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Abstract

We consider the problem of which distance-regular graphs with small valency are Cay-
ley graphs. We determine the distance-regular Cayley graphs with valency at most 4, the
Cayley graphs among the distance-regular graphs with known putative intersection arrays
for valency 5, and the Cayley graphs among all distance-regular graphs with girth 3 and
valency 6 or 7. We obtain that the incidence graphs of Desarguesian affine planes minus a
parallel class of lines are Cayley graphs. We show that the incidence graphs of the known
generalized hexagons are not Cayley graphs, and neither are some other distance-regular
graphs that come from small generalized quadrangles or hexagons. Among some “excep-
tional” distance-regular graphs with small valency, we find that the Armanios-Wells graph
and the Klein graph are Cayley graphs.
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1 Introduction
The classification of distance-regular Cayley graphs is an open problem in the area of al-
gebraic graph theory [28, Problem 71-(ii)]. Partial results have been obtained by Abdollahi
and the authors [2], Miklavič and Potočnik [20, 21], and Miklavič and Šparl [22], among
others.

Here we focus on distance-regular graphs with small valency. It is known that there
are finitely many distance-regular graphs with fixed valency at least 3 [7]. In addition,
all distance-regular graphs with valency 3 are known (see [11, Theorem 7.5.1]), as are
all intersection arrays for distance-regular graphs with valency 4 [13]. There is however
no complete classification of distance-regular graphs with fixed valency at least 5. It is
believed though that every distance-regular graph with valency 5 has intersection array as
in Table 3. Besides these results, all intersection arrays for distance-regular graphs with
girth 3 and valency 6 or 7 have been determined. We therefore study the problem of which
of these distance-regular graphs with small valency are Cayley graphs.

After some preliminaries in Section 2, we study several families of distance-regular
graphs that have members with small valency. Several of the results in this section are
standard. Besides these standard results, we obtain in Proposition 3.2 that the incidence
graphs of the Desarguesian affine planes minus a parallel class of lines are Cayley graphs.
In Section 3.7, we study generalized polygons. By extending a known method for general-
ized quadrangles, we are able to prove (among other results) that the incidence graphs of
all known generalized hexagons are not Cayley graphs; see Proposition 3.6. Moreover, we
show that neither are some other distance-regular graphs that come from small generalized
quadrangles or hexagons.

We then determine all distance-regular Cayley graphs with valency 3 and 4 in Sec-
tions 4 and 5, respectively. Next, we characterize in Section 6 the Cayley graphs among
the distance-regular graphs with valency 5 with one of the known putative intersection ar-
rays. Most of our new results (besides the above mentioned ones) are negative, in the sense
that we prove that certain distance-regular graphs are not Cayley graphs. However, we sur-
prisingly do find that the Armanios-Wells graph is a Cayley graph. This gives additional,
previously unknown, information about the structure of this distance-transitive graph on 36
vertices, as we remark after Proposition 6.1.

In the final section, we consider distance-regular graphs with girth 3 and valency 6 or
7. Most of these graphs have been discussed in earlier sections. As another exception, we
obtain that the Klein graph on 24 vertices is a Cayley graph.

2 Preliminaries
All graphs in this paper are undirected and simple, i.e., there are no loops or multiple edges.
A connected graph Γ is called distance-regular with diameter d and intersection array

{b0, b1, . . . , bd−1; c1, c2, . . . , cd}

whenever for every pair of vertices x and y at distance i, the number of neighbors of y at
distance i− 1 from x is ci and the number of neighbors of y at distance i+ 1 from x is bi,
for all i = 0, . . . , d. It follows that a distance-regular graph is regular with valency k = b0.
The number of neighbors of y at distance i from x is denoted by ai, and ai = k − bi − ci.
The girth of a distance-regular graph follows from the intersection array. The odd-girth (of
a non-bipartite graph) equals the smallest i for which ai > 0; the even-girth equals the
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smallest i for which ci > 1. A distance-regular graph is called antipodal if its distance-d
graph is a disjoint union of complete graphs. This property follows from the intersection
array.

