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ABSTRACT

The problem of the evaluation of the so-caligzkcific areaf a random closed set, in connection with its mean
boundary measure, is mentioned in the classical book by éfathon random closed sets (Matheron, 1975,
p.50); it is still an open problem, in general. We offer heneoaerview of some recent results concerning
the existence of the specific area of inhomogeneous Booledels) unifying results from geometric measure
theory and from stochastic geometry. A discussion of péssipplications to image analysis concerning the
estimation of the mean surface density of random closeda®dsin particular, to material science concerning
birth-and-growth processes, is also provided.

Keywords: geometric measure theory, mean surface deasiit Minkowski content, specific area, stochastic
geometry.

INTRODUCTION areade(x) of © at a pointx in RY is defined as the
following limit
In this paper we offer an overview of some
recent results concerning the existence of the specific Oo(X) ;= lim P(x€ Oqr \ ©) : 1)
area of inhomogeneous Boolean models, and its rlo r
relationship with the mean surface density of the o
involved random sets. Applications to birth-and-Whenever it exists @« denotes here the parallel set of

growth stochastic processes are also discussed. ~ © atdistance, i.e, Og i= {x € R : dis(x,©) <r}.)
It is mentioned in Matheron (1975) that the definition

If a n-dimensional random closed s8tin R% is  of gg(x) is the “translation” into probabilistic terms of
such thaﬁ[%fg] is absolutely continuous with respect the following limit

to 79, where " is the n-dimensional Hausdorff g
measure, and# () is its restriction to®, then the im 2. (K@r\K)’ K c R compact  (2)
density (or Radon-Nikodym derivative) dE[%fg] rio r

with respect to#? is called mean density o®.  The limit above, whenever it exists finite, is called
Whenever the mean density 6fexists, we denote it grea of K in Matheron (1975), oouter Minkowski
by Ae. content of Kin Ambrosio et al. (2008). As right

The problem of the evaluation of the meanderivative atr = 0 of the volume functiorV(r) :=

d . . . .. .
densities of lower dimensional random closed sets, and ~ (Ker), it is intuitively clear that there exist

d . . .
in particular of the mean surface density, is of interesf0MpPact subsets k™ such that the limit in Eq. 2
in Eeveral real applications. y equals the surface measus®1(9K) of K (e.g, if

K is convex with nonempty interior), that explains
In Ambrosio et al. (2009) the notion oflocal the namearea of K actually, examples of subsets
mean n-dimensional Minkowski contesfta random of RY, even closure of their interior, such that the
closed set has been introduced in order to providebove limit differs from the#9-1-measure of their
approximations of the mean density eflimensional boundary can be provided. Notice that a computer
random closed sets irRY. With regard to the graphics representation of lower dimensional sets in
approximation of the mean surface density ola R? is anyway provided in terms of pixels, which
dimensional random closed set, the concepeaftific  can offer only a 2-D box approximation of points in
area introduced in Matheron (1975, p. 50) turns outR? (an interesting discussion on this is contained in
to be closely related to the notion loical mean outer Karkkainenet al,, 2002); therefore, the possibility of
Minkowski contenof a random closed set. We remind evaluating and estimating the surface measure of a
that, given a random closed s8tin RY, the specific set (the mean surface density for random sets) by the
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volume measure of the Minkowski enlargement of theQ, §,P) — (F, or) (F andor denote here the class of
involved set by Eq. 2 (by Eqg. 1 in the stochastic casejhe closed subsets iR? and thec-algebra generated

might be a solution to problems of this kind. by the so-called hit-or-miss topology (Matheron,
1975), respectively). If the limit
d
SPECIFIC AREA AND LOCAL im (OB @)
MEAN OUTER MINKOWSKI -
CONTENT exists finite for anyB € Apq such thatt[#9~1(dON

0B)] = 0, then we say tha® admits local mean
outer Minkowski contentLet us notice that, by a
straightforward application of Fubini’s theorem, Eq. 3
can be written equivalently

