Cloth Smoothing Simulation with Vision-to-Motion Skill Model

Peter Nimac'?, Matija Mavsar’?, Andrej Gams'

Y Humanoid and Cognitive Robotics Lab, Dept. of Automatics, Biocybernetics,
and Robotics, JoZef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
2Jozef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia
3 University of Ljubljana, Faculty of Electrical Engineering, Triaska cesta 25, 1000 Ljubljana, Slovenia
E-mail: peternimac@ijs.si

Abstract

The handling of textiles by robots is currently a largely
unexplored and underdeveloped area of robotics. The
reason for this is the complexity of the actions resulting
from the properties of textile and the difficulty in accu-
rately determining the state of textile. Due to the consid-
erable variability in the shape and size of planar, non-
rigid objects, we have found that this challenge can best
be addressed using advanced deep learning methods. In
this paper, we demonstrate a vision-to-motion DNN (Deep
Neural Network) trained to straighten a single crumpled
corner on a rectangular piece of fabric that was deformed
and captured inside a simulated environment. The neural
network was trained to identify a correct grab point at
which to grab the simulated fabric, and also a correct
drop point to which to move the grabbed piece of fabric.
For this simplified example, our trained model was able
to achieve satisfactory results with an average error of
5.43 px in predicting the grab point position and an aver-
age error of 7.08 px in predicting the drop point position.

1 Introduction

Robotic manipulation of textiles remains a largely unex-
plored field. Therefore, the handling of clothing, fab-
rics and other textile elements is still done manually, ex-
cept for the most basic tasks. The complexity of ac-
tions resulting from the properties of textiles, deforma-
bility, self-collision and self-occlusion; lack of general
approaches on the detection and robotic handling of such
materials; and the wide variety of actions involved in
handling textiles, i.e. for different types of clothing, are
prohibitive factors that keep operations involving textile
manual. Only recently garment state estimation has been
addressed [1]. The sheer number of possible states of tex-
tile objects and the actions associated with them makes it
not only difficult to manipulate a textile object, but even
just to describe it. However, advances in machine learn-
ing methods have made it possible to generate end-to-end
perception-action pairs for robots.

In this paper, we present a cloth smoothing method
where the skill is trained with a DNN describing a vision-
to-motion model, as shown in Fig. 1. Similar methods
have been shown in [2]-[5]. In [2], Tsurumine et al.
demonstrated the use of DRL (Deep Reinforcement Learn-
ing ) algorithms, combining value function-based rein-

ERK'2022, Portoroz, 220-223 220

0 64 128 192 256
0 1 1 1
x Grab target
Grab predicted
Drop target
Drop predicted
64 1 adli

128 1

192 4

256

Figure 1: Prediction of grab and drop points for rect-
angular cloth manipulation based on a single input im-
age. Crosses mark target grab (orange) and drop (yel-
low) points, while dots mark the predicted grab and drop
points.

forcement learning with automatic feature extraction from
high-dimensional observations in DNN to improve the
sample efficiency and learning stability with fewer sam-
ples.

In [3] Wu et al. proposed another image-based DRL
method to speed up training by separately training the
pick policy and place policy instead of training both as
a single set of actions. The latter approach would work
for rigid objects because an entire object is moved uni-
formly. This is not the case for non-rigid objects due to
their deformation during movement, which can lead to
incfficient learning.

In [4] Seita et al. have proposed a DIL (Deep Imita-
tion Learning) model-free approach for fabric smoothing
that does not use reinforcement learning. Unlike rein-
forcement learning, imitation learning is a type of super-
vised learning in which the agent learns a control policy
by analysing demonstrations of the policy performed by
an algorithmic or human supervisor [6]. For smoothing
fabrics, Seita et al. adopted an approach in which the fab-
ric is smoothed by being pulled at its corners. With this



32@251x251

Convolution 64@19x19
3@256x256 & RelLU Convolution
& Max-pool & RelLU
& Max-pool

Fully-connected

Fully-connected
200 —Fully-connected

100 \~_ Output
a

256@5x5
Convolution
& ReLU

& Max-pool

Figure 2: The architecture of image-to-motion DNN that was used in our experiments.

approach, the policy can be easily defined in a simulator
and coded as an algorithmic supervisor.