A distance-regular graph with diameter 2 is called strongly regular. A strongly regular
graph with parameters (n, k, λ, µ) is a k-regular graph with n vertices such that every pair
of adjacent vertices has λ common neighbors and every pair of non-adjacent vertices has µ
common neighbours. Thus, λ = a1, µ = c2, and the intersection array is {k, k − 1 − λ;
1, µ}. For more background on distance-regular graphs, we refer to the monograph [11] or
the recent survey [28].

Let G be a finite group and S be an inverse-closed subset of G not containing the
identity element e of G. Then the (undirected) Cayley graph Cay(G,S) is a graph with
vertex set G such that two vertices a and b are adjacent whenever ab−1 ∈ S. Recall that
all Cayley graphs are vertex-transitive and a Cayley graph Cay(G,S) is connected if and
only if the subgroup generated by S, which is denoted by 〈S〉, is equal to G. Following
Alspach [3], the subset S in Cay(G,S) is called the connection set. It is well-known that
a graph Γ is a Cayley graph if and only if it has a group of automorphisms G that acts
regularly on the vertices of Γ.

The commutator of two elements a and b in a groupG is denoted by [a, b]. Furthermore,
the center of G is denoted by Z(G).

2.1 Halved graphs

The following observation is straightforward but very useful. Let Γ be a Cayley graph
Cay(G,S) with diameter d. Define sets Si recursively by Si+1 = SSi \ (Si ∪ Si−1) for
i = 2, . . . , d, where S1 = S and S0 = {e}. Then the distance-i graph Γi of Γ is again
a Cayley graph, Cay(G,Si). In particular, when Γ is bipartite, then its halved graphs (the
components of Γ2) are Cayley graphs.

Lemma 2.1. The distance-i graph of a Cayley graph Γ with diameter d is again a Cayley
graph, for i = 2, . . . , d. Also the halved graphs of Γ are Cayley graphs.

Clearly, also the complement Γ of a Cayley graph Γ is a Cayley graph.

2.2 Large girth

In the later sections we will see many distance-regular graphs with large girth. The follow-
ing lemmas will then turn out to be useful.

Lemma 2.2. Let Γ be a Cayley graph Cay(G,S) with girth g, where |S| > 2. If G is
abelian, then g ≤ 4 and Γ contains a — not necessarily induced — 4-cycle.

Proof. Let a and b be in S such that a 6= b−1. Then e ∼ a ∼ ba = ab ∼ b ∼ e, so Γ
contains a 4-cycle, and hence g ≤ 4.

Lemma 2.3. Let Γ be a Cayley graph Cay(G,S) with girth g > 4. Suppose that S contains
an element of order m, with m > 2. Then g ≤ m and the vertices of Γ can be partitioned
into induced m-cycles.

Proof. Suppose a ∈ S has order m > 2. Then b ∼ ab ∼ a2b ∼ · · · ∼ am−1b ∼ b, for
every b ∈ G. Now suppose that this m-cycle is not induced. Then it follows that there is
an i, with 1 < i < m − 1, such that ai ∈ S. But then b ∼ aib ∼ ai+1b ∼ ab ∼ b, which
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contradicts the assumption that g > 4. So every vertex is in an induced m-cycle, and the
result follows.

Note that the above partition of vertices into m-cycles is the same as the partition of G
into the right cosets of the cyclic subgroup H generated by a.

In general, if Γ is a Cayley graph Cay(G,S), and H is a subgroup of G, then the
induced subgraph on each of the right cosets of H is regular, and all these subgraphs are
isomorphic to each other.

2.3 Normal subgroups and equitable partitions

If Γ is a Cayley graph Cay(G,S) and H is a normal subgroup of G, then the partition
into the (distinct) cosets Hc is equitable, in the sense that each vertex in Hc has the
same number of neighbors in Hb, for each c and b. This number is easily shown to be
|S ∩Hcb−1|. The quotient matrix Q of the equitable partition contains these numbers, i.e.
QHc,Hb = |S ∩Hcb−1|. It is well-known and easy to show (by “blowing up” eigenvectors
[12, Lemma 2.3.1]) that each eigenvalue of Q is also an eigenvalue of Γ. We will use this
fact in some of the later proofs, for example to show that the Biggs-Smith graph is not a
Cayley graph.