Throughout the paper#™" is the n-dimensional
Hausdorff measure xkstands foc}fd(dx), PBra is the
Borel o-algebra ofRY and%fﬂ denotes the restriction
of " to a#"-measurable st RY (i.e,, %TR(B) = lim / wdx ’ (4)
"(ANB) for all B € %Bya). Br(x) will denote the ro/B '

closed ball with centre and radiug, whereas for any  if furthermore® is stationary(and soP(x € O \ ©)
integern we denote byb, the volume of the unit ball is constant), then, by choosii= [0,1]¢ in Eq. 4, we

in R". have that the specific areg) is constant, given by
We recall that, given a subsgof RY and an integer _ E[s#9((04,\©)N[0,1]9)]
nwith 0 < n < d, then-dimensional Minkowski content Op = lim N 5))

of Sis defined by rio '
%d(S@) More _in general, as we sha_ll see in the next
AM"(S) :=lim 7dj7 sections, if the bounda@A of ad-dimensional Borel
rl0 by_nre=" setA € RY is “sufficiently regular’, thenZ# (A) =
#971(dA); thus, it is intuitive that for “sufficiently
regular” random closed sets we may have

E[°((©sr \©)NB)]

)

whenever the limit exists finite.

Let A € HBra; the quantity ## (A) defined as
(Ambrosioet al., 2008) E[#91(00NB)] =lim

r|0 r
%d (AEBI’ \A) and
r

9

S (A) = Ilim
i P(X € Ogp 0)dX
provided that the limit exists finite, is calleouter Ir'?c] B r
Minkowski content of ANote that if A is lower )
dimensional, ther”z (A) = 2.#9-1(A), whereas iA SO thatoe (x) turns out to be the mean surface density
is ad-dimensional set, closure of its interior, thag, \  ©f ©- This is true for instance whe® satisfies a

A coincides with the outer Minkowski enlargement at(local) Stein_er fc_)rmula; in this case the limit in Eq 5
distance of dA can be studied in terms of the quermass densities (or

Minkowski functionals) associated 1®, and so by
In this section we show why the specific area caimeans of tools from integral geometry mainly (Hug,
be interpreted as the translation into probabilistic termg2000; Weil, 2001; Huget al, 2006; Baddeleyet al,
of the outer Minkowski content. For basic definitions2007, and references therein). For other related works
and results of stochastic geometry we refer to St@tan see also Hug and Last (2000), Haegal. (2004), and
al. (1995), Baddelewt al. (2007), and Schneider and Kiderlen and Rataj (2006).

:A%ww,

Weil (2008). The passage from stationary to nonstationary
If the limit random closed sets, and from convex to more general

g grains gives rise to nontrivial problems. We will focus
im 22~ (Aer \A)NB) here on the specific area of inhomogeneous Boolean

rlo r models; for this kind of random closed sets (widely

used in real applications in Material Science, as we
exists finite for anyB € %a such that#9-1(dJAN  shall mention in the last section) the relationship
0B) = 0, then we say that\ admits local outer between specific area and outer Minkowski content
Minkowski content. Now, let us consider a random(of the typical grain) is more evident. Let us see why
closed set® in RY, that is a measurable map :  briefly.
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Let = be a Boolean model ifR4 (Stoyanet al,  existence ofog(X), existence results for limits of the
1995; Baddeleyet al, 2007; Schneider and Welil, type
2008) whose typical graify has topological boundary lim 1 (%) dx ®)
07 with Hausdorff dimensiom — 1 P-a.s. It is well rl0 1 Jas\A
known that_BooIean_modeIs R4 can be_described_ bY have to be studied.
marked Poisson point processesfhwith marks in _ . _ o
the space of centred compact sets. In many examples Note that in the particular case in which is
and applicationsZo is uniquely determined by a constant the limit above exists if and onlyAfadmits
random quantity, sa, in a suitablemark spaceK; outer Minkowski content.

for instance, in the very simple case of random balls,  In the next section we recall some recent results on
K =R, andSis the radius, whereas in applicationsthe existence of the outer Minkowski content of Borel
to birth-and-growth processes, in some modéls-  subsets oRY, which will be the starting point to obtain

