedures
weight the terms (the sum of squares explained)sbiynates of the inverses of the
variances of the respective sample means. This htedg sum of squares for
explained variance possesses an approximate chirsdudistribution under the
null hypotheses of equal population means for |@@®@ple sizes.

Nonetheless, even if the problem of unequal vaeanmuld be overcome, the
assumption of normality must also be satisfied withssical procedures that
employ the usual least squares estimates. Furthermtthough ANOVA is known
to be robust to small deviations from normality, #dent of these deviations are
unknown since there is no exact measurement ofetivéslations or deviations,
unless the sample size is large enough to guaranuterality.

Nonparametric counterparts of these procedures,ehamime Kruskal-Wallis
and the Mann-Whitney tests, were developed to dedh wguch problems.
However, these nonparametric procedures are mopeopgdate for nonnormal
symmetric data. Furthermore, nonparametric proceduaee frequently less
powerful than parametric procedures, and, accolgjrrgquire larger sample sizes
to reject a false hypothesis.

Violations to the homogeneity of variances and/ornmality assumptions are
common in the behavioural and social sciences (Bsmissions by Wilcox, 1997,
2003). Thus, researchers should expect distortimnsates of Type | error for
classical tests of mean equality. Robust statispcatedures, that is those that use
non least squares estimators (e.g., trimmed meaas), useful and viable
alternatives to traditional methods as they haventsewn to (typically) control
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rates of Type | error (Keselman, et al., 2002; 200@hman et al., 2004; Syed
Yahaya et al., 2004; Wilcox et al.1988; 2001). Ounehstest, theMOM-H statistic,
originally proposed by Wilcox and Keselman (2003), difies the well-known
one-step M-estimator and applies the estimates nmobast test statistic (to be
defined).

2 Methods

One of the strategies adopted when dealing withreex¢ values is trimming.
There are many trimming strategies, however, in thgper we consider two,

namely, (1) trim a predetermined amount of the @aid then comput@, a robust
estimator, or (2) empirically determine the amoahtrimming, trim that amount,

and then computing@. Trimming needs to be done carefully to avoid lbes of
information during the process. For instance, wikampling from a light-tailed
distribution, it might be desirable to trim veryweobservations, or if sampling is
from a normal distribution, trimming might not beeeded at all. For a right-
skewed distribution, a natural reaction is to tmmore observations from the right
versus the left tail of the empirical distribution.

The usual approach to trimming outlying valuesagrim symmetrically from
each tail of the empirical distribution. By usingig€ method of trimming, even
observations from a normal distribution will be nimed according to a
predetermined amount such as 10% or 20% from eaitHih other words, 20%
and 40% of the data are removed), when such digigb needs no trimming at
all. Furthermore, any trimmed mean has a breakd@emt (the number of
extreme values that causes the estimator to inflatan extreme value), which
implies that a trimmed mean may not withstand lapgeportions of extreme
values.

To mitigate these drawbacks, Wilcox and Keselma0®) introduced a robust
estimator known as the Modified One-Stéfp-estimator MOM). The MOM
estimator empirically determines the amount, if ,aaf data to be trimmed, and
results indicate that it competes well with methdozsed on symmetrically
trimmed means with regard to Type | error cont@imilar to the sample median,
the MOM estimator is a robust central tendency estimatat tpossesses the
highest breakdown poinOthman et al. (2004) usedOM as the central tendency
measure in their work with a robust statistid) (presented by Schrader and
Hettmansperger (1980MOM-H).
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2.1 MOM-H statistic

TheH test is defined as

‘] ~ ~
H :%znj (6, -8.)%, where 2.1)
=1
N = an (nj is the group size), and (2.2)
j
6.=3 6,13 wherej =1,..., J. (2.3)
j

This statistic is readily adaptable to any measaofecentral tendency and
appears to give reasonably good results when usiagHarrel-Davis estimator of
the median. However, its use is not recommendedhfercomparison of means or
even trimmed means (Wilcox, 1997).

