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Choosing the Number of Factors in Independent
Factor Analysis Model

Cinzia Virolit

Abstract

Independent Factor Analysis (IFA) has recently been pregas the signal pro-
cessing literature as a way to model a set of observed vasdbiough linear com-
binations of hidden independent ones plus a noise term.iteahp peculiarity of its
origin the method can be framed within the latent variablelei@omain and some
parallels with the ordinary Factor Analysis can be drawnndfprior information
on the latent structure is available a relevant issue cosdée correct specification
of the model. In this work some methods to detect the numbeigaificant latent
variables are investigated. Moreover, since the methodeef probability density
function for the latent variables by mixtures of gaussidims correct number of mix-
ture components must also be determined. This issue wiltdzeid according to
two main approaches. The first one amounts to carry out aHikadl ratio test. The
other one is based on a penalized form of the likelihood, Iteads to the so called
information criteria. Some simulations and empirical Hsson real data sets are
finally presented.

1 Introduction

Independent Factor Analysis (IFA) has recently been intced by Attias (1999) in the
context of signal processing as a way to model a set of obdeamables through linear
combinations of hidden independent ones plus a noise teaspil2 the peculiarity of its
origin Independent Factor Analysis is indeed a generasitent variable model (Monta-
nari and Viroli, 2005) whose structure closely resemblesaiiie of ordinary factor model
but it assumes that the latent variables are mutually inadg® and not necessarily Gaus-
sians. The assumption pbn-gaussianitpf the factors represents the most appealing idea
of this approach with respect to the most common latent bkrriaodels that are instead
based on normally distributed latent variables. In the IF8del the probability density
function of the factors is assumed to be a mixture of Gaussidinis choice allows to
model arbitrary probability density functions.

Implicit in the IFA estimation problem are the assumptioegarding the number of
significant common factors and the number of mixture compts&r modeling each
factor. The aim of this paper is to propose some methods éztite correct specification
of the IFA model. In doing this, we have moved from the morelitranal approaches:
the likelihood ratio statistics and some information crée The methods discussed are
illustrated using simulated and empirical data sets.
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2 Independent Factor Analysis

The aim in Independent Factor Analysis is to descpilodserved variables;, which are
generally correlated, in terms of a smaller set ahobserved independent latent variables
y; and an additive specific termy:

k
Tj = Z Ajili + uy,
i=1

wherej =1,...,p,i = 1, ..., k. Inamore compact form the model is
X=Ay+u (2.2)

where the factor loading matrix = {);;} is also termed asixing matrix Its structure
closely resembles the classical factor model but it diffiexsn it as far as the properties of
the latent variables it involves is concerned. The randoatorel representing the noise
is assumed to be normally distributad,~ A/(0, V') with ¥ allowing for correlations
between the error terms. The latent variablese assumed to be mutually independent
and not necessarily normally distributed; their prob&pitlensity functions are indeed
modeled as mixtures of Gaussians. The independence assarafpows to model the
density of eachy; in the latent space separately. In more formal terms eadbrfes
thus described as a mixture of; Gaussians with meap, ,,, variancey; ,, and mixing
proportionsw; g, (¢; = 1, ..., m;):

flyi) = Z wi,QiN (Mi,qw Viy‘]i) (2.2)

qi=1

The mixing proportionsy; ,, are constrained to be non-negative and sum to unity.

A particular characterization of the IFA model is that itahves two layers of latent
variables: besides the factoys,anallocation variable z, must be introduced, as always
when dealing with mixture models. With reference to a paféicfactori, the mixture can
be thought of as the density of an heterogeneous populatiasisting ofm,; subgroups.
For each observation the allocation variable denotes thetitg of the subgroup from
which it is drawn. In thek-dimensional space, the multivariate allocation variakle
follows a multivariate multinomial distribution. The detysof the observed data can be
constructed by conditioning to these two latent layers:

rxe) = 30 / f(xyZ|©)dy

= 3 [ r@e)s iz e)sxiy.z ey
= > f(Z6)f(x|z.0) (2.3)

