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ABSTRACT

The problem of the evaluation of the so-calledspecific areaof a random closed set, in connection with its mean
boundary measure, is mentioned in the classical book by Matheron on random closed sets (Matheron, 1975,
p. 50); it is still an open problem, in general. We offer here an overview of some recent results concerning
the existence of the specific area of inhomogeneous Boolean models, unifying results from geometric measure
theory and from stochastic geometry. A discussion of possible applications to image analysis concerning the
estimation of the mean surface density of random closed sets, and, in particular, to material science concerning
birth-and-growth processes, is also provided.

Keywords: geometric measure theory, mean surface density,outer Minkowski content, specific area, stochastic
geometry.

INTRODUCTION

In this paper we offer an overview of some
recent results concerning the existence of the specific
area of inhomogeneous Boolean models, and its
relationship with the mean surface density of the
involved random sets. Applications to birth-and-
growth stochastic processes are also discussed.

If a n-dimensional random closed setΘ in R
d is

such thatE[H n
|Θ] is absolutely continuous with respect

to H d, whereH n is the n-dimensional Hausdorff
measure, andH n

|Θ is its restriction toΘ, then the
density (or Radon-Nikodym derivative) ofE[H n

|Θ]

with respect toH d is called mean density ofΘ.
Whenever the mean density ofΘ exists, we denote it
by λΘ.

The problem of the evaluation of the mean
densities of lower dimensional random closed sets, and
in particular of the mean surface density, is of interest
in several real applications.

In Ambrosio et al. (2009) the notion oflocal
mean n-dimensional Minkowski contentof a random
closed set has been introduced in order to provide
approximations of the mean density ofn-dimensional
random closed sets inRd. With regard to the
approximation of the mean surface density of ad-
dimensional random closed set, the concept ofspecific
area introduced in Matheron (1975, p. 50) turns out
to be closely related to the notion oflocal mean outer
Minkowski contentof a random closed set. We remind
that, given a random closed setΘ in R

d, the specific

areaσΘ(x) of Θ at a pointx in R
d is defined as the

following limit

σΘ(x) := lim
r↓0

P(x∈ Θ⊕r \Θ)

r
, (1)

whenever it exists. (Θ⊕r denotes here the parallel set of
Θ at distancer, i.e., Θ⊕r := {x∈ R

d : dist(x,Θ)≤ r}.)
It is mentioned in Matheron (1975) that the definition
of σΘ(x) is the “translation” into probabilistic terms of
the following limit

lim
r↓0

H d(K⊕r \K)

r
, K ⊂ R

d compact. (2)

The limit above, whenever it exists finite, is called
area of K in Matheron (1975), orouter Minkowski
content of K in Ambrosio et al. (2008). As right
derivative atr = 0 of the volume functionV(r) :=
H d(K⊕r), it is intuitively clear that there exist
compact subsets ofRd such that the limit in Eq. 2
equals the surface measureH d−1(∂K) of K (e.g., if
K is convex with nonempty interior), that explains
the namearea of K; actually, examples of subsets
of R

d, even closure of their interior, such that the
above limit differs from theH d−1-measure of their
boundary can be provided. Notice that a computer
graphics representation of lower dimensional sets in
R

2 is anyway provided in terms of pixels, which
can offer only a 2-D box approximation of points in
R

2 (an interesting discussion on this is contained in
Kärkkäinenet al., 2002); therefore, the possibility of
evaluating and estimating the surface measure of a
set (the mean surface density for random sets) by the
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volume measure of the Minkowski enlargement of the
involved set by Eq. 2 (by Eq. 1 in the stochastic case)
might be a solution to problems of this kind.

SPECIFIC AREA AND LOCAL
MEAN OUTER MINKOWSKI
CONTENT

Throughout the paperH n is the n-dimensional
Hausdorff measure, dx stands forH d(dx), B

Rd is the
Borel σ -algebra ofRd andH n

|A denotes the restriction

of H n to aH n-measurable setA⊂R
d (i.e., H n

|A(B) =

H n(A∩ B) for all B ∈ B
Rd). Br(x) will denote the

closed ball with centrex and radiusr, whereas for any
integern we denote bybn the volume of the unit ball
in R

n.

We recall that, given a subsetSof R
d and an integer

n with 0≤ n≤ d, then-dimensional Minkowski content
of Sis defined by

M
n(S) := lim

r↓0

H d(S⊕r)

bd−nrd−n ,

whenever the limit exists finite.