In [S] Lee et al. have recently shown that fabric han-
dling can be learned directly in the real world by the ran-
dom interaction of the robot with a piece of fabric. To do
this, they used DQL (Deep Q-Learning ) approach with a
self-supervised learning pipeline to learn fabric manipu-
lation through autonomous data acquisition.

We propose to use a similar approach where the RGB
image of the deformed fabric is used as input to an image-
to-motion DNN and the starting and ending points of the
robot motion are the output.

The rest of this paper is organized as follows. In
Section 2 we describe the architecture of the image-to-
motion DNN, that we used. Section 3 describes used
training dataset and the method we took to construct it.
In Section 4 we evaluate our model’s performance, which
is then followed by a discussion and a conclusion in Sec-
tion 5 and Section 6 respectively.

2 DNN architecture for vision-to-motion
skill encoding

Based on the previous work by Pahi€ et al. [7], we con-
structed an image-to-motion network (pictured in Fig. 2)
that was used in our experiments and is structured as fol-
lows. The architecture consists of three convolutional
layers and three fully-connected layers. The convolu-
tional layers takes a 3 x 256 x 256 pixel RGB image
as input, where the first layer has a 6 x 6 kernel size and
is followed by a ReLU layer and a max-pool layer with
kernel size of 4 x 4 and stride 4. The second layer takes
an input with the size of 32 x 251 x 251, has a 5 x 5 ker-
nel size and is followed by a ReL.U layer and a max-pool
layer with kernel size of 3 x 3 and stride 3. The third and
final convolutional layer takes an input with the size of
64 x 19 x 19 and has a kernel with size 4 x 4. Likewise,
it’s followed by a ReLU layer and a max-pool layer with
the same construction as the one that is followed by the
second layer.

The third layer then produces an output with the size
of 256 x 5 x 5, which is reshaped into a one-dimensional
vector and passed to a fully-connected layer of 500 neu-
rons. The second and third fully-connected layers count
200 and 100 neurons, respectively, and finally produce
the output with the size 4. The output represents the pre-
dictions of four coordinates for grab and drop points de-
fined in a 2D Cartesian space.

221

3 Dataset for training

The dataset was built with the use of PyBullet physics
simulation engine [8]. The cloth was described in the
simulation as a infinitely thin square plane with the side
ap = 10 cm. On both lengths, the plane was divided
by 25 cuts of 4 mm in length to form a mesh made of
isosceles right-angled triangles with catheti a, = 4 mm
and the hypotenuse a;, = a.v/2. The end effector was
simply described as a small sphere with radius R,y =
3 mm.

0 64 128 192 256
0 L L n 1 L L I 1 L L i 1 L L L

@

64

128 A

192 4

256

Figure 3: During simulation the bottom left corner is
pushed to a random location within the area marked with
a yellow border.

For each image within the dataset, the simulator per-
formed the operation which was the opposite to smooth-
ing. That is, in each simulation the end effector pressed
down on the cloth at a random location within 4 mm
range of the bottom left corner. Then it pushed the corner
towards the center of the cloth for a random distance, up
to 7 cm away from the initial position, at a random angle
between 15° and 75°, as shown in Fig. 3. At the begin-
ning of each simulation, the cloth was set in the same po-
sition and in a smooth state. Our idea is to train the DNN
to correctly identify the starting and stopping points of
the linear motion that deformed a flat cloth. With this
information, a similar motion can be performed in re-
verse for cloth smoothing. Three thousand (3000) dif-
ferent simulations were performed in this manner and an



128 192 256 0 64

128

192 256 0 64 128 192 256

Grab target
Grab predicted
Drop target

Drop predicted

64 1 64

128 A

128+

192 1 1921

Grab target
Grab predicted
Drop target

Drop predicted

Grab target
Grab predicted
Drop target

D dicted
61l rop predicte

1284

1924

256 256

(@) derr = 7.1 X, gerr = 2.39 px

(b) derr = 3.89 PX, gerr = 2.45 px

256

(©) derr = 3.74 PX, Gerr = 1.45 px

Figure 4: Three examples of trained model predicting grab and drop points from a test input image.