RY and S is the spatial location of the nucleus, in existence results for the specific area of random closed
other modelsK = R, and S is the birth time of the sets.

nucleus (see last section). Therefore, we shall consider
(inhomogeneous) Boolean models of the type EXISTENCE RESULTS FOR THE
=(w) = U Xi+70() | OUTER MINKOWSKI CONTENT

(%,5)EW(w) We remind that a compact satc RY is calledn-
rectifiable(0 < n < d - 1 integer) if it is representable
whereZy(s) is a compact subset @Y containing the as the image of a compact subseffby a Lipschitz
origin for anys € K, andW¥ is the marked Poisson point map fromR" to R%; more in general, a closed subset
process inRY with marks inK associated t&, with A of RY is called to becountably.#"-rectifiable if

intensity measure there exist countably many Lipschitz mags R" —
RY such thatA\ U;gi(R") is #"-negligible. (For
A(d(x,8)) = f(x)dxQ(ds) . definitions and basic properties of Hausdorff measure

_ N and rectifiable sets see,g, Federer, 1969, Falconer,
The function f and the probability measur® on 1985, and Ambrosicet al, 2000.) We callRadon
K are calledintensity of = and mark distribution  measurein RY any nonnegative andr-additive set

respectively, and they are commonly assumed to bRinction u defined on%gq which is finite on bounded
such that the mean number of grains hitting anyets.

P
compact subset @t is finite: Federer’'s theorem (Federer, 1969, p. 275) on the
existence of the-dimensional Minkowski content of
/K/(Zo(s))q=R f(x)dxQ(ds) < VR>0. (6) prectifiable compact sets is well known. We recall a
N generalization of such theorem, proved in Ambrosio
(For basic definitions and results on the theory oft al. (2000, p.110), to countably?"-rectifiable

point processes, we refer to Baddetyal. (2007) and compact sets and then we shall see that if the boundary
references therein.) of a Borel subset oRRY satisfies similar conditions,

then it admits outer Minkowski content.
We shall denote by diafdy) the (random)

diameter ofZp, and by dis¢ the set of all the points Theorem 1 Let AC RY be a countably#-rectifiable
of discontinuity off. compact set and assume that

From now on letZ* = x—Zp Vx € Rd.'By the nB(x)>y"  vxeA Vvre(0,1) (9)
explicit expression of the capacity functional of a

Boolean model (Matheron, 1975), it is not difficult to holds for somey > 0 and some Radon measunein
get (Villa, 2010, Eq. 3.1) that RY absolutely continuous with respect #". Then

MNP = H(A).

Oo(X) :=Ilim Condition (Eqg. 9) is a kind of quantitative non-
0 degeneracy condition which prevemsfrom being
_ (1—exp{ _EQ[fZir\ZX f(y)dy} }) too sparse; simple examples (Amb_rosibal., 2000;
-lim - , (7) 2008) show that#"(A) can be infinite, and7Z"(A)
rlo r arbitrarily small, when this condition fails.

whereEq denotes the expectation with respeciQp It is reasonable to conjecture that, if the boundary
thus, in order to obtain sufficient conditions for thedA of a subsetA of RY satisfies the assumptions of
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the theorem above, thefs admits outer Minkowski where the density oA is neither 0 nor 1 is called
content; in Villa (2009a) it has been proved that theessential boundargf A. It is proved ¢f. Ambrosioet
value of ## (A) depends on the density @f at its  al., 2000) that all the set&' are Borel sets, and that
boundary points. We remind that tltedimensional
density(briefly, density of A is defined by Ambrosio A9 19*ANB) = #91(AY?NB)
et al. (2000)
] for all B € Hpa .
ed(A,X) = |im w

o AB(X) Remark 5 (The class¢”’) In Villa (2009a) it is also
proved that the same conclusions of the above
theorem hold for a class of Borel subsets Rf,
named¢’, defined similarly to& by replacing the

whereas different values can be attained at its bounda ndition of absolutely continuity of with the