Let A ∈ BRd ; the quantitySM (A) defined as
(Ambrosioet al., 2008)

SM (A) := lim
r↓0

H d(A⊕r \A)

r
,

provided that the limit exists finite, is calledouter
Minkowski content of A. Note that if A is lower
dimensional, thenSM (A) = 2M d−1(A), whereas ifA
is ad-dimensional set, closure of its interior, thenA⊕r \
A coincides with the outer Minkowski enlargement at
distancer of ∂A.

In this section we show why the specific area can
be interpreted as the translation into probabilistic terms
of the outer Minkowski content. For basic definitions
and results of stochastic geometry we refer to Stoyanet
al. (1995), Baddeleyet al. (2007), and Schneider and
Weil (2008).

If the limit

lim
r↓0

H d((A⊕r \A)∩B)

r

exists finite for anyB ∈ B
Rd such thatH d−1(∂A∩

∂B) = 0, then we say thatA admits local outer
Minkowski content. Now, let us consider a random
closed setΘ in R

d, that is a measurable mapΘ :

(Ω,F,P) → (F,σF) (F andσF denote here the class of
the closed subsets inRd and theσ -algebra generated
by the so-called hit-or-miss topology (Matheron,
1975), respectively). If the limit

lim
r↓0

E[H d((Θ⊕r \Θ)∩B)]

r
(3)

exists finite for anyB∈ B
Rd such thatE[H d−1(∂Θ∩

∂B)] = 0, then we say thatΘ admits local mean
outer Minkowski content. Let us notice that, by a
straightforward application of Fubini’s theorem, Eq. 3
can be written equivalently

lim
r↓0

∫

B

P(x∈ Θ⊕r \Θ)

r
dx , (4)

if furthermoreΘ is stationary(and soP(x∈ Θ⊕r \Θ)
is constant), then, by choosingB = [0,1]d in Eq. 4, we
have that the specific areaσΘ is constant, given by

σΘ = lim
r↓0

E[H d((Θ⊕r \Θ)∩ [0,1]d)]

r
. (5)

More in general, as we shall see in the next
sections, if the boundary∂A of a d-dimensional Borel
set A ∈ R

d is “sufficiently regular”, thenSM (A) =
H d−1(∂A); thus, it is intuitive that for “sufficiently
regular” random closed sets we may have

E[H d−1(∂Θ∩B)] = lim
r↓0

E[H d((Θ⊕r \Θ)∩B)]

r
,

and

lim
r↓0

∫

B

P(x∈ Θ⊕r\Θ)dx

r
=

∫

B
σΘ(x)dx ,

so thatσΘ(x) turns out to be the mean surface density
of Θ. This is true for instance whenΘ satisfies a
(local) Steiner formula; in this case the limit in Eq. 5
can be studied in terms of the quermass densities (or
Minkowski functionals) associated toΘ, and so by
means of tools from integral geometry mainly (Hug,
2000; Weil, 2001; Huget al., 2006; Baddeleyet al.,
2007, and references therein). For other related works
see also Hug and Last (2000), Huget al. (2004), and
Kiderlen and Rataj (2006).

The passage from stationary to nonstationary
random closed sets, and from convex to more general
grains gives rise to nontrivial problems. We will focus
here on the specific area of inhomogeneous Boolean
models; for this kind of random closed sets (widely
used in real applications in Material Science, as we
shall mention in the last section) the relationship
between specific area and outer Minkowski content
(of the typical grain) is more evident. Let us see why
briefly.
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Let Ξ be a Boolean model inRd (Stoyanet al.,
1995; Baddeleyet al., 2007; Schneider and Weil,
2008) whose typical grainZ0 has topological boundary
∂Z0 with Hausdorff dimensiond− 1 P-a.s. It is well
known that Boolean models inRd can be described by
marked Poisson point processes onR

d with marks in
the space of centred compact sets. In many examples
and applicationsZ0 is uniquely determined by a
random quantity, sayS, in a suitablemark spaceK ;
for instance, in the very simple case of random balls,
K = R+ andS is the radius, whereas in applications
to birth-and-growth processes, in some modelsK =
R

d and S is the spatial location of the nucleus, in
other modelsK = R+ and S is the birth time of the
nucleus (see last section). Therefore, we shall consider
(inhomogeneous) Boolean models of the type

Ξ(ω) =
⋃

(xi ,si)∈Ψ(ω)

xi +Z0(si) ,

whereZ0(s) is a compact subset ofRd containing the
origin for anys∈K , andΨ is the marked Poisson point
process inRd with marks inK associated toΞ, with
intensity measure

Λ(d(x,s)) = f (x)dxQ(ds) .

