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Abstract

In this paper, we introduce two different generalizations of Schur numbers that involve
rainbow colorings. Motivated by well-known generalizations of Ramsey numbers, we first
define the rainbow Schur number RS (n) to be the minimum number of colors needed
such that every coloring of {1, 2, . . . , n}, in which all available colors are used, contains a
rainbow solution to a+ b = c. It is shown that

RS (n) = blog2(n)c+ 2, for all n ≥ 3.

Second, we consider the Gallai-Schur number GS (n), defined to be the least natural num-
ber such that every n-coloring of {1, 2, . . . ,GS (n)} that lacks rainbow solutions to the
equation a + b = c necessarily contains a monochromatic solution to this equation. By
connecting this number with the n-color Gallai-Ramsey number for triangles, it is shown
that for all n ≥ 3,

GS (n) =

{
5k if n = 2k

2 · 5k if n = 2k + 1.
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1 Introduction
One of the earliest results that falls under the blanket of Ramsey theory is a theorem of
Issai Schur [11] from 1916. In fact, his work predates Frank Ramsey’s foundational paper
[10]. Schur proved that for any n ∈ N, there exists a minimal S(n) ∈ N such that every
n-coloring of the elements in the set {1, 2, . . . , S(n)} contains elements a, b, and c of
the same color such that a + b = c. Such a triple a, b, and c is called a monochromatic
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Schur solution and we note that it is possible that a = b. The number S(n) is called a
Schur number and it is well-known that S(1) = 2, S(2) = 5, S(3) = 14, S(4) = 45
(see Golomb and Baumert [6]). Recently, Heule [7] has shown that S(5) = 161. We note
that some authors define a Schur number to be the largest f(n) ∈ N such that some n-
coloring of {1, 2, . . . , f(n)} lacks a monochromatic Schur solution. It is easily seen that
S(n) = f(n) + 1.

A thorough overview of Schur numbers is given in Landman and Robertson’s book [9]
and in Section 3 of Soifer’s article [12]. Schur’s theorem is interesting from a combinatorial
perspective, but his motivation was a tool for proving that the congruence

xm + ym ≡ zm (mod p)

contains a nontrivial solution when p is a sufficiently large prime (specifically, p > S(n)).
This result had been originally proved by Dickson [4] in 1908 in his attempt to prove
Fermat’s Last Theorem.

In this paper, we adapt some common generalizations of Ramsey numbers that involve
rainbow colorings to Schur numbers. In Section 2, we consider the minimum number of
colors such that every coloring of {1, 2, . . . , n}, using all of the colors, contains a rainbow
Schur solution. This leads us to the definition of the rainbow Schur number RS (n), which
is a Schur number analogue of rainbow numbers (closely related to anti-Ramsey numbers).
The number RS (n) is similar in definition to the number ss(k) defined in [5], but does
not restrict the number of times each color can be used. In Section 3, we restrict ourselves
to colorings of {1, 2, . . . , k} that lack rainbow Schur solutions: a, b, and c with distinct
colors such that a+ b = c. Limiting the colorings in this way leads to the definition of the
Gallai-Schur number GS (n). We provide exact evaluations of both RS (n) and GS (n) and
offer some related open questions for future inquiry.

2 Rainbow Schur numbers
In this section, we consider Schur number analogues of rainbow numbers and anti-Ramsey
numbers (c.f., Chapter 11, Section 4 of [2]). For n ≥ 3, define the rainbow Schur number
RS (n) to be the minimum number of colors such that every coloring of {1, 2, . . . , n},
using all RS (n) colors, contains a rainbow Schur solution: a, b, and c all distinct colors
such that a+ b = c. Observe that a+ b = c is never a rainbow Schur solution when a = b.
As with the case of graphs, the rainbow Schur number is closely related to the anti-Schur
number AS(n), defined to be the maximum number of colors that can be used to color
{1, 2, . . . , n} so that no rainbow Schur solution exists. From these definitions, it follows
that

RS (n) = AS(n) + 1, for all n ≥ 3.

Since determining the values of these two numbers is equivalent, we will focus on RS (n)
for the remainder of this section, beginning with a few small values of n.

