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This paper shows the development efforts in designing a
interconnection network for 64 processor tightly coupled PARSYS
parallel machine. In the first two chapters a network analysis is
described based on the discrete statistical simulation model. From the
results of the discrete statistical simulation model a high performance
asynchronous Routing Node logic design is defined and implemented for
the n-cube based interconnection network. ’

1. INTRODUCTION

We are entering the era of fundamental changes
in the field of computer architecture. In
particular, a large part of these changes have
been represented by a transition from serial to
parallel processing. This transition is
stimulated by at least four reasons: ’

- the cost of digital hardware has dropped to
the point that processors need not be
considered the scared resources,

- improvement of performance of monoprocessors
is technologically limited,

- the scope of problems whose algorithmic
complexity exceeds the capability of todays
most powerful computers is very large,

- the formulation of the problems naturally
suggest parallel realization.

Market Research Group, a consulting company
that follows the trends on computer market,
foretells that by the year 1990, 48% of all
large scale computers will have one of the
forms of parallel processing. Most of the
developed countries support parallel system
projects (Japan, German Federative Republic,
USA, etc.). These projects differ from
technological to philosophical concepts.
However, one is common to all of them: the
proposed computers are order of magnitude
faster than conventional computers, they are
successful, and there is a fully new open
market for the application software.

1.1. RATIONALE A ND
CONCEPTS

PARSYS([12,13] is a tightly-coupled MIMD
(multiple instruction, multiple data) research
and development project on parallel processing
at Iskra Delta Computers. Specifically, the
project is involved with:

- development of the first prototype hardware
and system  software,

- development of specific program development
environments,

- development of application software.

The rationale for the decision to build a MIMD
tightly-coupled parallel system rather than a
super fast SIMD (single instruction, multiple
data) vector machine is multifold:

- the market for MIMD multiprocessors is just
beginning to evolve, whereas for vector
machines it is highly competitive,

- the higher flexibility of MIMD machines
allows for a broader application spectrum,

- the development cost of the MIMD based
multiprocessor system is lower than of the
vector machine, since it is possible to use
of-the~shelf standard components,

- the whole spectrum of new software products
could benefit from general purpose MIMD
machines (vector processors are too much
specialized).

The PARSYS project is product-oriented. This
means that in contrast to pure research and
prototype development, an additional market-
oriented reguirements must be satisfied such
as:

- the desired absolute performance must be
obtained at the competitive cost-
effectiveness,

- the machine must be manufacturable, testable
and maintainable,

- there must exist a time schedule during which
the research and development must lead to a
production model.



In order to meet the time schedule, the
architectural design of the PARSYS machine has
been based not only on the innovative concepts
but also on the solutions that have
incorporated already proven technologies,
methodologies, standards and products,

The recent research and development'work on the
PARSYS system has been focused on:

1. top level architectural specification and
implementation a 64 processor machine
based on multistage interconnection
topology,

2. implementation of minimal kernel for fast
process communication,

3. development of software tools for automatic
parallelization and debugging.

In this paper we show only the hardware
realization of the PARSYS n-cube
interconnection netwecrk. The work was done at
Iskra Delta Computers as partial fulfillment
for Bs.EE. degree{11] from June 1987 to
September 1988,

2.INTERCONNECTION NETWORK
ANALYSIS

Interconnection networks for
computers have been studied intensively, and
many different topologies have Dbeen proposed:
from non-blocking, but impractical crossbar
switches, Benes and Batcher networks to more
practical blocking networks such as omega,
flip, delta, indirect binary n-cube.

PARSYS original network topology used flip
multistage interconnection network([1l], directly
transformed into the binary n-cube. The benefit
of the transformation was the simplicity of the
n-cube implementation and the versatility of
the multistage interconnection network.

PARSYS machine can be functionally represented
as in figure 2.1. Programs and data can be
either stored in processor's local (LM) or
global memory (GM). CPU-s can access global
memory.- only through the interconnection
network. The problem is that the time delay
required to access global memory is much larger
than the time to access local memory. In order
" to decrease ‘traffic in the network and to
increase overall program execution it is
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Figure 2.1. The parallel computer with
distributed global and local
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required that both program code segments and
parts of data segments (local stack) are placed
in the local memory.