The function f and the probability measureQ on
K are called intensity of Ξ and mark distribution,
respectively, and they are commonly assumed to be
such that the mean number of grains hitting any
compact subset ofRd is finite:

∫

K

∫

(−Z0(s))⊕R

f (x)dxQ(ds) < ∞ ∀R> 0 . (6)

(For basic definitions and results on the theory of
point processes, we refer to Baddeleyet al.(2007) and
references therein.)

We shall denote by diam(Z0) the (random)
diameter ofZ0, and by discf the set of all the points
of discontinuity of f .

From now on letZx := x− Z0 ∀x ∈ R
d. By the

explicit expression of the capacity functional of a
Boolean model (Matheron, 1975), it is not difficult to
get (Villa, 2010, Eq. 3.1) that

σΘ(x) := lim
r↓0

P(x∈ Ξ⊕r \Ξ)

r
= e−EQ[

∫

Zx f (y)dy]·

· lim
r↓0

(

1−exp
{

−EQ

[

∫

Zx
⊕r\Zx f (y)dy

]})

r
, (7)

whereEQ denotes the expectation with respect toQ;
thus, in order to obtain sufficient conditions for the

existence ofσΘ(x), existence results for limits of the
type

lim
r↓0

1
r

∫

A⊕r\A
f (x)dx (8)

have to be studied.

Note that in the particular case in whichf is
constant the limit above exists if and only ifA admits
outer Minkowski content.

In the next section we recall some recent results on
the existence of the outer Minkowski content of Borel
subsets ofRd, which will be the starting point to obtain
existence results for the specific area of random closed
sets.

EXISTENCE RESULTS FOR THE
OUTER MINKOWSKI CONTENT

We remind that a compact setA⊂ R
d is calledn-

rectifiable(0≤ n≤ d−1 integer) if it is representable
as the image of a compact subset ofR

n by a Lipschitz
map fromR

n to R
d; more in general, a closed subset

A of R
d is called to becountablyH n-rectifiable if

there exist countably many Lipschitz mapsgi : R
n →

R
d such thatA \ ⋃

i gi(R
n) is H n-negligible. (For

definitions and basic properties of Hausdorff measure
and rectifiable sets see,e.g., Federer, 1969, Falconer,
1985, and Ambrosioet al., 2000.) We callRadon
measurein R

d any nonnegative andσ -additive set
functionµ defined onB

Rd which is finite on bounded
sets.

Federer’s theorem (Federer, 1969, p. 275) on the
existence of then-dimensional Minkowski content of
n-rectifiable compact sets is well known. We recall a
generalization of such theorem, proved in Ambrosio
et al. (2000, p. 110), to countablyH n-rectifiable
compact sets and then we shall see that if the boundary
of a Borel subset ofRd satisfies similar conditions,
then it admits outer Minkowski content.

Theorem 1 Let A⊂R
d be a countablyH n-rectifiable

compact set and assume that

η(Br(x)) ≥ γrn ∀x∈ A, ∀r ∈ (0,1) (9)

holds for someγ > 0 and some Radon measureη in
R

d absolutely continuous with respect toH n. Then
M n(A) = H n(A).

Condition (Eq. 9) is a kind of quantitative non-
degeneracy condition which preventsA from being
too sparse; simple examples (Ambrosioet al., 2000;
2008) show thatM n(A) can be infinite, andH n(A)
arbitrarily small, when this condition fails.

It is reasonable to conjecture that, if the boundary
∂A of a subsetA of R

d satisfies the assumptions of
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the theorem above, thenA admits outer Minkowski
content; in Villa (2009a) it has been proved that the
value of SM (A) depends on the density ofA at its
boundary points. We remind that thed-dimensional
density(briefly, density) of A is defined by Ambrosio
et al. (2000)

θd(A,x) := lim
r↓0

H d(A∩Br(x))
H d(Br(x))

,

provided that the limit exists. It is clear thatθd(A,x)
equals 1 for allx in the interior of A, and 0 for
all x into the interior of the complement set ofA,
whereas different values can be attained at its boundary
points. It is well known (cf. Ambrosio et al., 2000,
Theorem 3.61) that ifH d−1(∂A) < ∞, then A has
density either 0 or 1 or 1/2 atH d−1-almost every point
of its boundary. For everyt ∈ [0,1] and everyH d-
measurable setA⊂ R

d let

At := {x∈ R
d : θd(A,x) = t} .