Observe that at least three colors are needed to have a rainbow triangle. Using all three
colors to color {1, 2, 3}, we find that 1 + 2 = 3 is rainbow. Thus,

RS (3) = 3.

Next, consider the following 3-coloring of

{1, 2, 3, 4}.
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It is easily checked that no rainbow Schur solutions exist, implying that RS (4) > 3. Of
course, 4-coloring {1, 2, 3, 4} produces a rainbow Schur solution, implying that

RS (4) = 4.

The following 3-coloring does not contain any rainbow Schur solutions:

{1, 2, 3, 4, 5}.

Thus, RS (5) > 3. Now consider a 4-coloring of {1, 2, 3, 4, 5}. If 5 is assigned the same
color as some i < 5, then the coloring induces a 4-coloring of {1, 2, 3, 4}, which necessar-
ily contains a rainbow Schur solution. Otherwise, the color assigned to 5 is not assigned
to any other number. In order to avoid a rainbow Schur solution, 1 and 4 receive the same
color, as do 2 and 3. Since all three remaining colors must be used, either 1 + 4 = 5 or
2 + 3 = 5 must be rainbow. Hence,

RS (5) = 4.

As a crude general bound, note that giving unique colors to the numbers in {1, 2, . . . , n}
necessarily produces a rainbow Schur solution when n ≥ 3. Thus,

RS (n) ≤ n,

proving that RS (n) exists for all n ≥ 3. Suppose that every k-coloring of {1, 2, . . . , n}
contains a rainbow Schur solution, then every (k + 1)-coloring of {1, 2, . . . , n + 1} also
contains a rainbow Schur solution. It follows that

RS (n+ 1) ≤ RS (n) + 1.

If there exists a k-coloring of {1, 2, . . . , n+ 1} that lacks a rainbow Schur solution, then it
induces such a coloring on {1, 2, . . . , n}. Hence,

RS (n) ≤ RS (n+ 1), for all n ≥ 3.

The following lemma will allow us to show that equality holds for most values of n.

Lemma 2.1. Let n ≥ 6 and suppose that RS (n − 1) = k and RS
(
bn2 c

)
≤ k − 1. Then

RS (n) = k.

Proof. Suppose that RS (n − 1) = k and RS
(
bn2 c

)
≤ k − 1 and consider a k-coloring

of {1, 2, . . . , n}. If the color assigned to n is shared with some i < n, then this coloring
induces a k-coloring of {1, 2, . . . , n − 1}, which necessarily contains a rainbow Schur
solution. So, assume that n is assigned a unique color. If n is even, and a rainbow Schur
solution is avoided, then numbers in each of the sets

{1, n− 1}, {2, n− 2}, . . . ,
{n
2
− 1,

n

2
+ 1
}
,
{n
2

}
are colored according to the set they are in. That is, 1 and n − 1 receive the same color, 2
and n− 2 receive the same color, etc. If n is odd, and a rainbow Schur solution is avoided,
then numbers in each of the sets

{1, n− 1}, {2, n− 2}, . . . ,
{
n− 1

2
,
n+ 1

2

}
are colored according to which set they are in. In both cases, we are reduced to considering
a (k − 1)-coloring of

{
1, 2, . . . , bn2 c

}
, which contains a rainbow Schur solution.
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Observe that the colorings that have given us lower bounds for RS (4) and RS (5) have
both had the odd numbers grouped into a single color class (red). This leads us to the
following lemma.

Lemma 2.2. For all k ≥ 2, RS (2k) > k + 1.

Proof. Define the map ϑ2 : N −→ N ∪ {0} by

ϑ2(a) = ` ⇐⇒ 2` | a and 2`+1 - a.

Color the elements of {1, 2, . . . , 2k} according to their images ϑ2(a) ∈ {0, 1, . . . , k}. It
can now be confirmed that this (k + 1)-coloring does not contain any rainbow Schur so-
lutions. Certainly any Schur solution a + b = c in which ϑ2(a) = ϑ2(b) is not rainbow
colored. Now, consider the case in which ϑ2(a) = ` < k = ϑ2(b). Then we can write

a+ b = 2`(e+ f), where e is odd and f is even.

