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Abstract

In this note, we introduce and study a new version of neighbour-distinguishing arc-
colourings of digraphs. An arc-colouring γ of a digraph D is proper if no two arcs with the
same head or with the same tail are assigned the same colour. For each vertex u of D, we
denote by S−

γ (u) and S+
γ (u) the sets of colours that appear on the incoming arcs and on

the outgoing arcs of u, respectively. An arc colouring γ of D is neighbour-distinguishing
if, for every two adjacent vertices u and v of D, the ordered pairs (S−

γ (u), S+
γ (u)) and

(S−
γ (v), S+

γ (v)) are distinct. The neighbour-distinguishing index of D is then the smallest
number of colours needed for a neighbour-distinguishing arc-colouring of D.

We prove upper bounds on the neighbour-distinguishing index of various classes of
digraphs.
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1 Introduction
A proper edge-colouring of a graph G is vertex-distinguishing if, for every two vertices u
and v of G, the sets of colours that appear on the edges incident with u and v are distinct.
Vertex-distinguishing proper edge-colourings of graphs were independently introduced by
Burris and Schelp [2], and by Černy, Horňák and Soták [5]. Requiring only adjacent ver-
tices to be distinguished led to the notion of neighbour-distinguishing edge-colourings,
considered in [1, 3, 7].
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Vertex-distinguishing arc-colourings of digraphs have been recently introduced and
studied by Li, Bai, He and Sun [4]. An arc-colouring of a digraph is proper if no two
arcs with the same head or with the same tail are assigned the same colour. Such an arc-
colouring is vertex-distinguishing if, for every two vertices u and v of G,

(i) the sets S−(u) and S−(v) of colours that appear on the incoming arcs of u and v,
respectively, are distinct, and

(ii) the sets S+(u) and S+(v) of colours that appear on the outgoing arcs of u and v,
respectively, are distinct.

In this paper, we introduce and study a neighbour-distinguishing version of arc-colourings
of digraphs, using a slightly different distinction criteria: two neighbours u and v are dis-
tinguished whenever S−(u) ̸= S−(v) or S+(u) ̸= S+(v).

Definitions and notation are introduced in the next section. We prove a general upper
bound on the neighbour-distinguishing index of a digraph in Section 3, and study various
classes of digraphs in Section 4. Concluding remarks are given in Section 5.

2 Definitions and notation
All digraphs we consider are without loops and multiple arcs. For a digraph D, we denote
by V (D) and A(D) its sets of vertices and arcs, respectively. The underlying graph of D,
denoted und(D), is the simple undirected graph obtained from D by replacing each arc uv
(or each pair of arcs uv, vu) by the edge uv.

If uv is an arc of a digraph D, u is the tail and v is the head of uv. For every vertex
u of D, we denote by N+

D (u) and N−
D (u) the sets of out-neighbours and in-neighbours of

u, respectively. Moreover, we denote by d+D(u) = |N+
D (u)| and d−D(u) = |N−

D (u)| the
outdegree and indegree of u, respectively, and by dD(u) = d+D(u) + d−D(u) the degree of
u.

For a digraph D, we denote by δ+(D), δ−(D), ∆+(D) and ∆−(D) the minimum
outdegree, minimum indegree, maximum outdegree and maximum indegree of D, respec-
tively. Moreover, we let

∆∗(D) = max{∆+(D), ∆−(D)}.

A (proper) k-arc-colouring of a digraph D is a mapping γ from V (D) to a set of k
colours (usually {1, . . . , k}) such that, for every vertex u,

(i) any two arcs with head u are assigned distinct colours, and

(ii) any two arcs with tail u are assigned distinct colours.

Note here that two consecutive arcs vu and uw, v and w not necessarily distinct, may be
assigned the same colour. The chromatic index χ′(D) of a digraph D is then the smallest
number k for which D admits a k-arc-colouring.

The following fact is well-known (see e.g. [4, 6, 8]).