The interconnection network analysis must take
advantage of the fact that the traffic flow is
greatly reduced by introducing the local
memories in the system and that a simple
network design can sufficiently absorb traffic
flow and bring global memory regquest in the
fastest possible way.

2.1. THE PURPOSE OF
INTERCONNECTION
NETWORK

The interconnection network statistical

analysis and the interconnection network
simulation introduced in this paper are Vvalid
for any multiprocessor interconnection network
topology which is based on global/local
architecture. The goal of these two chapter is
to show transport characteristics in the
network and to make a ground for the optimal
multiprocessor network ogic design based on
the results of the analysis

CPU access global memory by creating a read or
write packet. Packets travel through the
network using self- routlng mechanism described
in [1].

The read packet contains an address and a
routing tag when it travels from the processor
to the destination global memory module (route:

_ P -> GM) and it consists of data and the same

routing tag when it returns back to the same
processor (route: GM -> P).

The write packet consists of an memory address,
a routing tag and data. It travels only in one

direction: £from the processor to the

destination global memory module (route: P ->

GM).

2.2 INTERCONNECTION
NETWORK STATISTICAL
ANALYSTIS

It is very hard to determine statistically
the percentage of global read and global write
memory accesses., However, an average and a
maximum number of packets in the network are
very valuable information for the optimization
process of the overall network design.

When statistical features and relative time
delays have been included in the model, the
basic network's features can be restored.

Fortunately, we can use some statistics
gathered from the uniprocessor systems and tune
them for the analysis of the parallel
interconnection design. The results of
statistical analysis of computer programs for
IBM mainframe machines([6] have shown the
following characteristics:

1. a typical program may be represented by
the finite automata,

2. instructions may be divided in three
characteristic groups, each group
representing a node in the automata,

- in the first group are instructions
like INA, ASLA and CLRA. These instructions
are register only instructions do not
require memory access, PC := PC+l,



- memory jump
PC :=

instructions (JMP, JSR,..),
<new address>

- read and write instructions (LDA, STA,..),
Reg := Memory[Address]; PC := PC+l;

3. there exists a state transition among the
groups: (figure 2.2.1)

- probability, that an instruction from the
first group is followed by an instruction
in the same group is 11/20,

- probability that an instruction from the
first group is followed by an instruction
from the second group is 1/4,

- probability that an instruction from the
first group is followed by an instruction
from the third group is 1/5.

- the similar relations are for the second
and for the third group, as well,

Figure 2.2.1.

Probability scheme of the
instruction cycle

4., when the memory space is divided to the
local and the global address space, then

only every tenth instruction will require

global memory request for its execution,

Since we are interested only at the memory
requests that require glcbal memory, we can
compress state 1 and state 3 into only one
state, called local state, and state 2 called
global state.

A probability that machine will turn from the
local state to the global state is 1/10.

The following assumptions are necessary to
construct a statistical model of the
multiprocessor network based on previously
defined probabilities: .

- programs are all loaded into local memories,

- there is an equal number of read and write
instructions,

- a probability scheme of the CPU machine
cycle is equal to the probability scheme of
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- the processor has finished a write cycle when
the write packet had been sent in the

network,

- PreRouting and PostRouting delays are
treated as a part of the network delay,

- the processors are treated as a two

state machines,
- the processors are statistically independent,

- network is deadlock free,

- there is no combining in the network
necessary[7].
From the statistical analysis and the

assumptions previously stated, it can be
concluded that the processor in 20 machine
cycles generates one read and one write packet.

The following symbols should be defined:

- N is a number of processors,

- Tcpu is the CPU'S machine cycle,

- Tn 1s an average packet delay in the
network,

- Tm is a global memory module's access
time,

- Tw is time which 1is needed to write
data in the destination global
memory module,

- Tr 1is time which is required to read
data from the global memory module
and

- Np is a number of packets in the
network.