Note also that the quotient matrix is in fact the adjacency matrix of a Cayley multigraph
on the quotient group G/H , with connection multiset S/H = {Hs | s ∈ S}. When Γ is
an antipodal distance-regular (Cayley) graph with diameter d, then it is easy to show that
Nd = Sd ∪ {e} is a subgroup of G. If this group is normal, then it follows that there is
a Cayley graph over the quotient group G/Nd with connection set {Nds | s ∈ S} (cf.
[21, Lemma 2.2]). This quotient graph is the folded graph of Γ, and it is well-known to be
distance-regular, too.

2.4 Dihedral groups

Miklavič and Potočnik [20, 21] classified the distance-regular Cayley graphs over a cyclic
or dihedral group. They already observed in [20] that a primitive distance-regular graph
over a dihedral group must be a complete graph. In [21], they moreover showed the fol-
lowing.

Proposition 2.4 ([21]). A distance-regular Cayley graph over a dihedral group must be a
cycle, complete graph, complete multipartite graph, or the bipartite incidence graph of a
symmetric design.

We will see these graphs also in Section 3. More importantly, we will use this classifi-
cation in some of the results in the later sections.

2.5 Erratum

In [2], we claimed that in the distance-regular line graph Γ of the incidence graph of a
generalized d-gon of order (q, q), any induced cycle is either a triangle or a 2d-cycle. This
is not correct however. Instead, every induced cycle in Γ is either a 3-cycle or an even cycle
of length at least 2d. Consequently, Theorem 3.1 in [2] may not be correct. Instead, we
have the following result.

Theorem 2.5. Let d ≥ 2, let Γ be the line graph of the incidence graph of a generalized
d-gon of order (q, q), and suppose that Γ is a Cayley graph Cay(G,S). Then there exist
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two subgroups H and K of G such that S = (H ∪K) \ {e}, with |H| = |K| = q + 1 and
H ∩K = {e} if and only if 〈a〉 ⊆ S ∪{e} for every element a of order 2i in S, with i ≥ d.

The correction of the above result has no impact on the validity of the following result
in [2, Proposition 3.4]. In fact, by Lemma 2.2, the proof can do without the above theorem.

Proposition 2.6. The line graph of Tutte’s 8-cage is not a Cayley graph.

Proof. Let Γ be the line graph of Tutte’s 8-cage, and suppose that it is a Cayley graph
Cay(G,S). Then |G| = 45 and |S| = 4. By Lemma 2.2, G cannot be abelian because Γ
has no 4-cycles. But all groups of order 45 are abelian, so we have a contradiction.

3 Some families of distance-regular graphs
It is clear that the cycle Cn is a distance-regular Cayley graph over the cyclic group. Thus,
every distance-regular graph with valency 2 is a Cayley graph. Here we mention some
other relevant families of distance-regular graphs with members of small valency.

3.1 Complete graphs, complete multipartite graphs, and complete bipartite graphs
minus a matching

The complete graph Kn and the regular complete multipartite graph Km×n are distance-
regular Cayley graphs (with diameters 1 and 2, respectively). Indeed, Kn is a Cayley graph
over any group of order n, whereas Km×n (with m parts of size n) is a Cayley graph over
the cyclic group Zmn, with connection set S = Zmn \ mZmn. Note that the complete
bipartite graph K2×n is usually denoted by Kn,n.

A complete bipartite graph Kn,n minus a complete matching, which is denoted by
K∗n,n, is distance-regular with valency n − 1 and diameter 3. Even though it may be
clear that this is also a Cayley graph, we will describe it as such explicitly. Indeed, let
D2n = 〈a, b | an = b2 = 1, bab = a−1〉. Then the Cayley graph Cay(D2n, S), where
S = {bai | 1 ≤ i ≤ n − 1} is the complete bipartite graph Kn,n minus a complete
matching, with two bipartite parts 〈a〉 and b〈a〉. This graph can also be described as the
incidence graph of a symmetric design; see Section 3.5.

3.2 Paley graphs

The Paley graphs are defined as Cayley graphs. Let q be a prime power such that q ≡ 1
(mod 4). Let G be the additive group of GF(q) and let S be the set of nonzero squares
in GF(q). Then the Paley graph P (q) is defined as the Cayley graph Cay(G,S). It is
distance-regular with diameter 2 and valency (q − 1)/2.