Proposition 2.1. For every digraph D, χ′(D) = ∆∗(D).

For every vertex u of a digraph D, and every arc-colouring γ of D, we denote by
S+
γ (u) and S−

γ (u) the sets of colours assigned by γ to the outgoing and incoming arcs
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of u, respectively. From the definition of an arc-colouring, we get d+D(u) = |S+
γ (u)| and

d−D(u) = |S−
γ (u)| for every vertex u.

We say that two vertices u and v of a digraph D are distinguished by an arc-colouring
γ of D, if (S+

γ (u), S−
γ (u)) ̸= (S+

γ (v), S−
γ (v)). Note that we consider here ordered pairs,

so that (A,B) ̸= (B,A) whenever A ̸= B. Note also that if u and v are such that d+D(u) ̸=
d+D(v) or d−D(u) ̸= d−D(v), which happens in particular if dD(u) ̸= dD(v), then they
are distinguished by every arc-colouring of D. We will write u ≁γ v if u and v are
distinguished by γ and u ∼γ v otherwise.

A k-arc-colouring γ of a digraph D is neighbour-distinguishing if u ≁γ v for ev-
ery arc uv ∈ A(D). Such an arc-colouring will be called an nd-arc-colouring for short.
The neighbour-distinguishing index ndi(D) of a digraph D is then the smallest number of
colours required for an nd-arc-colouring of D.

The following lower bound is easy to establish.

Proposition 2.2. For every digraph D, ndi(D) ≥ χ′(D) = ∆∗(D). Moreover, if there
are two vertices u and v in D with d+D(u) = d+D(v) = d−D(u) = d−D(v) = ∆∗(D), then
ndi(D) ≥ ∆∗(D) + 1.

Proof. The first statement follows from the definitions. For the second statement, observe
that S+

γ (u) = S+
γ (v) = S−

γ (u) = S−
γ (v) = {1, . . . ,∆∗(D)} for any two such vertices u

and v and any ∆∗(D)-arc-colouring γ of D.

3 A general upper bound
If D is an oriented graph, that is, a digraph with no opposite arcs, then every proper edge-
colouring φ of und(D) is an nd-arc-colouring of D since, for every arc uv in D, φ(uv) ∈
S+
φ (u) and φ(uv) /∈ S+

φ (v), which implies u ≁φ v. Hence, we get the following upper
bound for oriented graphs, thanks to classical Vizing’s bound.

Proposition 3.1. If D is an oriented graph, then

ndi(D) ≤ χ′(und(D)) ≤ ∆(und(D)) + 1 ≤ 2∆∗(D) + 2.

However, a proper edge-colouring of und(D) may produce an arc-colouring of D
which is not neighbour-distinguishing when D contains opposite arcs. Consider for in-
stance the digraph D given by V (D) = {a, b, c, d} and A(D) = {ab, bc, cb, dc}. We then
have und(D) = P4, the path of order 4, and thus χ′(und(D)) = 2. It is then not difficult
to check that for any 2-edge-colouring φ of und(D), S+

φ (b) = S+
φ (c) and S−

φ (b) = S−
φ (c).

We will prove that the upper bound given in Proposition 3.1 can be decreased to
2∆∗(D), even when D contains opposite arcs. Recall that a digraph D is k-regular if
d+D(v) = d−D(v) = k for every vertex v of D. A k-factor in a digraph D is a spanning
k-regular subdigraph of D. The following result is folklore.

Theorem 3.2. Every k-regular digraph can be decomposed into k arc-disjoint 1-factors.

We first determine the neighbour-distinguishing index of a 1-factor.