So, ϑ2(a + b) = ` and we see that such a Schur solution is not rainbow colored. We have
produced a (k + 1)-coloring of {1, 2, . . . , 2k} that does not contain any rainbow Schur
solutions. It follows that RS (2k) is greater than k + 1.

Theorem 2.3. For all n ≥ 3, RS (n) = blog2(n)c+ 2.

Proof. Proving this theorem is equivalent to proving that if 2k ≤ n ≤ 2k+1 − 1, then
RS (n) = k + 2 for all n ≥ 3. We have already shown this result to be true for 3 ≤ n ≤ 5.
We proceed by strong induction on n. Suppose that the theorem is true for all n such that
3 ≤ n ≤ m, for some m ≥ 6 and consider the rainbow Schur number RS (m+ 1). There
are two cases to consider.

Case 1: If m+ 1 is not a power of 2, then we can write

2k + 1 ≤ m+ 1 ≤ 2k+1 − 1,

for some k. It follows that m ≤ 2k+1 − 2 and the inductive hypothesis implies that

RS (m) = blog2(m)c+ 2 and RS

(⌊m+ 1

2

⌋)
=
⌊
log2

(⌊m+ 1

2

⌋)⌋
+ 2

=
⌊
log2(m)

⌋
+ 1.

Hence, RS (m+ 1) = blog2(m)c+ 2 by Lemma 2.1.

Case 2: If m+ 1 = 2k for some k > 2, then RS (m) = k + 1 by the inductive hypothesis.
By Lemma 2.2, RS (m + 1) > k + 1. Consider a (k + 2)-coloring of {1, 2, . . . ,m + 1}.
Regardless of the color assigned to m+1, at least k+1 colors are assigned to {1, 2, . . . ,m},
which necessarily contains a rainbow Schur solution. Thus, RS (m + 1) = k + 2, when
m+ 1 = 2k.

3 Gallai-Schur numbers
A Gallai n-coloring of {1, 2, . . . , k} is a coloring that lacks rainbow Schur solutions. For
every n ∈ N, define the Gallai-Schur number GS (n) to be the least positive integer such
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that every Gallai n-coloring of {1, 2, . . . ,GS (n)} contains a monochromatic Schur solu-
tion. It is easily observed that GS (1) = S(1) = 2, GS (2) = S(2) = 5, and

GS (n) ≤ S(n), for all n ≥ 3.

The Gallai-Schur number GS (n) is closely related to the Gallai-Ramsey number grn(3),
defined to be the minimum number of vertices p needed to guarantee that every rainbow-
triangle-free n-coloring of the edges of the complete graph Kp contains a monochromatic
triangle. The following theorem makes this relationship explicit.

Theorem 3.1. For all n ≥ 3, GS (n) ≤ grn(3)− 1.

Proof. Let p = grn(3) and identify the vertices in Kp with {1, 2, . . . , p}. For every
pair of distinct vertices a, b ∈ {1, 2, . . . , p}, color edge ab according to the value of
|b − a| ∈ {1, 2, . . . , p − 1}. If we consider a Gallai n-coloring of Kp, it necessarily
contains a monochromatic triangle. Suppose the vertices of such a triangle are given by
a < b < c. Then setting x = b− a, y = c− b, and z = c− a, it follows that

x+ y = (b− a) + (c− b) = c− a = z

is monochromatic. Also, note that no rainbow Schur solutions exist because if x + y = z
is rainbow, then the triangle with vertices 1, x + 1, and x + y + 1 would be rainbow as
well. Thus, every Gallai n-coloring of {1, 2, . . . , p− 1} produces a monochromatic Schur
solution:

GS (n) ≤ grn(3)− 1,

completing the proof of the theorem.

In 1983, Chung and Graham (see Theorem 1 of [3]) proved a result equivalent to

grn(3) =

{
5k + 1 if n = 2k

2 · 5k + 1 if n = 2k + 1.

Hence, Theorem 3.1 gives

GS (n) ≤

{
5k if n = 2k

2 · 5k if n = 2k + 1.
(3.1)

To find a lower bound for GS (n) when n ≥ 3, we begin with some preliminary exam-
ples. It is straight-foward to check that

{1, 2, 3, 4, 5, 6, 7, 8, 9}

is a Gallai 3-coloring that lacks a monochromatic Schur solution. It follows that GS (3) >
9. Combining this inequality with Theorem 3.1, we find that

GS (3) = 10.