where© denotes the whole set of the IFA model parameters.
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It is not difficult to derive that the conditional densifyx|z, ©) follows a Gaussian
distribution since it is the convolution of two Gaussians:

f(Xly,z,©) = N(Ay,¥) (2.4)
and

f(yz.©) = N(p;Vz) (2.5)

whereu, andV; are respectively defined as:
mg

mi
_ ?1,q1 Zk,qy,
o= | TT s T wi

q1=1 qr=1

mp

mi
_di 21,q1 Zk,qy,
V, = diag | | Vighs o | | Ve

=1 =1

Therefore the expression (2.3) indicates that the denbttyembserved data given the
IFA model,i.e. the likelihood functionf(x|©), is a finite mixture ofp-variate normals.
Its generic component is given by

f(X|z,0) = N (Ap,, AVAT +T) (2.6)

3 ThelFA modéd estimation

The parameter estimates in the IFA model can not be obtayethlimizing directly the
likelihood function, f(x|©), obtained in the (2.3) since this quantity is analyticalyd
to deal with.

In such situations, it is generally convenient resortingdme additional unobserved
variables, such that if theyere knowrthe optimal value® could be computed easily. In
the IFA model the introduction of the two hidden layers (thetbrsy and the multivariate
allocation variable) allows to rephrase the likelihood function of the obsergath (the
“incomplete” data) in terms of the “pseudo-complete” dagasity:

f04e) =Y [ fzy.xie)ay, (3.1)

with
f(xy,20) = f(Xly,0) f (y|z,©) f (2]0), (3.2)

The objective of maximizing the incomplete log-likelihoadf(x|©) can be now
achieved by the EM algorithm: the incomplete-data liketitigoroblem is solved in-
directly by proceeding iteratively in terms of the compldtga log-likelihood function
In f (z,y,x|©). As it is unobservable it is replaced by its conditional extpgon given
the observable data, using the current fit for the paramebérs

arg max Eyxe [In f(z,y,%x]0)].

By making use of the previous decomposition, the two steplseoEM algorithm can
be analytically derived. After laborious but straightf@amd calculations (for more details
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see Montanari and Viroli, 2005), the following estimates tlee new parameter® in
terms of the old one®’ are obtained:

A=xBY"XE [y x| ¥ =xx" —xE[y"|x]AT (3.3)
- Bz x] o fEXEY X,
:u%(h' - f(Zz|X> szqi - f(ZZ‘X) :uz',qi wl,qz‘ - f(zz‘)o'

The EM algorithm has the appealing property to converge roomcally to a local
maximum of the log-likelihood.

The number of parameters to be estimated is a consequencénopbcit assumption
regarding the number of significant common factors and timeb®ur of mixture compo-
nents for each. Assessing the correct specification of treeh®thus an important phase
of the exploratory analysis. As far as the number of mixtwmponents is concerned,
its increase improves the factor density approximatior,abso involves a remarkable
increase in the total parameters of the model, in contrast tihe empirical principle of
parsimony. This issue is consequent and strictly connegigdanother relevant aspect:
the detection of the correct number of factors.

The identification of the latent structure dimension hasnbeaditionally achieved
according to two main approaches. The first one is to carradutpothesis test, using
the likelihood ratio as the test statistic. The other oneaiseld on a penalized form of
the likelihood. As the likelihood increases with the aduhtof a factor, the likelihood is
“penalized” by the subtraction of a term that considers thenlper of parameters in the
model. This leads to the so called information criteria. Séhewvo approaches will be
presented in the next sections.

4 Likelihood ratio test statistic (LRTS)

The conventional application of the LRTS to test the nulldiyyesisH, : k = ko versus
H, : k = k; for somek; > kg is not possible in the IFA model, since the classic
regularity conditions do not hold for the transformed likebd ratio—2 log A to have its
usual asymptotic null distribution of chi-squared. In artedemonstrate it, one should
observe that the likelihood functiof(x|©) in the IFA model can be rephrased as a finite
mixture of p-variate normals, as shown in the expression (2.3). Thesiclasgularity
conditions are not fulfilled for finite mixture models, besawnder the null hypothesis
the lastk; — ko mixing proportions lie on the boundary of the parameter sfganderH,,
they are all zero).