Proposition 3.3. If D is a digraph with d+D(u) = d−D(u) = 1 for every vertex u of D, then
ndi(D) = 2.
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Proof. Such a digraph D is a disjoint union of directed cycles and any such cycle needs
at least two colours to be neighbour-distinguished. An nd-arc-colouring of D using two
colours can be obtained as follows. For a directed cycle of even length, use alternately
colours 1 and 2. For a directed cycle of odd length, use the colour 2 on any two consecutive
arcs, and then use alternately colours 1 and 2. The so-obtained 2-arc-colouring is clearly
neighbour-distinguishing, so that ndi(D) = 2.

We are now able to prove the following general upper bound on the neighbour-distin-
guishing index of a digraph.

Theorem 3.4. For every digraph D, ndi(D) ≤ 2∆∗(D).

Proof. Let D′ be any ∆∗(D)-regular digraph containing D as a subdigraph. If D is not
already regular, such a digraph can be obtained from D by adding new arcs, and maybe
new vertices.

By Theorem 3.2, the digraph D′ can be decomposed into ∆∗(D′) = ∆∗(D) arc-
disjoint 1-factors, say F1, . . . , F∆∗(D). By Proposition 3.3, we know that D′ admits an
nd-arc-colouring γ′ using 2∆∗(D′) = 2∆∗(D) colours. We claim that the restriction γ of
γ′ to A(D) is also neighbour-distinguishing.

To see that, let uv be any arc of D, and let t and w be the two vertices such that the
directed walk tuvw belongs to a 1-factor Fi of D′ for some i, 1 ≤ i ≤ ∆∗(D). Note here
that we may have t = w, or w = u and t = v. If γ(uv) ̸= γ′(vw), then γ(uv) ∈ S+

γ (u) and
γ(uv) /∈ S+

γ (v). Similarly, if γ′(tu) ̸= γ(uv), then γ(uv) ∈ S−
γ (v) and γ(uv) /∈ S−

γ (u).
Since neither three consecutive arcs nor two opposite arcs in a walk of a 1-factor of D′ are
assigned the same colour by γ′, we get that u ≁γ v for every arc uv of D, as required.

This completes the proof.

4 Neighbour-distinguishing index of some classes of digraphs
We study in this section the neighbour-distinguishing index of several classes of digraphs,
namely complete symmetric digraphs, bipartite digraphs and digraphs whose underlying
graph is k-chromatic, k ≥ 3.

4.1 Complete symmetric digraphs

We denote by K∗
n the complete symmetric digraph of order n. Observe first that any proper

edge-colouring ϵ of Kn induces an arc-colouring γ of K∗
n defined by γ(uv) = γ(vu) =

ϵ(uv) for every edge uv of Kn. Moreover, since S+
γ (u) = S−

γ (u) = Sϵ(u) for every vertex
u, γ is neighbour-distinguishing whenever ϵ is neighbour-distinguishing. Using a result of
Zhang, Liu and Wang (see Theorem 6 in [7]), we get that ndi(K∗

n) = ∆∗(K∗
n) + 1 = n if

n is odd, and ndi(K∗
n) ≤ ∆∗(K∗

n) + 2 = n+ 1 if n is even.
We prove that the bound in the even case can be decreased by one (we recall the proof

of the odd case to be complete).

Theorem 4.1. For every integer n ≥ 2, ndi(K∗
n) = ∆∗(K∗

n) + 1 = n.

Proof. Note first that we necessarily have ndi(K∗
n) ≥ n for every n ≥ 2 by Proposition 2.2.

Let V (K∗
n) = {v0, . . . , vn−1}. If n = 2, we obviously have ndi(K∗

2 ) = |A(K∗
2 )| = 2 and

the result follows. We can thus assume n ≥ 3. We consider two cases, depending on the
parity of n.
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Suppose first that n is odd, and consider a partition of the set of edges of Kn into n
disjoint maximal matchings, say M0, . . . ,Mn−1, such that for each i, 0 ≤ i ≤ n − 1, the
matching Mi does not cover the vertex vi. We define an n-arc-colouring γ of K∗

n (using
the set of colours {0, . . . , n − 1}) as follows. For every i and j, 0 ≤ i < j ≤ n − 1, we
set γ(vivj) = γ(vjvi) = k if and only if the edge vivj belongs to Mk. Observe now that
for every vertex vi, 0 ≤ i ≤ n − 1, the colour i is the unique colour that does not belong
to S+