One can also check that

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24}
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is a Gallai 4-coloring that lacks a monochromatic Schur solution, which implies GS (4) >
24. Combining this inequality with Theorem 3.1, we find that

GS (4) = 25.

The following theorem offers a general lower bound for GS (n).

Theorem 3.2. The set {1, 2, . . . , grn(3) − 2} can be Gallai n-colored without producing
a monochromatic Schur solution.

Proof. Similar to the proof of Lemma 2.2, define the map ϑ5 : N −→ N ∪ {0} by

ϑ5(a) = ` ⇐⇒ 5` | a and 5`+1 - a.

First, we consider the case in which n = 2k, where n ≥ 4. We will construct a Gallai
n-coloring of S = {1, 2, . . . , 5k − 1} that lacks a monochromatic Schur solution. We start
by partitioning S according to the images of elements under the map ϑ5. This gives us the
following k sets:

S` = {a | ϑ5(a) = `}, where ` = 0, 1, . . . , k − 1.

Each S` is then partitioned into two distinct color classes:

S+
` =

{
a
∣∣∣ ϑ5(a) = ` and

a

5`
≡ ±1 (mod 5)

}
,

S−` =
{
a
∣∣∣ ϑ5(a) = ` and

a

5`
≡ ±2 (mod 5)

}
.

We have now partitioned S into n = 2k color classes. It remains to be shown that such
a coloring lacks both rainbow and monochromatic Schur solutions. We consider several
cases for adding a, b ∈ S.

Case 1: Suppose that a and b receive different colors. Then there exist two subcases.

Subcase 1.1: Assume that ϑ5(a) = ϑ5(b) = `. Since a and b receive different colors,
without loss of generality, it follows that

a

5`
≡ ±1 (mod 5) and

b

5`
≡ ±2 (mod 5).

It follows that ϑ5(a+ b) = `, and hence, either a or b receives the same color as a+ b. So,
this subcase does not produce a rainbow or monochromatic Schur solution.

Subcase 1.2: Without loss of generality, assume that ϑ5(a) = `1 < `2 = ϑ5(b). Then
ϑ5(a+ b) = `1 and

a+ b

5`1
≡ a

5`1
+

b

5`2
· 5`2−`1 ≡ a

5`1
(mod 5).

In this subcase, a and a+b receive the same color, avoiding both a rainbow and monochro-
matic Schur solution.

Case 2: Suppose that a and b receive the same color. Then ϑ5(a) = ϑ5(b) = ` and either

a

5`
≡ ±1 (mod 5) or

b

5`
≡ ±2 (mod 5).
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Once again, we consider two subcases.

Subcase 2.1: If ϑ5(a+b) > ϑ5(a) = ϑ5(b), then a+b necessarily receives a color different
than that of a and b.

Subcase 2.2: Suppose that ϑ5(a + b) = ϑ5(a) = ϑ5(b) = `. If a
5`
≡ b

5`
≡ ±1 (mod 5),

then a+b
5`
≡ ±2 (mod 5) and if a

5`
≡ b

5`
≡ ±2 (mod 5), then a+b

5`
≡ ±1 (mod 5).

In all cases, we find that a, b, and a + b never form a rainbow or monochromatic Schur
solution. The same construction also provides a Gallai n-coloring of

S′ = {1, 2, . . . , 2 · 5k − 1}

when n = 2k + 1, and we leave the details to the reader.

Putting together the results of Theorems 3.1 and 3.2, we find that

GS (n) = grn(3)− 1 =

{
5k if n = 2k

2 · 5k if n = 2k + 1.

4 Conclusion
We have shown how extremal results from graph theory can be used to prove related number
theoretic results. Although we have succeeded in providing exact evaluations of GS (n) and
RS (n), the generalizations considered here lead to analogous constructions involving weak
Schur numbers (see [8]) and generalized Schur numbers (see [1]). Such work is reserved
for future inquiry.
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