Therefore:
Tr = Tn + Tm + Tn. 2.2.1.
Tw = Tn + Tm. 2.2.2.
2.3, INTERCONNECTION
NETWOREK SIMULATION

A discrete simulation model (figure 2.3.1.) is
constructed for the three functional parts:

- (cPU(Td)) delay units represent the

processors,
- (WPGM(Ta), RPGM{Tb) and RPCPU(Tc) )
delay units represent the

packets in the
multiprocessor network and
delay units represent the
global memory.
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- the CPU's machine cycle is equal to the y Y “%E:}_
processor's machine cycle,
- the processor which has just sent a
read packet to the network has to wait
until this packet returns, Figure 2.3.1.



The numper of packets which are sent to the
network at the moment T, is depended on the
number of processors which finished their last
machine cycle in the moment (T-Tcpu). The read
packets (RPGM(Tb) delay units) and the write
packets (WPGM(Ta) delay units) travel through
the network to the global memory modules
(route: P ~> GM). When the write packets come
to the global memory modules, write data in the
memory and their route is finished there. On
the other side, the read packets read data from
the global memory modules (GM(Te) delay units)
and after that, they return to the processors
with required data (RPCPU(Tc) delay units,
route: GM -> P).

Exact definitions are:

N * WPGM(Ta) - a number of write packets
o which are Ta time units in the
. network,

N * RPGM(Tb) - a number of read packets

which are .-Tb time units in the

network (route: P -> GM),
N * RPCPU(Tc) - a number of read  packets
which are Tc¢ time. units in
the network (route: GM -> P),
N * CcrPU(Td) - a, number of processors which

are going to start new machine
cycle for (Tcpu/Ts + 1 - Td)
time units,
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-maximum number of CPU(Ti)

The sampling time is bounded by the upper and
the lower limit. The upper limit is determined
by:

Tcpu = a * Ts, )
Tn = b * Ts in -
Tm = ¢ * Ts, 2.3.4.

where a, b and c are integer. If the condition
is not accomplish, the extended Z-
transformation must be used and the model can
not be simulated on digital computers,

The lower limit is defined by the number of the
delay units which represent the processors. The
delay units is N.
This is the highest asynchronization which can

be hardly achieved with N processors.

The sampling time is determined by the
requested precision and the observing range.
y(k) 1is defined by the inversive 2-
transformation:
-1
y(k) = 2 (.¥(z2) ). 2.3.5.

The number of all packets in the network (Np)
is:

k k k=b-c

Np(K) = N * ( 1/20 *3  y(i).+ 1/20 *3  y(i) + 1/20 * ¥ y(i) ) 2.3.6.
i=k-b i=k-b i=k-b-c-b

N * GM(Te) - a number of global memory for T = k * Ts,
: modules which are going to

return read packets in The analytic analysis is very complicated so

the network for the discrete simulation is used.

(Tm/Ts + 1 =~ Te) time units .

and The number of all packets in the network (Np)

Ts - is a sampling time.

The number of all packets in the network (Np!}
is a sum of the read and the write packets
which are in the network at the particular
moment: :

Tn/Ts+1
Np = N * 3
i=1

(WPGM(1i) + RPGM(1i) + RPCPU(i)).

2.3.1.

The ‘initial condition is a delta impulse on one
of the processors' delay units CPU(Ti). The
simulation will start after
(Tcpu/Ts + 1 - Ti) time units.

The probability scheme 1is valid for the first
machine cycle too.

All processors could send packets to the
network simultaneously. -However, this
possibility is one of the initial conditions
toco. If this condition could happen, the

after the transitional phenomenon is found out
by the simulation algorithm given in appendix
I.

The simulation results are shown in the figure

"2.3.2..
”»
PACKETS
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N A .
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0 Tepe 2¢¥Tcpe 3I¥Tcpe Tn

Figure 2.3.2. The number of all packets in

network would congest mostly. The maximum the network (Np) after the
number of packets in the network is: transitional phenomenon
(Tcpu = 125 ns, Tn = 25
- N, if 0 < Tn < Tcpu and - 300 ns, Tm = 100 ns,
Ts = 5 ns)
=k * N, if (k - 1) * Tcpu < Tn < k * Tcpu.
2.3.2.
System functicn is:
~ Tcpu/Ts
Y(z) Z
- Tcpu/Ts - (Tcpu+Tn+Tm+Tn)/Ts
u(z) 1 -19/20 * 2 - 1/20 * Z 2.3.3.