Intuitively, a small neighborhood of a pointx∈A1∩∂A
is “almost all contained” inA, so that it gives no
contribution to the volume ofA⊕r \A; thus, roughly
speaking, we may say thatx has negligible weight
in the computing of the outer Minkowski content of
A. Conversely, ifA has null density inx ∈ ∂A, then,
in a small neighborhood ofx, A⊕r \ A “almost all
coincides” with the Minkowski enlargement of∂A, so
that, roughly speaking, we may say that the weight of
x in the computing of the outer Minkowski content of
A is twice the weight of a pointy∈ A1/2.

In Villa (2009a) the following class of sets (whose
boundary satisfies the assumptions of Theorem 1) has
been introduced:

Definition 2 (The classO) Let O be the class of
Borel sets A ofRd with countablyH d−1-rectifiable
and bounded topological boundary, such that

η(Br(x)) ≥ γrd−1 ∀x∈ ∂A, ∀r ∈ (0,1) (10)

holds for someγ > 0 and some probability measureη
in R

d absolutely continuous with respect toH d−1.

Theorem 3 (Villa, 2009a) The classO is stable under
finite unions and any A∈ O admits outer Minkowski
content, given by

SM (A) = H
d−1(A1/2)+2H

d−1(∂A∩A0) .

Remark 4 The set of points

∂ ∗A := R
d \ (A0∪A1)

where the density ofA is neither 0 nor 1 is called
essential boundaryof A. It is proved (cf. Ambrosioet
al., 2000) that all the setsAt are Borel sets, and that

H
d−1(∂ ∗A∩B) = H

d−1(A1/2∩B)

for all B∈ B
Rd .

Remark 5 (The classO ′) In Villa (2009a) it is also
proved that the same conclusions of the above
theorem hold for a class of Borel subsets ofR

d,
namedO ′, defined similarly toO by replacing the
condition of absolutely continuity ofη with the
assumption thatM d−1(∂A) = H d−1(∂A); then it
follows that this class of sets contains all Borel sets
with (d−1)-rectifiable boundary (and so finite unions
of sets with positive reach or with Lipschitz boundary,
in particular).

We conclude this section by the following theorem
proved in Villa (2010), which generalizes Theorem 3
providing sufficient conditions for the existence of the
limit in Eq. 8.

Theorem 6 Let µ be a positive measure inRd

absolutely continuous with respect toH d with locally
bounded density f . Let A belong toO (or O ′). If
H d−1(discf ) = 0, then

lim
r↓0

µ(A⊕r \A)

r

=
∫

∂ ∗A
f (x)H d−1(dx)+2

∫

∂A∩A0
f (x)H d−1(dx) .

EXISTENCE RESULTS FOR THE
SPECIFIC AREA

For details of the proofs of the results presented in
this section, and for further remarks and comments, we
refer to Villa (2010).

Let us consider a Boolean modelΞ in R
d with

the notation introduced above. In order to provide
sufficient conditions onΞ such that its specific area
exists finite, it is intuitive by Eq. 7 and Theorem 6 why
the following Assumptions implies Eq. 12 forσΞ(x) in
Proposition 7.

In the assumption (A1) below the notationΘ ⊇
∂Z0 with EQ[H d−1(Θ)] < ∞ means that for anys∈
K there exists a closed setΘ(s) ⊇ Z0(s) such that
∫

K H d−1Θ(s)Q(ds) < ∞.

Assumptions: (A1) ∂Z0 is countablyH d−1-
rectifiable and compact, and such that there exist
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γ > 0 and a random closed setΘ ⊇ ∂Z0 with
EQ[H d−1(Θ)] < ∞ such that, forQ-a.e.s∈ K ,

H
d−1(Θ(s)∩Br(x))≥ γrd−1 ∀x∈ ∂Z0(s), ∀r ∈ (0,1).

(A2) H d−1(discf ) = 0 and f is locally bounded such
that for any compact setK ⊂ R

d

sup
y∈K⊕diam(Z0)

f (y) ≤ ξK , (11)

for some random variableξK with EQ[H d−1(Θ)ξK ] <
∞.

Proposition 7 Let Ξ be a Boolean model as in the
Assumptions. Then

σΞ(x) = exp
{

−EQ

[

∫

Zx
f (y)dy

]}

·EQ

[

∫

∂ ∗Zx
f (y)H d−1(dy)

+2
∫

∂Zx∩(Zx)0
f (y)H d−1(dy)

]

, (12)

for all x ∈ R
d.