Othman et al. (2004) examined the operating cherestics of theH test
statistic when testing for the equality of the ‘ity@l” score across treatment

groups. However, they modified this statistic bypleeing 6 with the MOM
estimator (denoted aéM). The modified test statistic is known BEOM-H, and,
as they indicated, this statistic can be used $b k& : 6,,=6,, =...=6,, versus

H,:6,,#26,, for at least one pair ofi,(j). Othman and his colleagues found that

MOM-H was quite effective in controlling rates of Typerror even though data
were heteroscedastic and nonnormal in shape.

In this paper, we modified th®MOM-H statistic by substituting the default
trimming criterion, incidentally the scale estimgtMAD,, with two of the robust
scale estimators suggested by Rousseuw and Cra@83)li.e.S, andT,. We
chose these substitutions because these scalea¢stanpossess higher breakdown
points and, accordingly, they may be better foresaing the data for extreme
values.

2.1.1 MOM estimator

MAD, is the default scale estimator used in the cotefior determining extreme
values when computing?M .LetY, = (Ylj,Yzj ,...,Ynj) be a sample from an unknown

skewed distributiorF; and letM; be the population median &f The estimator as

suggested by Wilcox and Keselman (2003) is defiagd

“ -y

— ()
O =D —— (2.4)
|:|1+lnj |1 Iz

where
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Y = theith ordered observations in grojp
i = the number of;; observations such tha‘t’ij(—l\7|j) <- 2.24MAD, ), and

i, = the number oY observations such théy;; — M ) > 2.24(\/IADnj ).

2.1.2 Criterion for choosing the sample values

From Equation 2.4 the criterion used to determile number of extreme
observations in each groyp centers around the indicésandi,, wherei; andi;
are the number of extreme observations in the kit right-tail, respectively. For

a sample with no extreme value, whereir= i, = 0, éM is equal to the mean for
the jth group. After eliminating the extreme values, calcula@gj and proceed

with the calculation of thél statistic.
The next section will briefly outline the scale iesdtors that were substituted
for the default scale estimatdvAD,,

2.2 Scaleestimators

In searching for measures of scale, the breakdowaluevis of considerable
practical importance as it constitutes one of tlmmponents in measuring
robustness (Wilcox, 1997). The three scale estinsatoentioned in this paper
have the optimum breakdown value of 0.5. Theseeseatimators possess explicit
formulae guaranteeing the uniqueness of the estisnaMoreover, they also
contain bounded influence functions, a vital comgyan of robust estimators.
Another advantage of these estimators is their Baity, making them easy to
compute.

For the following sections, leX =(x,,X,,...,x,) be a random sample from any

distribution and let the sample median be denotethedx; .

22.1 S,

Rousseeuw and Croux (1993) suggested alternatov®AD,, that can be used as
initial or ancillary scale estimates that are meaféicient and as well are not
slanted towards symmetric distributions. One sestimator isS,, defined as

s, =c med{med|x - x|} - (2.5)
This estimator is similar tMAD,; the only difference between the two is that the
med operation is transferred to the outside of theoalie value. This makeS$, a

location free estimator. Instead of measuring theiation of observations from a
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central value,S, looks at a typical distance between observatiofsother
advantage is its explicit formula which means thhis estimator is always
uniquely defined. A modest simulation study by Rseeuw and Croux (1993)
found that a correction factoc, = 1.1926, succeeded in makisg unbiased for
finite samples. They also proved tiathas the highest possible breakdown point.
In terms of efficiency,S, was proven to be more efficient (58.23%) thedAD,
(36.74%) with Gaussian distributions.

2.2.2 T,

Another promising scale estimator proposed by Reesw and Croux (1993)
which possesses attractive robust propertids, isdefined as
1

T =138— {me X —xA} 2.6

» = 13803 Imedx -] (2.6)
It has been proven that, has a 50% breakdown point, a continuous influence
function, and an efficiency of 52%, thus makingaitbetter scale estimator than
MAD:..