The number of packets increases with Tn.
However, the non-regularity shows up at the
condition:

Tn =k * Tcpu ; k = 1,2,.. 2.3.7.

This non-regularity must be bypassed. This can
be assured by enforcing asynchronous processor
cperations.

The maximum number of all packets in the
network (Npm) is found out by the simulation
algorithm given in appendix II.

The simulation results are shown in the figure
2.3.3..

~
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v >
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Figure 2.3.3. The maximum number of all
packets in the network (Tcpu
= 125 ns, Tn = 25 - 300 ns,

T™Tm = 100 ns, Ts = 5 ns)

A comparison between the eguation 2.3.2. and
the figure 2.3.3. shows that the maximum number
of all packets in the network depends on the
initial condition o©of the simulation.
Furthermore, the maximum number of packets is
in the network when processors work
synchroniously.

Therefore, the simulations show that hardware
asynchronization of the whole system
(processors among each other and network
itself) must be assured.

An efficient network can be built if only Tm is
slightly lesser than k * Tcpu.

The results of the interconnection network
statistical analysis based on the discrete
simulation model get together with the results
of other analysis which is built on a
interconnection network as an arbitration
system. The advantage of the described analysis
is also that it is independent from the system
architecture.

The main disadvantages of this analysis is that
Tm must be presumed to find out the exact
number of packets in the network. However, the
exact value of Tm parameter has no essential
influence on the network optimization and logic
design.

2.4. MULTISTAGE N-CUBE
OPTIMIZATION

Multistage networks 1like OMEGA, DELTA,
BUTTERFLY, FLIP and BINARY N-CUBE are well
known interconnection networks[14]. The main
advantage of these networks is that a processor

can access every memory module in Logy steps.
The main disadvantages of these networks is the
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number of crossing links which increase with
every new level and the processor inability to
access local memories in less than Logy steps.

The FLIP network (figure 2.4.1.) has an
isomorphic characteristic which enables a
transformation from FLIP's multistage structure
into Logy dimensional n-cube structureli].

PROCESSORS

OOOOOOEOEOOO®WBW®

] 0] (2] (3] (W) (33 (&) (71 (&] (o] G (1] (x2) s} 1) o]
MEMORIES
Figure 2.4.1.
A n-cube vertex consists of a processor, the

arbiters under that processor and a global
memory module under that arbiters.

A packet, which arrives to the arbiter, is
stored in 1lts memory block. After that a
packet's route is determined by its routing
tag. If the route is ready for the transfer,
the packet is. copied in the neighboring
arbiter, processor or global memory module.
Only one packet can be carried from the source
(arbiter's memory block) to the sink
(neighboring memory block) in the one
arbitration cycle. The arbitration cycle's
length is named an arbitration time (Ta) which
is proportional with the average packet delay
in the network (Tn). The relation between these
characteristic parameters follows from a
complex statistical analysis of arbitration
systems. But only the fact that the arbitration
time has to be as short as possible is
important for the network logic design.

Some calculations are given in this chapter to
be used as the direction for the final
optimization. All calculations are made for 64
multiprocessor system.

A physical and logical ampleness, which is an
optimization subject, is mostly depended on:

- one or bidirectional packets buses,

- packet buses width,

- the number of the arbiters and memory
blocks,

- the kind of memory blocks.

Every vertex 1is connected with Log,N
neighboring vertices. The number of all one-
directional packet buses is:

N * LogpN = 384 (buses) 2.4.1.

The bidirectional bus needs the arbiter to

apportion the bus to one of the sources. The
number of all arbiters can increase by:
N * LogyN / 2 = 192 (arbiters)
2.4.2.



The one-directional bus requires more links 1n
the bus, but the logic ampleness will decrease
because the additional arbiters are not
required.

Therefore, the read packet should include:

- 32-bit address or data,

- routing tag (Log,N = & bits),

- direction 1nd1ca%or (1 bit) and
- read or write mark (1 bit).