Remark 8 The assumption (A1) is often fulfilled with
Θ = ∂Z0 or Θ = ∂Z0∪ ˜A for some sufficiently regular
random closed set̃A. As a matter of fact, it can be seen
as the stochastic version of Eq. 10, which, in many
applications, is satisfied withη(·) = H n(˜A∩ ·) for
some closed set˜A⊇ A, as proved in (Ambrosioet al.,
2000, p. 111) (see also Ambrosioet al., 2008).

The other integrability assumptions in (A1) and
(A2) are just technical assumptions in order to
exchange limit and integral in Eq. 7. We may notice
that if f is bounded, thenξK is constant for anyK, and
soEQ[H d−1(Θ)ξK ] is finite by (A1).

Having now an explicit formula for the specific
area of inhomogeneous Boolean models as in the
Assumptions, we may ask whenσΞ coincides with
λ∂Ξ, themean surface density ofΞ. The next theorem
shows that, without any further regularity assumption
on Z0, σΞ may differ form the mean surface density
λ∂Ξ of Ξ, in general.

Theorem 9 If Ξ is a Boolean model as in the
Assumptions satisfyingEq. 6, then

σΞ(x) = λ∂ ∗Ξ(x)+2λ∂Ξ∩Ξ0(x)

for H d-a.e. x∈ R
d, whereλ∂ ∗Ξ and λ∂Ξ∩Ξ0 are the

densities ofE[H d−1
|∂ ∗Ξ ] and E[H d−1

|∂Ξ∩Ξ0], respectively.

Remark 10 By the proof of Theorem 9 it follows in
particular thatΞ admits local mean outer Minkowski
content, i.e., for any Borel setB ⊂ R

d such that
E[H d−1(∂Θ∩∂B)] = 0 it holds

lim
r↓0

E[H d((Ξ⊕r \Ξ)∩B)]

r

= E[H d−1
|Ξ1/2(B)]+2E[H d−1

|∂Ξ∩Ξ0(B)]. (13)

We point out that the Assumptions, which guarantee
the equation above, are quite general (see also
Remark 8); the random sets which don’t admit local
mean outer Minkowski content could be considered as
“pathological” sets.

Theorem 9 tells us that, in general, it may
well happen that the specific area does not coincide
with the mean surface density. We mentioned in
the Introduction that a problem of interest in image
analysis is the estimation of the mean surface density
of random sets, and that the 2-D box approximations
of points in R

2 by pixels in computer graphics
suggests the use ofσΞ for the estimation of the mean
surface density. Therefore we provide now sufficient
conditions onΞ such thatσΞ(x) = λ∂Ξ for H d-
a.e.x ∈ R

d. The Assumptions above onΞ imply that
E[H d−1(∂Ξ)] < ∞ P-a.s., so that its mean surface
density can be decomposed as follows:

λ∂Ξ = λ∂Ξ∩Ξ0 +λ∂ ∗Ξ +λ∂Ξ∩Ξ1 .

Then, it follows thatσΞ(x) = λ∂Ξ(x) = λ∂ ∗Ξ(x) for
H d-a.e.x∈ R

d if E[H d−1
|∂Ξ∩(Ξ0∪Ξ1)

] = 0.

The following proposition provides a sufficient
regularity condition on the typical grain in order to
haveσΞ = λ∂Ξ.

Proposition 11 Let Ξ be a Boolean model as in the
Assumptions satisfyingEq. 6, such that

EQ[H d−1(∂ ∗Z0)] = EQ[H d−1(∂Z0)] . (14)

Then

σΞ(x) = exp
{

−EQ

[

∫

Zx
f (y)dy

]}

·

·EQ

[

∫

∂Zx
f (y)H d−1(dy)

]

= λ∂Ξ(x) (15)

for H d-a.e. x∈ R
d.
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We point out that there exist (although a bit
“pathological”) subsets ofRd such that theH d−1-
measure of their boundary differs from that one of their
essential boundary (cf. Ambrosioet al., 2008, Sect. 5);
so, by choosing a set of this kind as deterministic
typical grain, the condition Eq. 14 is not satisfied,
and λ∂Ξ 6= σΞ for the corresponding Boolean model
Ξ. Furthermore, it can be shown (Ambrosioet al.,
2008) that the class of subsetsA of R

d such that
H d−1(∂A) = H d−1(∂ ∗A) is not stable under finite
unions, that is, even if two subsetsA1 and A2 of
R

d are such thatH d−1(∂Ai) = H d−1(∂ ∗Ai), i =
1,2, it may well happen thatH d−1(∂ (A1 ∪ A2)) 6=
H d−1(∂ ∗(A1∪A2)). Noticing that, by condition Eq. 6,
Ξ is almost surely a locally finite union of grains,
Proposition 11 tells us that a sort of stability under
finite unions for the expected value holds for Boolean
models, because Eq. 14 implies thatE[H d−1(∂Ξ)] =
E[H d−1(∂ ∗Ξ)].