2.3 Bootstrap method

Since the sampling distribution odMOM-H is unknown, thep-values were
obtained by means of the percentile bootstrap ntetf®ee, e.g. Efron and
Tibshirani, 1993). The bootstrap method is knowrgiee a better approximation
than one based on the normal approximation themy i@ a suitable method
especially when the samples are of moderate siabBPadmanabhan, and Puri,
1999). Keselman, Wilcox, Othman, and Fradette (200@Qicated that Type | error
control could be improved by combining bootstraptmoels with methods based
on certain robust location measures. The basic addaootstrapping is that in the
absence of any other information about a populatite values in a random
sample are the best guide to the distribution, ms@ampling the sample is the best
guide of what can be expected if the populationmesampled. To obtain the-
value using the percentile bootstrap method, thiewiong steps are followed (See
Wilcox, 1997):

(1) Based on the available data, calculateNt®M-H statistic.

(2) Randomly sample (with replacement)=1,...,Bbootstrap samples from

the data.
(3) Each of the sample points in the bootstrapped gsaupst be centered at

their respective estimatédOMs (i.e.,C; =Y; -8, 0)-
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(4) Let MOM-H™ (denoted aMH ") be the value oMOM-H, when applied to
the C; values.

(5) Repeat Step 2 to Step 4 B times yieldikigi, ,MH, ,...,.MH .
(6) Calculate thep-value as (# ofMH_ > MOM-H)/B.

These calculategh-values represent the empirical Type | error rdtmsthe
procedures investigated under i®M-H statistic.

3 Procedures and empirical investigatiosns

Three tests for location equality (comparing thpitgl score across groups) were
compared for their sensitivity to the effects of nnormality and variance
heterogeneity in an independent groups design csinmgrtwo or four groups. The
three procedures that we investigated were:

(1) MOM-H with MAD,

(2) MOM-H with S,

(3) MOM-Hwith Tj,

In the remainder of this paper, each of these naiwill be referred to by its
respective scale estimatdAD,, S,, andT,.

In studying the robustness of these procedures,r foariables were
manipulated, creating conditions which are knownrhighlight the strengths and
weaknesses of tests for the equality of locationapeeters. The four variables
were: (1) number of groups, (2) population disttibo, (3) degree of variance
heterogeneity, and (4) pairing of unequal varianemed group sizes.

Unequal group sizes, when paired with unequal vaea, can affect Type |
error control for tests that compare the typicabrecacross groups. The total
sample sizes and the group sizes for the case @fatvd four groups werd = 40
(15, 25) andN = 80 (10, 15, 25, 30), respectively.

Three distributions representing three levels oévekess (zero, mild and
extreme) were investigated. The standard normaltridigion represents a
distribution with zero skewness. For nonnormal mlsttions, we chose the chi-

squared distribution with three degrees of freedoy?) to represent mild
skewness and thg-and-h distribution (Hoaglin, 1985) witly = 0.5 andh = 0.5 to
represent extreme skewness. The skewness andskurn@lues for theyx’
distribution arey,= 1.63 andy,= 4.00, respectively (Othman et al., 2004). The
theoretical values for skewness and kurtosis ofgtke0.5 andh = 0.5 distribution
are y,= y,= undefined. The purpose of choosing these extreahges is based on
the premise that if a method performs well undegéadepartures from normality,
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then it offers some reassurance that it will parfowell for distributions
encountered in practice.

In terms of variance heterogeneity, the largest amallest variances differed
by a 36:1 ratio. Though this ratio may seem extresmailar and larger ratios have
been reported in the literature (Keselman, Wilcaxak, 2004). Keselman et al.
(1998), as cited by Keselman, Othman et al. (200w)ed that in a review of
articles published in prominent education and psiefly journals, ratios as large
as 24:1 and 29:1 in one-way and factorial compjetandomized designs were
observed. Wilcox (2003) cited data sets where th#gorwas 17,977:1! Thus
although the ratio of 36:1 may appear to be largstill seems to be a reasonable
“potentially” extreme condition under which the ieticy of the tests should be
examined.