The write packet consists of:

- 32-bit address,

- data (32 bits)

- routing tag Log = 6 bits),

- direction 1nd1ca%or {1 bit) and
- read or write mark (1 bit).

The maximum packet's width is 72 bits and it
has to be equal the packet buses width. But the
buses width is halved to achive. a propitious
rate between the network efficiency, 1logic
ampleness and number of links. Therefore, the
write packet is divided into two words:

The first word contains:

- routing tag,

~ direction indicator and
- read or write mark,

- address.

After that, the second word is sent to the
nemory block and it consists only:

- data part.
The number of arbiters in the vertex is very

high, so the reduction is required, too.
next architectures has been analyzed:

- LogyN stage n-cube
(figure 2.4.2.),
- Log,N / 3 stage n-cube

(figure 2.4.3.) and

- singlestage n-cube (figure 2.4.4.).
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Figqure 2.4.2.
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Figure 2.4.3.
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Figure 2.4.4.
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The number of arbiters is:
- N * Log,N (arbiters)

for Log,N stage n-cube,

7

- N * Log,N / 3 (arbiters)

for LogzN /3 stage n-cube and

- N . * 1 (arbiters)

for singlestage n-cube,

The number of memory blocks is equal to the
number of all arbiter sources or sinks and it
is: .

- 3 * LogyN * N = 1152 (memory blocks)

for Log,N stage n-cube,
- 5 %

Log,N / 3 * N = 640 (memory blocks)

for LogiN /3 stage n-cube and

- 8 * N = 512 (memory blocks)

for singlestage n-cube.

A following estimation could be given between
the average packet delay, the arbitration time
and the architecture:

- Tn = LogpN * Ta

for Log,N stage'n—cube and

- Tn = Ta * Q

for singlestége n-cube.

where is Q > 1. 2.4.5.

r

The estimation is based on the multistage
networks without dead locks and races. If
almost all interested data for processcr i are
placed in the memory module i the Q is Xkept
low., =

The number of memory blocks is much higher than
the average or maximum number of packets. in the
network (figure 2.3.2., figure 2.3.3. and
equation 2.4.4.). Also the physical and logical
ampleness decreases with the architection
reduction (equation 2.4.3, and equation
2.4.4.). The third indicator is equation 2.4.5.
which shows that Ta could be higher in the
singlestage n-cube.

n-cube is the
and its

It is evident that singlestage
most appropriate architecture
efficiency is depended on:

- data disposition in the global memory
modules, -

- packets' conflict in the network.

Programs' adaptations to the architecture could
mostly sooth this problems, so the single-stage
n-cube is used for the network logic design
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Registers are used as memory blocks, because
the number of all memory blocks is much higher
then the maximum or average number of packets
(figure 2.3.2., figure 2.3.3. and equation
2.4.4.). The register is formed of two blocks,
because it has to store all packet and not only
one word. If other way had been used, the logic
ampleness would enormously increase. A solution
is given in the figure 2.4.5..

VERTEX

hi]

001

40

VERTEX 101

Figure 2.4.5.

At the beginning of the arbitration cycle the
first word is carried in the block R1. After
then the words are changed on the packet bus
and after all the second word is transferred in
the block R2.

Let's resume the optimization process and
define the routing node' features:

- the network burden is lower if the
asynchronous mode is used (equation
2.3.2. and figure 2.3.3.),

- Tn is proportional with Ta (follows from
the arbitration theory)

- one-directional buses should be used,

- the buses width is 40 bits, therefore
the write packets are divided into two
words,

- singlestage n-cube is applied and

A ]
- registers are used as memory blocks.

3. ROUTING NODE LOGIC
DESIGN

The routing node contains one arbiter which has
eight sources and sinks. It is formed of:

- eight memory blocks,
- a synchronization logic,
an arbitration logic and
a termination logic.

A packet which comes to the routing node is
stored in the register. After then the packet
route is determined by the routing tag. If the
next memory block on the packet route is empty,
the bus request is generated. All bus requests
from the sources are indicated in the
synchronization logic. The arbitration logic
chooses one of the bus requests and enables the
packet transfer. The termination logic ends the
arbitration cycle.