; d—1 _ d—1 . ;
points. It is well known ¢f. Ambrosio et al,, 2000, ssumption th_at// (OA) = '(dA), then it
Theorem 3.61) that if%”d—l(dA) < o, then A has follows that this class of sets contains all Borel sets

with (d — 1)-rectifiable boundary (and so finite unions
of sets with positive reach or with Lipschitz boundary,
in particular).

provided that the limit exists. It is clear th8§(A,X)
equals 1 for allx in the interior of A, and 0 for
all x into the interior of the complement set &

density either 0 or 1 or 1/2 a¥’9~1-almost every point
of its boundary. For every € [0,1] and every.#9-
measurable set c RY let

Ali={xeR?: 63(AX) =t}. We conclude this section by the following theorem
proved in Villa (2010), which generalizes Theorem 3
providing sufficient conditions for the existence of the
limitin EqQ. 8.

Intuitively, a small neighborhood of a poirt ALNJA

is “almost all contained” inA, so that it gives no
contribution to the volume oAy, \ A; thus, roughly
speaking, we may say that has negligible weight . o
in the computing of the outer Minkowski content of 1"€orem 6 Let u be a positive measure IR

A. Conversely, ifA has null density inx € A, then, absolutely cont.lnuous with respect#® with Io/cally
in a small neighborhood ok, A, \ A “almost all bogﬂg'e‘?' density f. Let A belong @ (or &). If
coincides” with the Minkowski enlargement 88, so ¢~ (discf) =0, then

that, roughly speaking, we may say that the weight of

xin the computing of the outer Minkowski content of ;. H(Asr \A)
Ais twice the weight of a point € Al/2, rl0 r

In Villa (2009a) the following class of sets (whose — f(x)jfd_l(dx) +2 f(x)jgﬂd—l(dx) _
boundary satisfies the assumptions of Theorem 1) has J/J*A 0ANAY

been introduced:

EXISTENCE RESULTS FOR THE
Definition 2 (The class?) Let & be the class of SPECIFIC AREA
Borel sets A ofRY with countably.s#91-rectifiable

and bounded topological boundary, such that For details of the proofs of the results presented in

this section, and for further remarks and comments, we
NBr(x)>y® 1  YxedA vre(0,1) (10) referto Villa (2010).

Let us consider a Boolean modglin RY with
the notation introduced above. In order to provide
sufficient conditions ore such that its specific area
exists finite, it is intuitive by Eq. 7 and Theorem 6 why

Theorem 3 (Villa, 2009a) The clas# is stable under  the following Assumptions implies Eq. 12 foe (x) in
finite unions and any & ¢ admits outer Minkowski Proposition 7.

content, given by

holds for somey > 0 and some probability measurg
in RY absolutely continuous with respect.s¢9-1.

In the assumption (Al) below the notati@ D
S (A = A AY?) 4 2291 (0ANAD) . 0Zy with IE?Q_[%dfl(@)] < 0o means that for ang €
K there exists a closed s@(s) 2 Zy(s) such that
Jx #4710(s)Q(ds) < o.

Assumptions: (Al) dZg is countably. 91
d*A:=RY\ (ACUAL) rectifiable and compact, and such that there exist

Remark 4 The set of points
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y > 0 and a random closed s& O 0Zp; with Remark 10 By the proof of Theorem 9 it follows in
Eq[#971(0)] < » such that, foQ-a.e.s€ K, particular that= admitslocal mean outer Minkowski

content i.e, for any Borel setB ¢ RY such that
A HO()NBr () = yr¥t ¥xe dZo(s), Vr € (0,1).  E[#9-1(90NaB)] = 0t holds

(A2) s#9-1(discf) = 0 andf is locally bounded such

that for any compact sét c R¢ im E[A#°((Zer \2)NB)]
rl0 r
su fy) <&, 11 _ _
yeKmli . (y) < é (11) _ E[;ﬁgl (B)+ zﬁ[%gzgzo(s)]. (13)

for some random variab with Eq[s#9~1(©)é] <  We point out that the Assumptions, which guarantee
0o, the equation above, are quite general (see also
Remark 8); the random sets which don’t admit local