As indicated, unequal group sizes, when paired witlequal variances, can
affect Type | error control for tests that compéaine typical score across groups
(Keselman et al., 2002; Keselman, et al., 1998;n@uh et al., 2004). Therefore,
we positively and negatively paired the sample siaad variances. A positive
pairing occurs when the largest group size is aased¢ with the largest group
variance, while the smallest group size is assediavith the smallest group
variance. On the other hand, in a negative pairihg,largest group size is paired
with the smallest group variance and the smallesup size is paired with the
largest group variance. Positive and negative pgsi typically produce
conservative and liberal results, respectively, tests that compare measures of
central tendency across groups.

This study was based on simulated data. In termdatd generation, we used
the SAS generator RANNOR (SAS Institute, 1999) totain pseudo-random
standard normal variates. To generate the chi-sguaariates with three degrees
of freedom, three standard normal variates wereegdad and then squared and
summed.

Observations from ag-andh distribution were generated by converting
standard normal variables to random variablesaing the following equation:

v, XPO%) L oz, 12) (3.1)
based on the values gfandh selected for investigation. Specifically, settigg
0, andh = 0, yields the standard normal distribution. T™aseg = 0 corresponds to
symmetric distributions, and the tails of tgeandh distribution get heavier as
increases, while the distribution becomes more gikasg increases.

The design specifications are shown in the follayviables.

Table 1: Design Specification for Two Groups.

PAIRING GROUP  SIZES POPULATION VARIANCES
1 2 1 2
POSITIVE 10 15 1 36
NEGATIVE 10 15 36 1
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Table 2: Design Specification for Four Groups.

PAIRING GROUP SIZES POPULATION
VARIANCES
1 2 3 4 1 2 3 4
POSITIVE 10 15 20 25 1 1 1 36
NEGATIVE 10 15 20 25 36 1 1 1

In examining the Type | error rates the group lomatmeasures were set to
zero. For each condition examined, 5000 datawets generated and within each
data set, 599 bootstrap samples were obtained.nbh@nal level of significance
was set atr = 0.05.

4 Results

According to Bradley's (1978) liberal criterion abbustness, a test can be
considered robust if its empirical rate of Typertoe, a, is within the interval
050 < a < 15a. Thus, if the nominal level ist= 0.05, the empirical Type | error
rate should be in the intervad25< a < .07t Based on this criterion of robustness,
our preliminary analyses of the empirical valuedicated some of the procedures
we investigated were remarkably robust in the pmeseof heterogeneous and
nonnormal data. Table 3 contains Type | error ratdeen we examined two
groups, while Table 4 contains th&=4 rates forMAD,, S, and T,. Most
noteworthy is that albf the empirical values in both tables were witBiradley’s
(1978) interval; therefore, according to this anibe all the methods should be
regarded as robust.

However, in order to tease out differences betwden procedures, we then
adopted a more stringent criterion of robustnesspdrticular, the more stringent
criterion considers a procedure to be robust ifeispirical estimate of error is
within the interval (.045 -.055). Values outsidéstimterval are in boldface type in
the tables.

4.1 Two groups case

The reader can note that by referring to the granerage (last row) of Table 3,
which is the overall average for each procedureosrdistributions, albf the
values fell within the stringent criterion of roliness; furthermore, the,
procedure had a value (.0488) that was closesntminal value. Setting aside
the results from the most extreme distributiap { 0.5 andh = 0.5), the S,
procedure still produced an averaged value (.05363est to the nominal value
compared taMAD, (.0559) andr, (.0608).
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It should also be noted that the average valuey wath the distributions
investigated. Specifically, (1) for the symmetrigstdibution, every value fell
within the (.045-.055) interval, (2) when data wet@-squared distributed, rates
were somewhat larger though all in the robustnessval, and (3) when data were
g-and-h distributed rates ranged from .0324 to .0370.

Table 3: Type | Error Rates.