The routing node is built by 74F and 74AS logic
families which are often used in application to
achive high system performance. But. on the
other hand they are easy for designing because
many equipment and software tools have been
developed for these integrated circuits.

3.1. MEMORY MODULE
INPUT STROBE SIGNAL { s oACKE
INPUT STROBE SIGNAL 2 ¢ CKET BUS
Dr———————d
MEMORY SINK BUS i
MODWL —_tj
INPUT PACKEY BUS
Fee—|
EMPTY SINK SIGNALS | Mux g1 |EWS REQUEST

Figure 3.1.1.
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Figure 3.1. Routing node



The functions of the memory block are:

- to store packet in the registers,

- to determine the packet's length and
directions,

- to define the sink,

- Lo generate a bus request.

A packet is written in the register by the
input strobe signals. The sink is defined by
the routing tag and a code of that memory block
(P, &, B,..).

The arbiter on the level i is shown in the
figure 3.1.2..

ARBLTER

Figure 3.1.2.

When the packets travel from processors to
memory blocks, the ‘source can be .the arbiter on
the level i-1 or the neighboring arbiter on the
level 1. :

For the source i-1 the sink is defined by the
r; bit (rs r4y 3 ry r; rg is the routing tag):

ry = 0; the sink is the arbiter on the level
i+l and :

[
"

i 1; the sink is the arbiter on the level
i.

For the source i-packeté are transferred to the
level i+1l.

When the read packets return to processors,
they reach the arbiter on the level i through
the source i-1 and i.

For the source i+l the sink is.determined by

the Ty bit:
r; = 0; the sink is the arbiter on the leve
i-1 and : :
r; = 1; the sink is the arbiter on the level

1.

For the source i packets are carrxied to the
level i-1. )

The routing tag is defined in the processor and
it is: : : -

routing tag =
= processor num. XOR global memory module num.
But the singlestage n-cube requires an
extensive analysis of the routing tag.
Let's look the following example for the LogN

stage n-cube:

A packet from the processor eleven travels to
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the global memory module three. The routing tag
is :

1011 XOR 0011 = 1000,

A packet route is shown on the figure 3.1.3..
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Figure 3.1.3.

The packet travels straight down  through the
arbiters, and it turns on the last level
arbiter. However, in the singlestage n-cube,
with only one arbiter between a processor and
memory module, the packet 1is directly
transferred to the last level - on the sink D,
where it is received by the neighboring routing
node (Figure 2.4.4. for 16 P - there 1is no
sinks E in F). : : :

Therefore, for the source P, the pattern of
successive zeros from the ry inclusively in the:
routing tag has meaning for further route

inside the node (. the route P -> GM). The
source A can send packets in the both
directions. For the route P -> GM is important

the pattern of successive 2z2eros ahead the rj
and for the route GM =-> P all packets are
carried to the sink P. For the source B is
important the pattern of successive zeros ahead
the ry for the route P -> GM and the content of
the r, for the route GM -> P. Let's explain the
routing tag in the source D for the complete
notion. The source can also send the packet in
two directions. For the direction P -> GM is
important the pattern of successive.zeros ahead
r, and the same pattern from r, backwards (the
route GM -> P).

The function:
.SINK = f(SOURCE, DIRECTION, ROUTING.TAG)

3.1.1.
is given in the [113].

Functions like that are usually calculated by
the state machine and the algorithm for it is
shown in the figure 3.1.4..

Because state machines are very slow,
function is calculated by the decoder.

the
The

- decoder has also to code the sink and to define

the packet length. The sink code is separated
from the sink bus by three-state gates. The
sink has to be calculated very fast, because
the bus request needs this information for- its
activation. The 'bus request is generated by the
MUX. The MUX is addressed by the sink code and
its inputs are signals which define if the sink
is empty or not.



begin
1:=f(level);
case direction of
"F":begin
sink:=source+l;
:=0;
while r(i+a)=0 do
begin
sink:=sink+1;
a:=a+l
end
end;

"B" :begin
sink;:=source-1;
a:=1;
while r(i-aj)=0 do

begin
sink:=sink-1;
a:=a+l
end
end
end
end.