Several simulation results have been reported in liteeadir the null distribution of
the LRTS when standard regularity conditions do not holgadrticular, Wolfe (1971), on
the basis of a MonteCarlo study, suggested a modified teatffoite mixture ofp-variate
normals in which

2 1
—— (n—l—p— —kl) log/\rv)(; (4.1)
n 2

is distributed as a chi-square with degrees of freegom2p(k; — ko).
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In the IFA model, the number of mixture components,is identified by the domain
dimension of the multivariate allocation varialalgthat is

m = Hmi (4.2)

wherek is the number of factors and, is the number of mixture components for each
factor. As clear from the expression (4.2), testing an hygsis concerning the num-
ber of factors is equivalent to assessing an hypothesisecoimg the number of mixture
components which depends bn

ko
Hoik?:ko = Hozm:mozl_[mi. (43)
i=1

Moreover using the (4.2) itis also possible to perform aitestder to assess the num-
ber of mixture components for a specific factor in the sametsyithe (4.3). Adopting
a more complex strategy with a series of tests the correcifsgaion of the IFA model
can thus be completely investigated.

From an extensive simulation study we derived that Wolf@praximation for the
IFA model gives satisfactory results only if the sample s&zadequately large, at least
aboutn > 10h whereh is the number of free parameters (Viroli, 2003). Unfortehat
the IFA model is characterized by the use of a large numbenkrfiown parameters: with
p observed variables aridfactors the free parameters dre- pk +p + (3 Zle m; — k).
As a consequence the applicability of Wolfe’s solution mited, since it requires more
observations than those generally available in the engbpicientext.

An alternative way to carry out a hypothesis test on the nurobé&ctors could be
to approximate the null distribution of the LRTS by boospimg the data. However, it
must be pointed out that the implementation of the boosedyRTS on the IFA model
is actually computationally prohibitive.

5 Information criteria

Two commonly-used information criteria for the comparisoil selection between differ-
ent models are the Akaike’s Information Criterion (AIC; Aka, 1973) and the Bayesian
Information Criterion (BIC; Schwarz, 1978). Akaike’s imfoation criterion is constructed
on the log-likelihood

AIC = —2logmax L + 2h

whereh is the number of the model free parameters. The second tetheddriterion
gives a growing penalty in correspondence of an increagimger of factors, according
with the parsimony principle. With respect to the AIC, Schxginformation criterion is
characterized by a higher penalty term since it involves @ile sample dimensiaon

BIC = —2logmax L 4 hlogn.
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Table 1: Values of the root mean squared error and the bias for BIC d@d A

p=7 BIC AIC

k=1|k=2|k=3|k=1|k=2|k=3
(h=22) | (h=37) | (h=52) | (h=22) | (h=37) | (h=52)
n=100| Bias | 0.2 -0.9 -1.8 0.6 -0.9 -1.1
MSE 0.6 1.0 1.9 1.0 1.0 1.3
n=200| Bias | 0.5 -0.8 -1.2 0.7 -0.5 -0.6
MSE 0.8 0.9 14 1.0 0.8 0.8
n=500| Bias | 0.6 -0.5 -0.7 0.6 -0.2 -0.5
MSE| 0.9 0.9 0.9 0.9 0.9 0.7

Table 2: Values of the root mean squared error and the bias for BIC whé&0.

p=10 BIC

k=1 k=2 |k=3|k=4| k=5 | k=6
(h=28) | (h=46) | (h=64) | (h=82) | (h=100) | (h=118)
n=100| Bias 0.2 -0.8 -1.6 -2.4 xkk *kx
MSE 0.5 0.9 1.8 2.6 il i
n=200| Bias 0.7 -0.5 -0.7 -1.8 -1.9 -3.9
MSE 1.1 0.7 1.2 2.2 2.3 4.2
n=500| Bias 1.0 0.2 1.3 1.0 0.2 -1.3
MSE 14 1.0 1.7 1.3 0.7 1.7

The performances of the two criteria in the IFA model havenke®alyzed through a
wide simulation study performed by using several initialian of the parameters in the
EM-algorithm.