Since ∂ ∗Z0 ⊂ ∂Z0, condition Eq. 14 is satisfied
if H d−1(∂ ∗Z0) = H d−1(∂Z0) P-a.s.; we remind that
any compact subsetA of R

d with Lipschitz boundary
satisfiesH d−1(∂ ∗A) = H d−1(∂A), and that the same
holds also for a certain class of compact sets with
positive reach, containing, in particular, all thed-
dimensional convex bodies (cf. Ambrosioet al., 2008;
Villa, 2010). Therefore we may claim thatσΞ = λ∂Ξ
H d-a.e. for all Boolean models with typical grainZ0
satisfying regularity conditions of this kind, and so,
starting by the definition ofσΞ, estimators for the mean
surface densityλ∂Ξ of Ξ can be provided (see section
below). We also mention that examples of applications
of the above results to Boolean models of balls and
segments are provided in Villa (2010, Sect. 5.3).

Remark 12 It is clear that Proposition 7 and
Proposition 11 can be easily specified for the particular
cases in whichΞ is stationary (in such casef is
constant, sayc, and soσΞ is constant as well, equal
toe−cEQ[H d(Z0)]cEQ[SM (Z0)]), orΞ has deterministic
typical grain (in such case it is sufficient to assume that
Z0 is a compact set inO, or O ′, and that the intensity
f is locally bounded such thatH d−1(discf ) = 0).

Let us also notice thatσΞ(x) might be not trivial
for (d − 1)-dimensional Boolean models, as well; it
can be shown that under similar assumptions to (A1)
and (A2),

σΞ(x) = 2λ∂Ξ(x) = EQ

[

∫

Zx
f (y)H d−1(dy)

]

,

H d-a.e.x∈ R
d.

We refer to Villa (2010, Sect. 5) (see also
Villa, 2009b) for a more detailed discussion of these
particular cases.

SOME APPLICATIONS

In this section we shall discuss a couple of
applications of the results above; in particular,
applications to birth-and-growth processes which are
of interest in several application areas as Material
Science, Biology, etc.

An estimator of the mean surface density

It could be of interest in Image Analysis to
estimate the mean surface density of random closed
sets by means of their Minkowski enlargements,
because of the computer graphics representation of
lower dimensional sets in terms of pixels. By repeating
the same argument in Villa (2010, Prop. 6.1), where
estimators for the mean density of lower dimensional
random closed sets are provided, in Villa (2009b)
a natural estimator forλ∂Ξ has been introduced,
being Ξ a Boolean model as in the assumptions of
Proposition 11, and so

λ∂Ξ(x) = lim
r↓0

P(x∈ Ξ⊕r \Ξ)

r
,

for H d-a.e.x∈ R
d.

Given an i.i.d. random sampleΞ1, . . . ,ΞN of Ξ,
the equation above suggests the following estimator of
λ∂Ξ(x):

̂λ N
∂Ξ(x) :=

∑N
i=11Ξi⊕RN

\Ξi
(x)

NRN

=
∑N

i=1(1Ξi∩BRN (x)6= /0−1Ξi∩{x}6= /0)

NRN
,

with RN such that

lim
N→∞

RN = 0 and lim
N→∞

NRN = ∞ .

It is not difficult to check that ̂λ N
∂Ξ(x) is an

asymptotically unbiased and consistent estimator of
λ∂Ξ(x) for H d-a.e.x∈ R

d.

Remark 13 We also mention that the outer
Minkowski content concept as measure of the
boundary of deterministic sets, has been recently used
to provide estimators for theH d−1-measure of the
boundary of compact subsets ofR

d in Armend́ariz et
al. (2009). Therefore, open problems related to the
estimation of the mean boundary measure of random
closed sets might be the following: the study of the
statistical properties of the estimator above, and the
generalization to random closed sets of the results in
Armend́arizet al. (2009).
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Applications to birth-and-growth processes

Many real phenomena as crystallization processes
(Vandermeer et al., 1991; Capasso, 2003, and
references therein), tumor growth (Anderson, 2003),
etc., may be modelled as evolving random closed sets,
that is as full dimensional time dependent random
closed sets. In particular, any real situation in which
nuclei are born in time and are located in space
randomly, and each nucleus generates agrain evolving
in time according to a given growth law, may be
modelled as space-time structured stochasticbirth-
and-growth processes. Such a process is described
by a marked point process, sayN := {(Tj ,Xj)} j∈N,
modelling births at random timesTj ∈ R+ and related
random spatial locations (nuclei) Xj ∈ R

d (d ≥ 2), and
by a growth model.