image with resolution of 1000 x 1000 pixels of the de-
formed cloth was taken after each iteration, which was
saved along with the initial and final position of the end
effector. Before training, we also reduced the resolution
of all images to 256 x 256 pixels to reduce the amount of
excessive data and features that the DNN would have to
process during training. This reduces the required com-
putational resources and training time. We also observed
that our DNN achieved a lower validation loss when trained
on the input images with a chosen lower resolution than
when trained on the images with original higher resolu-
tion. Although a DNN trained on higher resolution im-
ages could potentially perform better, this is not necessar-
ily the case. As the size of the input image has the effect
on predictive performance of the DNN [9]. Alternatively,
the images could have been initially acquired at a desired
lower resolution. However, it is easier to downsample
higher resolution images to a lower resolution than the
opposite when high resolution images are required. This
approach also better reflects a real-life workflow where
the workspace is monitored with a camera and the photos
it takes are usually of a higher resolution.

Generated this way, the data pairs D in the dataset
have the following structure:

D= {ij Mj}lev (D
where P is the number of generated data pairs, constructed
of images C; € R¥>*#*W with height H and width W
and corresponding grab and drop points of linear smooth-
ing motions

M; = {g;, d;}. 2

In above equation, vectors g and d; are defined as
g = {gz,j7 gy,j}v 3
dj = {dw,j7 dy,j}v (4)

and represent x and y pixel coordinates for grab g; and
drop d; locations.

4 Experimental evaluation

The network was trained during the course of 1500 ep-
ochs, where the learning rate was set to 1 x 1077, weight

222

decay rate to 1 x 10~ and the batch size to 10. Best
validation loss was used as training metric and the train-
ing was automatically halted if validation loss remained
unchanged for 100 consecutive epochs. The Adam opti-
miser [10] was used to update network parameters during
training.

The model’s achieved accuracy was then evaluated
on a test dataset of 200 images, that were generated in
the same way as a training set. Model’s performance is
shown on three samples from the test set on Fig. 4 and
it’s accuracy in the form of drop point error and grab
point error is shown in Fig. 5. To estimate the model’s
output error, we calculated the Euclidean distance be-
tween the target and predicted points. According to cal-
culations, the model on average misses the target drop
point by d.,., = 7.08 px and it misses the the target
grab point by g, = 5.43 px. The median values of
both errors are slightly lower, with dery = 6.97 px and
Gerr = 4.77 px for drop point error and grab point er-
ror, respectively. The largest tested drop point error was
derr, maz = 21.24 px and largest grab point error was
Jerr, maz = 15.22 px. On the contrary, the smallest drop
point and grab point errors were measured at deyr. min =
0.66 px and gerr, min = 0.14 px.

5 Discussion

This paper describes our initial research towards robot
manipulation of textile, where an experiment using a sin-
gle cloth was carried out to predict smoothing motions.

For higher applicability of the described approach,
the diversity of the training database would have to be
increased. In these initial experiments we focused on
a single instance of flattening a square, mono-coloured
cloth. Furthermore, the initial deformation was always
performed according to the same procedure. Due to this,
our model trained for a very specific case, that is to smooth
a mostly flat blue cloth of a square shape with only having
a bottom left corner crumpled in a random position.

To better generalise our model, in the future we will
first construct a larger dataset with more sample variabil-
ity. The dataset needs to contain images of differently
shaped cloths with different colours and patterns. Then



B Drop point error
B Grab point error
20

15

Ve,

10

Drop point error

Grab point error

Figure 5: Drop point error and grab point error distribu-
tion represented with a violin plot and a box-and-whisker
plot. On the left side of each plot, the dark dots represent
actual calculated errors for all tested samples. Samples
that fall within the area of the boxes represent 50 % of all
tested samples.

the images need to be captured at various camera angles
and at different cloth deformations. That is deformations
from different points, deformations from a full set of an-
gles, deformations from multiple locations (e.g. from the
edge of the cloth or from a random point on the cloth)
and deformations from more complex end-effector tra-
jectories.