Figure 3.1.4.

To
is

achive high activation speed the bus request
generated on two different ways:

M1

u

input strobe signal *
* £(SQURCE, DIRECTION, ROUTING TAG) *
* empty sink and
M2 = full memory block *
* £(SQURCE, DIRECTION, ROUTING TAG) *
* empty sink.
Therefore:
bus request = M1 V Ml.
Ml is active when the packet is being writing

in the memory block while M2 conforms and keeps
the bus request active.

3.2 SYNCHRONIZATION
LOGIC
———s
STROB
BUS
STORE CELLS ggisjs
| Sy 3
ey
! ™~
l N
[ \
"BUS REQUESTS 4}:>§7§5§E—§IGNAL
/
S

Figure 3.2.1. Synchrgnization logic

The synchronizaticn logic is used to assure one
decision in one arbitration cycle. To achive
this purpose the logic has locked after the
first bus request had come.

New request may come between locking but it is
not important if they go through the logic or
not. All bus requests which come later are
waiting for the next arbitration cycle. If the
lock does not exist, more than one decision can
be possible in one arbitration period. This is
undesirable in any case.

32

There are two possibilities how to make the
lock:

- synchronous lock
periodical) and

- asynchronous lock (the sampling is
caused by the becaming signals).

{the sampling is

The asynchronous lock is much faster and {ts
application in the synchronization logic is
shown on the figure 3.2.2.).

BUS REQUEST,

[=
[=]

STROBED BUS REQUEST

bLLK

PHE M

STROUBE SIGNAL

e
WA

Figure 3.2.2.

A sampling signal is a disjunction of all bus
requests. The next sampling is prohibited until
only one bus request helds up in the active
state. Because of that all bus reguests can
only be deleted by the termination logic.

The OR-gate has also a task to make a delay
between the sampling signal and the bus
requests, so this way the T-set is assured.

All sampling bus requests are conformed by the
control signal, which is delayed for T1
seconds. The control signal delay has to
prevent only the oscillations of sampling bus
requests, Because packets which are late can
wait for the next decision cycle or can be
considered in this arbitration. Because of this
reason the delay is only a bit longer than the
maximum propagation delay through the cell.

3.3, ARBITRATION LOGIC

0 g M N St Y

0 M N

JUN—
CONTROL

glGNALs‘

S—

R1 R2 R3

I ! |

STROBED BUS REQUESYS

[TTTT
IREN

Figure 3.3.1.

An arbitration logic chooses one of the
sampling bus requests and allows the packet
transfer. A full source which has been
processed in the last arbitration cycle has no
priority ahead the other full sources.
Information about the last processed source is
stored until the next arbitration cycle. If
more then one bus reguests have occurred, the
nearest right neighbor of the 1last processed
source in a chain will be chosen. The chain is
shown in the figure 3.3,2..

SQURCE P

Figure 3.3.2.




If the source
the source A.

B is empty, the source C follows

The fast arbitration is achieved by three
parallel decision logic. This is necessary
because the logics are activated in different
time.

They are:

- Rl enables the first word transfer with
opening the three-state gates on the
packet bus,

- R2 enables the second word transfer with
opening the three-state gates on the
packet bus and

- R3 1s active across all arbitration cycle
and it enables the sink code to
occupate the sink bus.

3.4 TERMINATION

LOGIC

CONTROL SIGNALS

i

CONTROL S}GNALS
—
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Figure 3.4.1.

A termination logic generates output strobe
signals and end signals.

The first part is made of decoders which
transform the sink code in output strobe
signals:

- D1 generates output strobe signals for
the first word and

- D2 generates output strobe signals for
the second word.

The output strobe signal returns to the
termination logic after it write the packet
into the sink. This signal starts an output
strobe signal-for the second word or ends the
cycle with termination signals.  This part is
made of three MUXes:

- MUX1 generates <control signals for

- activation cutput strobe signals or
for termination the cycle,

- MUX2 terminates the ‘arbitration cycle
and

- MUX3 defines how long the packet is.