Denoting byΘt
t0(x0) the grain born at some time

t0 and locationx0, and grown up to timet, under
regularity assumptions on the birth and growth model,
the union set

Θt =
⋃

n:Tn≤t

Θt
Tn

(Xn) ,

of such grains at timet is then a locally finite union of
random closed sets. The family{Θt}t is calledbirth-
and-growth process, and a problem of interest in many
applications is to find evolution equations for the mean
volume density, in terms of the mean surface density
of Θt .

A lot of papers on this subject can be found
in literature; in particular, the case in whichN is
given by a marked Poisson process has been studied
extensively (Kolmogorov, 1937; Burgeret al., 2006,
and references therein).

In this section we want to point out the role of
the existence of the (local) mean outer Minkowski
content and the specific area ofΘt in the study of the
mean volume and surface densities ofΘt . We recall
that themean volume density ofΘt , usually denoted
by VV(t, ·), is the Radon-Nikodym derivative of the
measureE[H d

|Θt ], i.e.,

E[H d(Θt ∩B)] =
∫

B
VV(t,x)dx, ∀B∈ B

Rd ;

similarly, the mean surface density ofΘt , usually
denoted bySV(t, ·), is the Radon-Nikodym derivative
of the measureE[H d−1

|∂Θt ], i.e.,

E[H d−1(∂Θt ∩B)] =
∫

B
SV(t,x)dx, ∀B∈ B

Rd .

Let us notice that

VV(t,x) = P(x∈ Θt),

whereasSV(t,x) = λ∂Θt (x), according to our previous
notation.

We assume here that the nucleation processN is a
Poisson marked point process (equivalently, a Poisson
point process inR+×R

d), with intensity measureΛ of
the type

Λ(d(t,x)) = α(t,x)dtdx

and satisfying the usual condition (Eq. 6).

Models of volume growth have been studied
extensively, since the pioneering work by Kolmogorov
(1937). Clearly, different kinds of growth model give
rise to different kinds of processes{Θt}t .

Let us first consider thenormal growth model
(Capasso and Villa, 2007, and references therein),
according to which, atH d−1-almost every point of
the actual grain surface at timet (i.e., at H d−1-a.e.
x ∈ ∂Θt

Tj
(Xj)), growth occurs with a given strictly

positive normal velocity

v(t,x) = G(t,x)n(t,x), (16)

whereG(t,x) is a given deterministic growth field, and
n(t,x) is the unit outer normal at pointx ∈ ∂Θt

T0
(X0).

We assume that

0 < g0 ≤ G(t,x) ≤ G0 < ∞ ∀(t,x) ∈ R+×R
d,

for someg0,G0 ∈ R, and thatG(t,x) is sufficiently
regular such that the evolution problem given by (16)
for the growth front∂Θt

t0(x) is well posed. It follows
that for any fixedt ∈ R+, the topological boundary of
each grain is a random closed set with locally finite
H d−1-measureP-almost surely (Burger, 2002). This
and the assumption thatΘt is a locally finite union
of grains imply thatP-almost surelyH d−1(∂Θt) <
∞, and so thatΘt has density 1 or 1/2 atH d−1-
a.e. point of its boundaryP-almost surely. We can
claim the assumptions on the growth model imply that
H d−1((Θt)0) = 0 P-a.s.

For the normal growth model above with
Poissonian nucleation process, recent results (Capasso
and Villa, 2008, Prop. 25; Capasso and Villa, 2007,
Prop. 19; Villa, 2008, Prop. 2.3) show that, ifΘt admits
local mean outer Minkowski content for allt > 0 and
if the random variableT(x) defined by

T(x) := min{t > 0 : x∈ Θt}

is continuous with density, then the following
evolution equation holds in weak form:

∂
∂ t

VV(t,x) = G(t,x)SV(t,x) . (17)
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The random variableT(x) is called time of capture
of point x, and its probability density function, say
pT(x), is just the partial derivative ofVV with respect
to t (Capasso and Villa, 2008, Eq. 14). By repeating
the same arguments of Proposition 25 in Capasso and
Villa (2008) and assuming thatΘt admits local mean
outer Minkowski content, we can state the following
slightly more general result. Note that the assumption
that the boundary ofΘt is sufficiently regular so that
Θt admits local mean outer Minkowski content, is not
so restrictive for applications (see Remark 10).