Proposition 7 Let = be a Boolean model as in the Mean outer Minkowski content could be considered as

Assumptions. Then “pathological” sets.
0=(X) = exp{ _EQ[/ZX f(y)dy]} Theorem 9 tells us that, in general, it may
41 well happen that the specific area does not coincide
'EQ[/a*ZXf(Y)% (dy) with the mean surface density. We mentioned in
i1 the Introduction that a problem of interest in image
+2 10 f(y)# (dY)} ; (12)  analysis is the estimation of the mean surface density
@) of random sets, and that the 2-D box approximations
for all x € RY. of points in R? by pixels in computer graphics

suggests the use ok for the estimation of the mean

. : , ... surface density. Therefore we provide now sufficient
Remark 8 The assumption (A1) is often fulfilled with conditions on= such thato=(x) — A= for #9-

O = 0Zo or © = 9Zg UA for some sufficiently regular o o y c pd The Assumptions above animply that
random closed sét. As a matter of fact, it can pe seen E[#91(9=)] < @ P-a.s., SO that its mean surface
as the stochastic version of Eq. 10, which, in manydensity can be decomposed as follows:

applications, is satisfied withy(-) = 7#"(An-) for
some closed séi D A, as proved in (Ambrosiet al, Aoz = Agzrzo 4+ Agez 4+ Ag=pzt -
2000, p. 111) (see also Ambrogstbal., 2008). - -

The other integrability assumptions in (A1) and Then, it follows thato=(x) = Ay=(X) = Ag-=(x) for

(A2) are just technical assumptions in order tos#9-a.exc RY if E[jifg;é(zouﬂ)]zo.

exchange limit and integral in Eq. 7. We may notice S

that if f is bounded, thedk is constant for ani, and The following proposition provides a sufficient

SOEq[#971(©)&k] is finite by (Al). regularity condition on the typical grain in order to
haveo= = Ay=.

Having now an explicit formula for the specific
area of inhomogeneous Boolean models as in th
Assumptions, we may ask whese coincides with
As=, themean surface density & The next theorem
shows that, without any further regularity assumption 41/ 41
on Zo, o= may differ form the mean surface density ~ Eo[#" ~(0°Z0)] =Eq[#" *(dZ)].  (14)
Ay= of =, in general.

sroposition 11 Let = be a Boolean model as in the
Assumptions satisfyirigq. § such that

Then
Theorem 9 If = is a Boolean model as in the
Assumptions satisfyir§q. 6 then 0=(X) = exp{ —Eo [/zx f(y)dy} }
0=(X) = Ag+=(X) + 24 y==0(X) Eq[/ f(y)jfd—l(dy)} =As=(x) (15)
azx

for ##9-a.e. xc RY, whereAy-= and A,=-o are the

densities oiE[jng;El] and E[jsfgz‘mlzo], respectively.  for .#%-a.e. xe RY.
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We point out that there exist (although a bit SOME APPLICATIONS

“pathological”) subsets oRY such that thes#9-1-

measure of their boundary differs from that one of their  In this section we shall discuss a couple of
essential boundargf. Ambrosioet al,, 2008, Sect. 5); applications of the results above; in particular,
so, by choosing a set of this kind as deterministi@applications to birth-and-growth processes which are
typical grain, the condition Eq. 14 is not satisfied,of interest in several application areas as Material
and A,= # o= for the corresponding Boolean model Science, Biology, etc.

=. Furthermore, it can be shown (Ambrosé al,

2008) that the class of subsetsof R? such that An estimator of the mean surface density
AN (A) = 9 H(d*A) is not stable under finite |t could be of interest in Image Analysis to
unions, that is, eve(rj'liif two subsedlﬁ afd Az of  estimate the mean surface density of random closed
R are such that#”® *(0A)) = A% (0"A), i =  sets by means of their Minkowski enlargements,

1, ZdLII may well happen thatz’® 1(9(ALUAz)) #  pecause of the computer graphics representation of

A7 (0"(ALUA2)). Noticing that, by condition Eq.. 6, |ower dimensional sets in terms of pixels. By repeating