Distribution Pairing | MOM-H with corresponding scale estimators
MAD, S Ty
Normal +ve .0496 .0510 .0502
-ve .0470 .0440 .0482
Average .0483 .0475 .0492
X(zs ) +ve .0626 .0624 .0718
-ve .0642 .0648 .0732
Average .0634 .0636 .0725
g-andh +ve .0328 .0370 .0354
-ve .0324 .0334 .0328
Average .0326 .0352 .0341
Grand
Average .0481 .0488 .0519

With regard to pairings of group sizes and varianecemember that Othman et
al. (2004) found that positive pairings producednservative values, while
negative pairings generated liberal values. In @stf the procedures we examined
resulted in higher empirical estimates of error fositive pairings when data were
either normal org-andh distributed. Thus, the current results are notaacord
with those of Othman et al. (2004)nly when examining the procedures with chi-
squared data resulted in deflated empirical eses&br positive pairings.

4.2 Four groups case

The J=4 empirical Type | error values are contained in [€al. The grand
average values are similar and close to the nombfalvalue, withT  exhibiting

the smallest discrepancy between empirical and nahwalues, (i.e., .0496 vs.
.05).

Across distributional shapes, there were variationghe procedures that could
be designated as “best”. However, when the resfriisn the most extreme
distribution @ = 0.5 andh = 0.5) were set aside we found that ®eprocedure
produced an average value (.0576) closest to tneimad value compared t¥IAD,

(.0578) andT, (.0593).
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Table4: Type | Error Rates.

Distribution Pairing MOM-H with corresponding scale estimators
MAD, S Ty
Normal +ve .0486 .0478 .0486
-ve .0520 .0540 .0542
Average .0503 .0509 .0514
Xé ) +ve .0646 .0642 .0694
-ve .0660 .0642 .0650
Average .0653 .0642 .0672
g-andh +ve .0292 .0268 .0286
-ve .0286 .0308 .0316
Average .0289 .0288 .0301
Grand
Average .0482 .0480 .0496

Specifically, when data were normal in shape, thepieical p-values for all
procedures were well controlled, witMAD, (.0503) emerging as the best
procedure. On the other hand, when data were ameg distributed, the best
results belonged to th® procedure (.0642), while fag-andh distributed data, the
T, procedure emerged as best (i.e., .0301). As wek, note that across
distributions, the empirical estimates of Type roerfor the chi-squared and tige
and+h distributions inclined towards liberal and conssive values respectively.

Lastly, we note that the empiricplvalues obtained from apjrocedures tested
under the symmetric distributions were concordaithwhe findings reported by
Othman et al. (2004) with respect to pairings obuyr sizes and variances.
However, for the skewed distributions that we irtigested, mixed results were
obtained. In particular, when data were chi-squatistributed,MAD,, resulted in
higher empirical p-values andT, resulted in smaller empiricap-values for
negative pairings, while th&, procedure resulted in equivalent values for both
pairings. In contrast, when data wegeandh distributed, when the pairing was
negative,MAD, resulted in a lower Type | error estimate, while th, and S,
procedures resulted in higher rates of error.

5 Conclusion

In this paper, we investigated the Type | erroesabf three methods that can used
to compare measures of the “typical score” acroskependent groups when data
are neither normal nor homoscedastic. The procedilnat were compared differed
according to the estimate of scale that was inc@feal as the trimming criterion
for the MOM-H statistic originally described by Wilcox and Kesen (2003). The
MOM-H statistic empirically determines the amount ofagat any, that should be
trimmed from each tail of the empirical distributioThus, as noted by Othman et
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al. (2004),MOM-H can be most reliable for examining differencesnsen groups
when data are nonnormal. In our investigation, vd®pged MOM-H with the
robust scale estimators suggested by Rousseuw sk (1993).

Our results indicated that all three proceduresewebust with respect to Type
| error control even though data were nonnormal heterogeneous; that is, all
rates were within Bradley’'s stringent interval eribn (i.e., within the interval
.045-.055). The minute variabilities between thepeioal p-values across the
procedures indicate that the procedures were onwpidr one another. However,
when averaging rates of Type | error across theditmms investigated, the rank
order of the tests with respect to the deviationeofpirical from nominal rates,
indicate that MOM-H with T, was best, thus making it the procedure we
recommend to researchers.
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