3.3 Hamming graphs, cubes, and folded cubes

The Hamming graph H(d, q) is the d-fold Cartesian product of Kq . It can therefore be
described as a Cayley graph over (for example) Zdq with the set of vectors of (Hamming)
weight one as connection set. It is distance-regular with valency d(q − 1) and diameter d.

The Hamming graph H(2, q) is also known as the lattice graph L2(q). The Shrikhande
graph is a distance-regular graph with the same intersection array as L2(4), and it is a
Cayley graph Cay(Z4 × Z4, {±(0, 1),±(1, 0),±(1, 1)}). A Doob graph is a Cartesian
product of Shrikhande graphs and K4’s. These Doob graphs are thereby distance-regular
Cayley graphs as well.



208 Ars Math. Contemp. 17 (2019) 203–222

The Hamming graph H(d, 2) is also known as the d-dimensional (hyper)cube graph
Qd. The folded d-cube can be obtained from Qd−1 by adding a perfect matching con-
necting its so-called antipodal vertices. This implies that it is a Cayley graph over Zd−12

with connection set the set of unit vectors and the all-ones vector. The folded d-cube is
distance-regular with valency d and diameter bd/2c.

3.4 Odd and doubled Odd graphs

The Odd graphOn is the Kneser graphK(2n−1, n−1). It is distance-regular with valency
n and diameter n−1. Godsil [15] determined which Kneser graphs are Cayley graphs, and
it follows that the Odd graph is not a Cayley graph.

The doubled Odd graph DOn is the bipartite double of the Odd graphOn. It is distance-
regular with valency n and diameter d = 2n − 1. It is easy to see that if a graph Γ is a
Cayley graph Cay(G,S), then its bipartite double is again a Cayley graph over the group
G×Z2 with connection set S = {(s, 1) | s ∈ S}. But the Odd graph is not a Cayley graph,
so we cannot apply this argument. Indeed, it turns out that the doubled Odd graph is also
not a Cayley graph.

Proposition 3.1. The doubled Odd graph is not a Cayley graph.

Proof. The distance-(d−1) graph of a doubled Odd graph DOn (with diameter d = 2n−1)
is a disjoint union of two Odd graphs On. If this graph is a Cayley graph, then its distance-
(d − 1) graph is again a Cayley graph, by Lemma 2.1. But an Odd graph is not a Cayley
graph [15], so neither is the doubled Odd graph.

Godsil’s results [15] also imply the classification by Sabidussi [25] of Cayley graphs
among the triangular graphs T (n); these are Cayley graphs if and only if n = 2, 3, 4 or
n ≡ 3 (mod 4) and n is a prime power.

3.5 Incidence graphs of symmetric designs

Miklavič and Potočnik [21] showed that there is a correspondence between difference sets
and connection sets for the incidence graphs of a symmetric design. Recall that a k-subset
D of a group G of order n is called an (n, k, λ) difference set if every nonidentity element
g ∈ G occurs λ times among all possible differences d1d−12 (we prefer to use multiplicative
notation) of distinct elements d1 and d2 of D. The development {Dg | g ∈ G} of such a
difference set is a symmetric 2-(n, k, λ) design.

IfD is a difference set in an abelian groupG, then we can easily construct the incidence
graph of its development as a Cayley graph for the group G o Z2. The elements of this
group can be (identified and) partitioned as G ∪ Gc, where c2 = 1 and cgc = g−1 for all
g ∈ G. As a connection set, we take S = Dc. It follows that S is inverse closed, and that
the corresponding Cayley graph is indeed the incidence graph of the development (a block
Dg corresponds to the group element g−1c).