= is almost surely a locally finite union of grains, he same argument in Villa (2010, Prop. 6.1), where

Proposition 11 tells us that a sort of stability underggiimators for the mean density of lower dimensional

finite unions for the expected value holds for Boolean;nqom closed sets are provided, in Villa (2009b)

modealf,l be;c_ause Eq. 14 implies 47" (0=)] = 3 natural estimator for\y= has been introduced,

B[ (0"=)]. being = a Boolean model as in the assumptions of
Since d*Zy C dZy, condition Eq. 14 is satisfied Proposition 11, and so

if #9-1(0"Zp) = #91(9Zp) P-a.s.; we remind that _

any compact subsét of RY with Lipschitz boundary A o=(X) = lim P(xeZer\2)

satisfies7#79-1(9*A) = s#9-1(dA), and that the same 0= rl0 r

holds also for a certain class of compact sets with

positive reach, containing, in particular, all thk for s#%-a.ex € RY.

dimensional convex bodiesf( Ambrosioet al, 2008; Given an i.i.d. random samplg&;,...,=y of =,

Villa, 2010). Therefore we may claim that = As=  the equation above suggests the following estimator of

Y%-a.e. for all Boolean models with typical grafi Ag=(X):

satisfying regularity conditions of this kind, and so, "~

)

starting by the definition of=, estimators for the mean N 1 _ (%)
surface density\y= of = can be provided (see section AN (y) 2i-1 ZigRy \
below). We also mention that examples of applications ="/ " NRy

of the above results to Boolean models of balls and
segments are provided in Villa (2010, Sect. 5.3).

_ ZiNzl(lEiﬁBRN 00 — 1=in{x)+0)

NRy ’
Remark 12 It is clear that Proposition 7 and iy Ry such that
Proposition 11 can be easily specified for the particular
cases in which= is stationary (in such casé is limRy=0 and IimNRy=w.
N—oo

constant, say, and soo= is constant as well, equal N—eo

—CEql#(Zo)] = iniati R
toe =9 CEq|.7# (Zo)]), or= has deterministic It is not difficult to check thatA)L(x) is an

typical grain (in such case itis sufficientto assume thal, - iqtically unbiased and consistent estimator of
Zp is a compact set i@, or ¢’, and that the intensity Aa=(X) for #-aexcRI.

f is locally bounded such tha#’9-1(discf) = 0).

o e e e O e oL i Remark13 Ve slso menion that the oute
’ ’ inkowski content concept as measure of the

cag b:zshown that under similar assumptions to (A1 oundary of deterministic sets, has been recently used
and (A2), to provide estimators for th%ﬂdgl—measure of the
D SN d—1 boundary of compact subsetsRf in Armendariz et
0=(X) = 2A0=(x) _EQ{/ZX ) (dy)} ' al. (2009). Therefore, open problems related to the
estimation of the mean boundary measure of random
AY-a.exe Rl ; .
closed sets might be the following: the study of the
We refer to Villa (2010, Sect. 5) (see alsostatistical properties of the estimator above, and the
Villa, 2009b) for a more detailed discussion of thesegeneralization to random closed sets of the results in
particular cases. Armendhriz et al. (2009).
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Applications to birth-and-growth processes whereasS, (t,x) = Aet(X), according to our previous

Many real phenomena as crystallization processe%Otat'on'
(Vandermeer et al, 1991; Capasso, 2003, and  We assume here that the nucleation prod¢ssa
references therein), tumor growth (Anderson, 2003)Poisson marked point process (equivalently, a Poisson

etc, may be modelled as evolving random closed setgoint process iR, x RY), with intensity measura of
that is as full dimensional time dependent randomhe type

closed sets. In particular, any real situation in which A(d(t,x)) = a(t,x)dtdx
nuclei are born in time and are located in space o N
randomly, and each nucleus generatgsadn evolving ~ and satisfying the usual condition (Eg. 6).