γ (vi) ∪ S−
γ (vi), since vi is not covered by the matching Mi. This implies that γ is an

nd-arc-colouring of K∗
n, and thus ndi(K∗

n) = n, as required.
Suppose now that n is even. Let K ′ be the subgraph of K∗

n induced by the set of vertices
{v0, . . . , vn−2} and γ′ be the (n− 1)-arc-colouring of K ′ defined as above. We define an
n-arc-colouring γ of K∗

n (using the set of colours {0, . . . , n− 1}) as follows:

1. for every i and j, 0 ≤ i < j ≤ n − 2, j ̸≡ i + 1 (mod n − 1), we set γ(vivj) =
γ′(vivj),

2. for every i, 0 ≤ i ≤ n − 2, we set γ(vivi+1) = n − 1 and γ(vi+1vi) = γ′(vi+1vi)
(subscripts are taken modulo n− 1),

3. for every i, 0 ≤ i ≤ n − 2, we set γ(vn−1vi) = γ′(vi−1vi) and γ(vivn−1) =
γ′(vi+1vi).

Since the colour n−1 belongs to S+
γ (vi)∩S−

γ (vi) for every i, 0 ≤ i ≤ n−2, and does not
belong to S+

γ (vn−1)∪S−
γ (vn−1), the vertex vn−1 is distinguished from every other vertex

in K∗
n. Moreover, for every vertex vi, 0 ≤ i ≤ n− 2,

S+
γ (vi) = S+

γ′(vi) ∪ {n− 1} and S−
γ (vi) = S−

γ′(vi) ∪ {n− 1},

which implies that any two vertices vi and vj , 0 ≤ i < j ≤ n− 2, are distinguished since
γ′ is an nd-arc-colouring of K ′. We thus get that γ is an nd-arc-colouring of K∗

n, and thus
ndi(K∗

n) ≤ n, as required.
This completes the proof.

4.2 Bipartite digraphs

A digraph D is bipartite if its underlying graph is bipartite. In that case, V (D) = X ∪ Y
with X ∩ Y = ∅ and A(D) ⊆ X × Y ∪ Y ×X . We then have the following result.

Theorem 4.2. If D is a bipartite digraph, then ndi(D) ≤ ∆∗(D) + 2.

Proof. Let V (D) = X ∪ Y be the bipartition of V (D) and γ be any (not necessarily
neighbour-distinguishing) optimal arc-colouring of D using ∆∗(D) colours (such an arc-
colouring exists by Proposition 2.1).

If γ is an nd-arc-colouring we are done. Otherwise, let M1 ⊆ A(D) ∩ (X × Y ) be a
maximal matching from X to Y . We define the arc-colouring γ1 as follows:

γ1(uv) = ∆∗(D) + 1 if uv ∈ M1, γ1(uv) = γ(uv) otherwise.

Note that if uv is an arc such that u or v is (or both are) covered by M1, then u ≁γ1 v since
the colour ∆∗(D) + 1 appears in exactly one of the sets S+

γ1
(u) and S+

γ1
(v), or in exactly

one of the sets S−
γ1
(u) and S−

γ1
(v).

If γ1 is an nd-arc-colouring we are done. Otherwise, let A∼ be the set of arcs uv ∈
A(D) with u ∼γ1

v and M2 ⊆ A∼ ∩ (Y × X) be a maximal matching from Y to X of
A∼. We define the arc-colouring γ2 as follows:
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γ2(uv) = ∆∗(D) + 2 if uv ∈ M2, γ2(uv) = γ1(uv) otherwise.

Again, note that if uv is an arc such that u or v is (or both are) covered by M2, then u ≁γ2 v.
Moreover, since M2 is a matching of A∼, pairs of vertices that were distinguished by γ1
are still distinguished by γ2.