If the output ‘strobe 'signal does not return,
the node alarms the processor.

The termination signals are used to:

reset the synchronization logic,

- reset the arbiter, )
- deactivate output strobe signals and
- delete a treated bus request.

3.5. TIMING

The exact logic and electrical design and the
detail timing description is given in [11]. For
the further experties and understanding the
following is only important:

- the arbitration cycle is composed of the

following sequences:

- a packet defination,

- a synchronization sequence,

- an arbitration;

‘a. first word transfer,

~a .changing the words on the packet
“ bus, -

- a second word transfer and

- a .termination.

- each sequence is executed in approx. 20
. ns, so one worded packets are
- transmitted in approx. 80 ns and two
worded packets are copied in approx.
140 ns.

FACKET

DEFINITION © ARBITRATION

C XX D

TRANSFER :

SYNCHRONIZATION
SEGUENCE

Figure 3.5.1. The first word transfer

CHANGING
THE_ WORDS

C f,x X

SECOND WORD
TANGFEFR

TERMINATION

)

Figure -3.5.2. The second word transfer

4, CONCLUSION

This artlcle explalns that network's features
mostly depend on the choosen architecture, used
technology, internal functional organization
and packet bus constructions.

The way to more efficient multiprocessor
network leads to high parallel structure like
cross-bar switch and fully connected networks.
On the internal functional organization and
bus construction field new principles must be
developed to achive pipelining and interleaving
in the arbiter. Faster technology brings many
electronic problems which can be solved by
twisted-pair cables, coaxial cables,
termination circuits, on-chip connectors and a
precise design. Semi or full-custom design
integrited circuits will be applied to increase
rellablllty,to protect invested knowledge and
money.

Further experties on the project will give the
answer how to unite this suggestions to achive
high performance interconnection network.
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APPENDIX I

Simulation program for determining the number of
all packets in the network (Np) after the
transitional phenomenon.

DEFINE THE INITIAL CONDITION
CHOOSE A,B,C
DO 10 I=1,10*(A+B+C+B)
CALL SIMULATION
10 CONTINUE
EQUATION 2.3.1.
WRITE Np
END
core of the simulation

The program:

SIMULATION SUBROUTINE

Qa0

SUBROUTINE SIMULATION

INTEGER A,B,C

COMMON A,B,C,WPGM(121),RPGM(121),
*RPCPU(121),CPU(121),GM(121)

SUMMATION AND SPLITTING POINTS

aQaan

GM(1)=RPGM(B+1)

RPCPU(1)=GM(C+1)
CPU(1)=RPCPU(B+1)+(19./20,)*CPU(A+1)
RPGM(1)=(1./20.)*CPU(A+1)
WPGM(1)=(1./20.)*CPU(A+1)

DELAYS

[eXeXe]

DO 10 K=B,1,~1
WPGM(K+1)=WPGM(K)
RPGM(K+1)=RPGM(K)
RPCPU(K+1)=RPCPU(K)

10  CONTINUE
DO 20 K=C,1,-~1
GM(K+1)=GM(K)

20  CONTINUE
DO 30 K=A,1,-~1
CPU(K+1)=CPU(K)

30  CONTINUE
RETURN
END

APPENDTIXKX I1

Program for calculating the maximum number of
all packets in the network (Npm):

DEFINE INITIAL CONDITION
CHOOSE A,B,C
Npm=0.
DO 10 I=1,10*(A+B+C+B)
CALL SIMULATION
EQUATION 2.3.1.
IF (Np.LT.Npm) GOTO 10
Npm=Np

10 CONTINUE
WRITE Npm
END

Analiza in sinteza multiprocesorske mreZe

Clanek obsega pregled razvoja multiprocesorske mreZe paralelnega
rafunalnika PARSYS. Analiza mreZe je podana v prvih dveh poglavjih. Kot
osnova sluZi statistiZno-diskretni simulacijski model, ki se pokaZe kot

zelo dober pokazatelj razmer v mreZi.
krmilna enota.

poglavju zasnovana

Na teh temeljih je v tretjem