Additionally, the learning accuracy can be improved
with additional data, e.g. angle at which the deformation
occurred or what path the end-effector took to deform the
cloth. Introduction of this variability will make the model
more robust for deployment on a real robot system with a
real cloth through domain randomisation method of sim-
to-real transfer [11]. By utilizing highly randomised sim-
ulation environments we will be able to approach the dis-
tribution of the real world data, thus reducing the discrep-
ancy between the model, trained in the simulation, and a
model, that would be trained in the real world [12].

Aside from PyBullet, we also tried the MuJoCo robo-
tics simulator, but in its present state and in the case of
cloth simulation, it often became unstable as cloth defor-
mation level and deformation complexity increased. An-
other alternative approach for cloth simulation, that we
have yet to try, is described in [4], where Seita et al. de-
signed a simulator, that is specifically tailored for cloth
simulation with the support of Blender.

6 Conclusion

In this work, we have shown how to generate and ap-
ply image-to-motion skill model for cloth smoothing on a
simplified example. We constructed a DNN architecture
for generation of linear robot trajectories based on im-
ages of deformed cloth. Initial results are promising with
a mean error of 5.43 px in grab point position prediction
and mean error of 7.08 px in drop point position predic-
tion for images with size of 256 x 256. This provides a
foundation for our future work, where we will extend the
training dataset with more samples and include clothes in

223

random crumpled states with more complex cloth manip-
ulation trajectories. In the future we intend to apply our
approach in a real world application. Prior to that, the ap-
proach will be tested in various simulated environments
through a sim-to-sim-to-real method.

References

[1] D. Triantafyllou, I. Mariolis, A. Kargakos, S. Malas-
siotis, and N. A. Aspragathos, “A geometric ap-
proach to robotic unfolding of garments”, Robotics
Auton. Syst., vol. 75, pp. 233-243, 2016.

[2] Y. Tsurumine, Y. Cui, E. Uchibe, and T. Matsub-
ara, “Deep reinforcement learning with smooth pol-
icy update: Application to robotic cloth manipula-

tion”, Robotics and Autonomous Systems, vol. 112,
pp- 72-83, 2019.

[3] Y. Wu, W. Yan, T. Kurutach, L. Pinto, and P. A-
bbeel, “Learning to Manipulate Deformable Ob-
jects without Demonstrations”, arXiv:1910.13439
[cs], Mar. 2020, arXiv: 1910.13439.

[4] D. Seita, A. Ganapathi, R. Hoque, et al., “Deep
Imitation Learning of Sequential Fabric Smooth-
ing Policies”, CoRR, vol. abs/1910.04854, 2019.

[5] R.Lee, D. Ward, A. Cosgun, V. Dasagi, P. Corke,
and J. Leitner, “Learning Arbitrary-Goal Fabric
Folding with One Hour of Real Robot Experience”,
CoRR, vol. abs/2010.03209, 2020.

[6] M.Laskey,J.Lee, R. Fox, A. Dragan, and K. Gold-
berg, “DART: Noise Injection for Robust Imitation
Learning”, p. 14, 2017.

[71 R. Pahi¢, B. Ridge, A. Gams, J. Morimoto, and
A. Ude, “Training of deep neural networks for the
generation of dynamic movement primitives”, Neu-
ral networks : the official journal of the Interna-
tional Neural Network Society, vol. 127, pp. 121-
131, 2020.

[8] E. Coumans and Y. Bai, PyBullet, a Python mod-
ule for physics simulation for games, robotics and
machine learning, http://pybullet.org, 2016-2021.

[9] M. L. Richter, W. Byttner, U. Krumnack, A. Wie-
denroth, L. Schallner, and J. Shenk, “(Input) Size
Matters for CNN Classifiers”, Artificial Neural Net-
works and Machine Learning —ICANN 2021, 2021,
pp. 133-144.

D. P. Kingma and J. Ba, “Adam: A method for
stochastic optimization”, The International Con-
ference on Learning Representations (ICLR), 2015.

W. Zhao, J. P. Queralta, and T. Westerlund, “Sim-
to-Real Transfer in Deep Reinforcement Learning
for Robotics: a Survey”, 2020 IEEE Symposium
Series on Computational Intelligence (SSCI), pp.
737-744, 2020.

J. Tobin, “Real-World Robotic Perception and Con-
trol Using Synthetic Data”, University of Califor-
nia, Berkeley, 2019.

[10]

[11]

[12]