Proposition 14 Let {Θt}t be a birth-and-growth
process with normal growth model as above, and
sufficiently regular such thatΘt admits local mean
outer Minkowski contentEq. 13. Then the following
equation holds in weak form

∂
∂ t

VV(t,x) = G(t,x)λ∂ ∗Θt (x). (18)

Proof. (Sketch)
The assumptions on the nucleation process and on
the growth model imply (Villa, 2008, Theorem 3.3)
that T(x) admits probability density functionpT(x).
By Eqs. 17 and 24 in Capasso and Villa (2008), the
following chain of equalities hold

∂
∂ t

VV(t,x) = pT(x) = h(t,x)P(x 6∈ Θt)

= G(t,x)
∂
∂ r

P(x∈ Θt
⊕r \Θt)|r=0 = G(t,x)σΘt (x),

where h(t,x) is the so-called hazard function
associated to the pointx at timet (Capasso and Villa,
2008, Def. 21). Eq. 13 can be written equivalently (in
weak form) as

∂
∂ r

P(x∈ Θt
⊕r \Θt)|r=0

= λ∂ ∗Θt (x)+2λ∂Θt∩(Θt)0(x) = λ∂ ∗Θt (x),

where the last equation follows by having observed
thatH d−1((Θt)0) = 0 P-a.s., and so we obtain Eq. 18.
¤

Remark 15 Let us notice that the following
decomposition of the mean surface density holds

λ∂Θt = λ∂ ∗Θt +λ∂Θt∩(Θt)0 +λ∂Θt∩(Θt)1.

As a consequence, sinceλ∂Θt∩(Θt)0 = 0, Eq. 18 can be
equivalently written

∂
∂ t

VV(t,x) = G(t,x)(λ∂Θt (x)−λ∂Θt∩(Θt)1);

assuming now that for a.e.t ∈ R+ E[H d−1
|∂Θt∩(∂Θt)1] = 0

, then for a.e.t ∈R+ λ∂ ∗Θt = λ∂Θt and Eq. 18 coincides
with Eq. 17.

Let us now consider a different growth model.
We assume now that each grain grows with the same
growth law of a “typical grain” with its nucleus at
the origin; in other words, the grainΘt

s(x) born at
point x at time s and grown up to timet can be
seen as the translation inx of a grain born in 0 at
the same birth-time. By using the notation introduced
for Boolean models, given the nucleation process
{(Tn,Xn)}n, where now the marks are the birth times
Tn associated to the spatial locationsXn of the nuclei,
we can model the crystallized regionΘt at timet as the
Boolean model

Θt =
⋃

(Tn,Xn)∈N:Tn≤t

Xn +Z0(Tn) = Xn +Θt
Tn

(0) . (19)

Notice that such a model may be used to describe
real situations in which the growth model is assumed to
be such that the shape of the grains is preserved during
the process (e.g., prolates and spheroids in Vandermeer
et al., 1991). Clearly, the particular case of spherical
growth (which corresponds to the previous growth
model withG= G(t)), can be described also by means
of the present model withZ0(Tn) = BR(Tn,t)(0), where
R(Tn, t) =

∫ t
Tn

G(s)ds.

Thus, if the Boolean modelΘt satisfies the
Assumptions, then by Proposition 7 it follows that the
specific areaσΘt exists given by Eq. 12; if furthermore
condition Eq. 14 is satisfied (usually true in many real
applications), then an explicit formula for the mean
surface density (equivalentlySV) can be obtained by
Eq. 15. In order to apply such formula to the birth-
and-growth process in Eq. 19, note that the mark
distribution Q represents now the probability law of
the birth time of the typical grain; for instance, if the
nucleation rate is constant in time, then, for any fixedt,
Q is the uniform distribution in[0, t]. More in general,
for any fixedt, since the nucleation takes place during
the time interval[0, t], Eq. 15 will be of the type

σΘt (x)= SV(t,x)= exp
{

−
∫ t

0

∫

x−Θt
s(0)

f (y)dyQds
}

·

·
∫ t

0

∫

∂ (x−Θt
s(0))

f (y)H d−1(y.)Q(ds) .

Remark 16 Whenever the nucleation is homogeneous
in space, thenf is constant and the above formula
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simplify as follows

SV(t,x) = exp
{

−
∫ t

0
cH d(Θt

s(0))Qds
}

·

·
∫ t

0
H

d−1(∂ (Θt
s(0))Q(ds),

in accordance with Vandermeeret al.(1991, Eqs. 9-12)
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