Hence, every arc uv such that u and v were not distinguished by γ1 are now distin-
guished by γ2 which is thus an nd-arc-colouring of D using ∆∗(D) + 2 colours. This
concludes the proof.

The upper bound given in Theorem 4.2 can be decreased when the underlying graph of
D is a tree.

Theorem 4.3. If D is a digraph whose underlying graph is a tree, then ndi(D) ≤ ∆∗(D)+
1.

Proof. The proof is by induction on the order n of D. The result clearly holds if n ≤ 2. Let
now D be a digraph of order n ≥ 3, such that the underlying graph und(D) of D is a tree,
and P = v1 . . . vk, k ≤ n, be a path in und(D) with maximal length. By the induction
hypothesis, there exists an nd-arc-colouring γ of D − vk using at most ∆∗(D − vk) + 1
colours. We will extend γ to an nd-arc-colouring of D using at most ∆∗(D) + 1 colours.

If ∆∗(D) = ∆∗(D− vk) + 1, we assign the new colour ∆∗(D) + 1 to the at most two
arcs incident with vk so that the so-obtained arc-colouring is clearly neighbour-distinguishing.

Suppose now that ∆∗(D) = ∆∗(D − vk). If all neighbours of vk−1 are leaves, the
underlying graph of D is a star. In that case, there is at most one arc linking vk−1 and vk,
and colouring this arc with any admissible colour produces an nd-arc-colouring of D. If
the underlying graph of D is not a star, then, by the maximality of P , we get that vk−1

has exactly one neighbour which is not a leaf, namely vk−2. This implies that the only
conflict that might appear when colouring the arcs linking vk and vk−1 is between vk−2

and vk−1 (recall that two neighbours with distinct indegree or outdegree are necessarily
distinguished).

Since d+D(vk−2) ≤ ∆∗(D) and d−D(vk−2) ≤ ∆∗(D), there necessarily exist a colour a
such that S+

γ (vk−2) ̸= S+
γ (vk−1)∪{a}, and a colour b such that S−

γ (vk−2) ̸= S−
γ (vk−1)∪

{b}. Therefore, the at most two arcs incident with vk can be coloured, using a and/or b, in
such a way that the so-obtained arc-colouring is neighbour-distinguishing.

This completes the proof.

4.3 Digraphs whose underlying graph is k-chromatic

Since the set of edges of every k-colourable graph can be partitionned in ⌈log k⌉ parts each
inducing a bipartite graph (see e.g. Lemma 4.1 in [1]), Theorem 4.2 leads to the following
general upper bound:

Corollary 4.4. If D is a digraph whose underlying graph has chromatic number k ≥ 3,
then ndi(D) ≤ ∆∗(D) + 2⌈log k⌉.

Proof. Starting from an optimal arc-colouring of D with ∆∗(D) colours, it suffices to use
two new colours for each of the ⌈log k⌉ bipartite parts (obtained from any optimal vertex-
colouring of the underlying graph of D), as shown in the proof of Theorem 4.2, in order to
get an nd-arc-colouring of D.
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5 Discussion
In this note, we have introduced and studied a new version of neighbour-distinguishing arc-
colourings of digraphs. Pursuing this line of research, we propose the following questions.

1. Is there any general upper bound on the neighbour-distinguishing index of symmetric
digraphs?

2. Is there any general upper bound on the neighbour-distinguishing index of not nec-
essarily symmetric complete digraphs?

3. Is there any general upper bound on the neighbour-distinguishing index of directed
acyclic graphs?

4. The general bound given in Corollary 4.4 is certainly not optimal. In particular, is it
possible to improve this bound for digraphs whose underlying graph is 3-colourable?

We finally propose the following conjecture.

Conjecture 5.1. For every digraph D, ndi(D) ≤ ∆∗(D) + 1.
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