The situations considered differ according to the sampessi=100, 200, 500, the
valuesp = 7 andp = 10 of the number of observed variables, the number of latetdfac
k = 1,..., K factors, wherek is the maximum number of estimable latent variables
identified by the Lederman’s condition

1
k< 5{2p+1 —/8p+1}.

Each factor is here modelled by a constant number of mixtomgonents, withn, =
3 Vi. For each of the 50 simulations, the root mean squared etf¢iK) and the bias
(Bias) were calculated:

N

50 50
1 2 . Do ki
MSE = (=S (k —k Bias — 22i=L"i _ p.
<50 o~ (k7 = k) ) vas 50

The results are summarized in the Tables 1, 2 and 3. The Bt€rion generally
shows a negative bias for both= 7 andp = 10 because of its high penalty term but this
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Table 3: Values of the root mean squared error and the bias for AIC whd®.

p=10 AIC
k=1|k=2|k=3|k=4| k=5]| k=6
(h=28) | (h=46) | (h=64) | (h=282) | (h=100) | (h=118)
n=100| Bias 0.8 -0.2 0.3 -0.3 il ool
MSE| 1.4 0.8 1.2 1.3 ok oxk
n=200| Bias 1.4 0.7 2.3 1.4 0.4 -1.0
MSE| 1.9 1.2 2.5 1.5 0.7 1.3
n=500| Bias 1.7 1.3 2.6 1.7 0.6 -0.6
MSE| 2.2 1.7 2.7 1.8 0.8 0.8

tendency to underestimate the number of factors decreasks aample size increases.
When compared to BIC the penalty term of AIC penalizes compledels less heavily,
since its penalty term does not depend on the sample sizactntfie Akaike’s criterion
is more favourable to factor inclusion but it tends to fit toamy factors for the case
p = 10, and this tendency gets worserasicreases. Although the joint results of the two
information criteria seem to offer appreciable indicatiom the correct number of factors,
the appearance of improper solutions is not in principldused, because as explained
by Titterington et al. (1985) they rely essentially on thesaegularity conditions needed
for the —2log A to have its usual asymptotic distribution under the nulldthesis.

6 Empirical results

6.1 Thyroid data

The data are taken from the study by Coomanal. (1983) on the tyroid disease. The
example consists of 5 measurements (T3-resin uptake tatst, Jerum thyroxin, Total
serum triiodothyronine, Basal thyroid-stimulating homeaand maximal absolute differ-
ence of TSH value after injection of 200 micro grams of thgopin-releasing hormone
as compared to the basal value) on 215 patients, that anegilisgthed in three groups on
the basis of their thyroid status (normal, hyper and hypo).

Before performing the IFA estimation, the previous cradnas been applied in order
to detect the correct specification of the model. The AIC aid &iteria indicate that
two factors are enough to describe the latent space. Theapph of the likelihood ratio
to detect the number of components for each factor finallgt teatwo factors with two
components each.

The research of independent factors with distribution necessarily gaussian offers
some advantages with respect to the ordinary Factor Arsadygdution, since the descrip-
tion of the latent space could be sometimes warped by themggn of gaussianity. It
the case of this example. The first graph of Figure 1, showschter plot of the factor
scores in the ordinary Factor Analysis obtained by the weshin iterated principal factor
method. The second graph of the Figure 1 shows instead thedkion. It seems more
interesting. In fact, the first factor clearly captures thaability of the normal and hyper
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Figure 1: Scatter plot of the factor scores in ordinary Factor Analgsid Independent Factor
Analysis. In the graphs the circles denote the normal grdygatients, the triangles indicates
the hypo group of patients and the boxes the hyper group.

groups of patients while the second one describes those gfatients with normal and
hypo thyroid.