in time according to a given growth law, may be  podels of volume growth have been studied
modelled as space-time structured stochabiith- oy iensively, since the pioneering work by Kolmogorov

and-growth processesSuch a process is described (1937 Clearly, different kinds of growth model give
by a marked point process, s&:= {(T}.Xj)}jen.  rise to different kinds of process¢®'};.
modelling births at random timeéf € R, and related

random Spatia| |0cati0n$|(lc|eD X] c RY (d > 2)’ and Let us first C_OnSidGr thenormal grOWth model-
by a growth model. (Capasso and Villa, 2007, and references therein),

according to which, at#9-1-almost every point of
the actual grain surface at time(i.e,, at 79 1-a.e.
X € c?G)tTj (Xj)), growth occurs with a given strictly

positive normal velocity

Denoting by@%o(xo) the grain born at some time
top and locationxyg, and grown up to time, under
regularity assumptions on the birth and growth model
the union set

o= |J o (%), v(t,x) = G(t,x)n(t,x), (16)
nTh<t
whereG(t,X) is a given deterministic growth field, and

of such grains at timeis then a locally finite union of n(t,x) is the unit outer normal at pointe d0% (Xo).
random closed sets. The famifd'}; is calledbirth-  \yje assume that 0

and-growth processand a problem of interest in many
applications is to find evolution equations for the mean g« gy < G(t,x) <Gy <  V(t,x) € Ry x RY,
volume density, in terms of the mean surface density N N

of .. for somegp, Go € R, and thatG(t,x) is sufficiently

A lot of papers on this subject can be foundregular such that the evolution problem given by (16)
in literature; in particular, the case in whidd is for the growth frontd©; (x) is well posed. It follows
given by a marked Poisson process has been studiéiépt for any fixed € R, the topological boundary of

extensively (Kolmogorov, 1937; Burget al, 2006, €ach grain is a random closed set with locally finite
and references therein). 9 1-measureP-almost surely (Burger, 2002). This

and the assumption th&@' is a locally finite union

In t_his section we want to point out the_ role of_of grains imply thatP-almost surely#9-1(9@") <
the existence of the (local) mean outer Minkowski_, and so that®' has density 1 or 1/2 ag#d-1-

content and the specific area®f in the study of the a.e. point of its boundar-almost surely. We can

mean volume and surface .dens:tlesGoif We recall claim the assumptions on the growth model imply that
that themean volume density @', usually denoted %d—l((@t)O) — OP-as

by W (t,-), is the Radon-Nikodym derivative of the

measuré*][%gt], i.e., For the normal growth model above with
Poissonian nucleation process, recent results (Capasso
E[%ﬂd(@tﬂB)} _ /\/V(t,x)dx, VB € Ry and Villa, 2008, Prop. 25; Capasso and Villa, 2007,
B Prop. 19; Villa, 2008, Prop. 2.3) show that@f admits

similarly, the mean surface density @, usually local mean outer Minkowski content for dlt> 0 and
denoted bySy (t,-), is the Radon-Nikodym derivative ! the random variabld (x) defined by

d-17 :
of the measuré-Z[:%’Ta@t ],i.e, T(x):=min{t >0 : xe @t}

E[%d‘l(deth)} = / Sy (t,x)dx, VB € HBpd. is continuous with density, then the following
B evolution equation holds in weak form:
Let us notice that

V\/(t,X) = P(XG Ot), gtv\/(tax) = G(t,X)S/(t,X) : (17)
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VILLA E: Specific area of inhomogeneous Booelan models

The random variabld (x) is calledtime of capture assuming now that for a.ec R, E[%ﬁ;’g@(a@m] =0

of point X and its p_robabil_ity _density fl_mction, SaY  then fora.et € Ry Ayt = Ager and Eq. 18 coincides
Pr(x), is just the partial derivative 0, with respect \yith Eq. 17.

to t (Capasso and Villa, 2008, Eqg. 14). By repeating

the same arguments of Proposition 25 in Capasso and

Villa (2008) and assuming th@&' admits local mean Let us now consider a different growth model.