6.2 Boston neighborhood data

The data set has been entirely published in Belskegl. (1980). Each observation is
a standard metropolitan tract in the Boston area. For each ¥8 summary variables
have been measured: median value of owner-occupied horeesapita crime rate by
town; proportion of residential land zoned for big lots; pootion of non-retail business
acres per town; nitric oxides concentration; average nurmbeoms per dwelling; pro-
portion of owner-occupied units built prior to 1940; weigtitdistances to five Boston
employment centres; index of accessibility to radial highig; full-value property-tax
rate; pupil-teacher ratio by town; proportion of blacks byhn; fraction of lower status of
the population.

Exploratory Projection Pursuit (Friedman, 1987) has slibsteking structure of the
data and non gaussian projected directions.

In Figure 2 the ordinary Factor Analysis solution and thesjpehdent Factor Analysis
one are represented. The specification of the IFA model has decomplished by a two
step forward procedure. In the first step the likelihoodortdst statistics has been applied
to determine the number of factors, with a fixed number of orxttomponents. In the

second step, with fixedl = 2 factors the number of mixture components has been chosen

applying the LRTS test in a forward strategy. This proceda® indicated a model with
two factors both of them modeled by 3-dimensional gaussiatunes. The IFA solution
exhibits a clear clustering structure of the data. Thesemggare not captured by the
ordinary factor analysis solution, although the differesin the factor loading estimates
are not so relevant (Table 4).
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Figure 2: Boston Neighborhood Data: Factor Analysis and IndepenBactior Analysis
solutions.

Table 4: Factor loading estimates of IFA, FA unrotated solution aAdiith varimax rotation.

IFA FA Varimax

MEDV -0.36 0.82 -0.69 0.65 -0.21 0.93
CRIM 0.67 0.03 0.57| -0.01 0.47| -0.33
ZN -0.29 0.18 -0.58| -0.11 -0.54 0.24
INDUS 0.64| -0.16 0.84 0.13 0.77| -0.36
NOX 0.73| -0.04 0.83 0.29 0.85| -0.22
RM -0.20 0.61 -0.50 0.51 -0.12 0.70
AGE 0.50 0.00 0.74 0.25 0.75| -0.20
DIS -0.55| -0.09 -0.76| -0.43 -0.87 0.07
RAD 0.97 0.03 0.74 0.10 0.67| -0.33
TAX 0.90| -0.05 0.81 0.07 0.71| -0.39
PTRATIO 0.37| -0.33 0.49| -0.25 0.26| -0.48
B -0.50 0.04 -0.45| -0.01 -0.38 0.25
LSTAT 0.52| -0.34 0.78| -0.28 0.49| -0.67

Conclusions

In this paper the Independent Factor Analysis has beerdintex and some criteria have
been employed in order to detect the correct specificatiaheinodel. The proposed
methods seem to perform quite well both on the simulated ealddata. However some
issues are still open and the problem deserves furthettiatten

In fact, the approximation for the likelihood ratio testt&#acs gives satisfactory re-
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sults only if the sample size is adequately large, at leastiab > 10~ whereh is the
number of free parameters. The boostrap methods could @affatid strategy to better
approximate the null distribution of the LRTS, althoughsitcomputationally intensive.

Moreover the information criteria do not offer a strategy tlee choice of the num-
ber of mixture components. Also they rely essentially onghme regularity conditions
needed for the-2 log A to have its usual asymptotic distribution under the nulldtyesis
and therefore despite their easy and immediate applitathikey are not robust enough to
violations of standard assumptions.

Some future research could be developed in the directioheobtiyesian approach
which provides a natural framework for considering the acakere the number of com-
ponentsk is unknown. By allowingt to vary with the other parameters and specifying
their joint prior distributionf (k, 8), inference may be based on the posterior distribution
f(k,0]x). In this spirit, an interesting approach is based on therséve jump Markov
chain Monte Carlo (Green, 1995), that is capable of jumpigtgvben the parameter sub-
spaces of differing dimensionality.
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