outer Minkowski content, we can state the followingwe assume now that each grain grows with the same

slightly more general result. Note that the assumptiogrowth law of a “typical grain” with its nucleus at

that the boundary 0®' is sufficiently regular so that the origin; in other words, the grai®.(x) born at

©' admits local mean outer Minkowski content, is NOtpoint x at time s and grown up to time can be

so restrictive for applications (see Remark 10). seen as the translation inof a grain born in 0 at
the same birth-time. By using the notation introduced

Proposition 14 Let {©'}; be a birth-and-growth for Boolean models, given the nucleation process

process with normal growth model as above, and((T, x,)},, where now the marks are the birth times

sufficiently regular such tha®' admits local mean T, associated to the spatial locatios of the nuclei,

outer Minkowski contenEq. 13 Then the following e can model the crystallized regi@ at timet as the

equation holds in weak form Boolean model
0
EVV (t,X) = G(t,X) Ag+et (X). (18) e = U Xo+Zo(Th) =X%+65,(0). (19)
(Tn,Xn)EN:Tn<t

Proof. (Sketch)

The assumptions on the nucleation process and on Notice that such a model may be used to describe
the growth model imply (Villa, 2008, Theorem 3.3) real situations in which the growth model is assumed to

that T(x) admits probability density functiopr ).  be such that the shape of the grains is preserved during
By Egs. 17 and 24 in Capasso and Villa (2008), thehe processd(g, prolates and spheroids in Vandermeer

following chain of equalities hold et al, 1991). Clearly, the particular case of spherical
9 growth (which corresponds to the previous growth
— W (t,X) = pryg = h(t,\)P(x & oY) model withG = G(t)), can be described also by means
ot 5 of the present model witlo(T,) = Bg(t,1)(0), where
=G(t,X) 5 P(xe 0%\ 010 = G(t,X) et (X), R(Tn,t) = J7, G(s)ds.

Thus, if the Boolean model®! satisfies the
Assumptions, then by Proposition 7 it follows that the
specific areaa: exists given by Eq. 12; if furthermore
condition Eq. 14 is satisfied (usually true in many real
applications), then an explicit formula for the mean
surface density (equivalentl§,) can be obtained by

where h(t,x) is the so-called hazard function
associated to the poimtat timet (Capasso and Villa,
2008, Def. 21). Eq. 13 can be written equivalently (in
weak form) as

J .

EP(XG 0L\ 0" -0 Eqg. 15. In order to apply such formula to the birth-
Y 2 Y and-growth process in Eq. 19, note that the mark
= Age (%) + 2Agein(et)0(X) = Ag-er (%), distribution Q represents now the probability law of

where the last equation follows by having observedhe birth time of the typical grain; for instance, if the
that%adfl((et)O) — 0P-a.s., and so we obtain Eq. 18. nucleation rate is constant in time, then, for any fiked

Q is the uniform distribution if0,t]. More in general,

for any fixedt, since the nucleation takes place during

the time interval0,t], Eq. 15 will be of the type
Remark 15 Let us notice that the following
decomposition of the mean surface density holds

00 =Syt —ep{~ [ [ t(us)-

t
d—
./o /z?(xets(o)) f(y)24 H(y)Q(ds) .

Aser = Aoret + Asetn(ery +Asetn(ert:

As a consequence, sindggi g0 = 0, Eq. 18 can be
equivalently written

0 Remark 16 Whenever the nucleation is homogeneous
St W (LX) =Gt X) (Aser (X) — Agetren); in space, thenf is constant and the above formula
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simplify as follows Falconer KJ (1985). The geometry of fractal sets.
. Cambridge: Cambridge University Press.
S/(t,x):exp{—/ c%”d(OtS(O))st}- Federer H (1969). Geometric measure theory. Berlin:
0 Spriger.
t
/ #971(0(04(0))Q(ds), Hug D (2000). Contact distributions of Boolean models.
0

Rend Circ Mat Palermo 2 Suppl 65:137-81.

in accordance with Vandermeetral. (1991, Egs. 9-12) Hyg D, Last G (2000). On support measures in Minkowski
spaces and contact distributions in stochastic geometry.
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