Because the Desarguesian projective plane (over GF(q)) is a symmetric 2-(q2 + q+ 1,
q + 1, 1) design, and can be obtained from a (Singer) difference set in the cyclic group, it
follows that the incidence graph of a Desarguesian projective plane is a Cayley graph. It
was shown by Loz et al. [18] that this Cayley graph is 4-arc-transitive. We note that all
projective planes of order at most 8 are Desarguesian, and hence all incidence graphs of
projective planes with valency at most 9 are Cayley graphs.
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We also note that if D is a difference set in G, then the complement G \ D is also a
difference set in G, and its development is the complementary design of the development
of D. This implies that also the incidence graph of the 2-(7, 4, 2) design is a Cayley graph.
Also the 2-(11, 5, 2) biplane comes from a difference set (the set of nonzero squares in
Z11), so its incidence graph is a Cayley graph. Note that also the (trivial) 2-(n, n−1, n−2)
design comes from a difference set (D = G \ {e}), which gives an alternative proof that
K∗n,n is a Cayley graph (see Section 3.1).

We denote the incidence graph of a 2-(n, k, λ) design by IG(n, k, λ). Such a graph is
distance-regular with valency k and diameter 3.

3.6 Incidence graphs of affine planes minus a parallel class of lines

Similar to the case of symmetric designs, there is a correspondence between certain relative
difference sets and connection sets for the incidence graph of an affine plane minus a par-
allel class of lines. A k-subset R of a group G of order mn is called a relative (m,n, k, λ)
difference set relative to a subgroup N of order n of G if every element of G \N occurs λ
times among all possible differences r1r−12 of elements r1 and r2 of R. The development
of such a relative difference set is a so-called (m,n, k, λ) divisible design. We will not go
into the details of the definition of such a divisible design, but restrict to the remark that an
(n, n, n, 1) divisible design is the same as an affine plane of order n minus a parallel class
of lines (for details, see [24]). Similar as in Section 3.5, if such a divisible design comes
from a relative difference set in an abelian group, then its incidence graph is a Cayley graph.

It is known that all Desarguesian planes correspond to relative difference sets, so the
incidence graphs of the Desarguesian affine planes minus a parallel class are all Cayley
graphs. These include all such distance-regular graphs with valency at most 8. In particular,
for odd prime powers q, the set {(x, x2) | x ∈ GF(q)} is a relative difference set in
GF(q)2. To include even prime powers, we need a more involved construction of a relative
difference set that actually works also for semifields (see [24, Theorem 4.1]). Indeed, if S is
a semifield of order q, then we define a group on S2 using the addition (x1, x2)+(y1, y2) =
(x1 + y1, x2 + y2 + x1y1). In this group, the set {(x, x2) | x ∈ S} is a relative (q, q, q, 1)
difference set. We note that if S is the field on 2n vertices, then the constructed group is
isomorphic to Zn4 .

We denote the incidence graph of a the Desarguesian affine plane of order q minus a
parallel class of lines (pc) by IG(AG(2, q) \ pc). Such a graph is distance-regular with
valency q and diameter 4. We conclude the following.

Proposition 3.2. For every prime power q, the incidence graph of the Desarguesian affine
plane of order q minus a parallel class of lines, IG(AG(2, q) \ pc), is a Cayley graph.

3.7 Generalized polygons

The incidence graph of a generalized quadrangle or generalized hexagon of order (q, q) is
distance-regular with valency q + 1 and girth 8 and 12, respectively. These graphs thus
arise in the tables in the following sections. In this section, we will first show, among other
results, that for q ≤ 4, none of these is a Cayley graph. Next to that, we will consider some
of the distance-regular line graphs and halved graphs (point graphs) of these graphs.

Indeed, first suppose that the incidence graph Γ of generalized polygon of order (s, s)
is a Cayley graph. Then its automorphism group contains a subgroup that acts regularly on
the vertices of Γ. It follows that there is an index 2 subgroup G that acts regularly on both
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the point set and on the line set, as an automorphism group of the generalized polygon.
This situation has been studied by Swartz [26] for generalized quadrangles. Using results
by Yoshiara [29] (who exploited an idea of Benson [9]; cf. [23, 1.9.1]), Swartz [26] showed
that s+ 1 must be coprime to 2 and 3. Consequently, we have the following result.

Proposition 3.3. If the incidence graph of a generalized quadrangle of order (s, s) is a
Cayley graph, then s+ 1 is not divisible by 2 or 3.

In particular, it shows that the incidence graphs of generalized quadrangles of orders
(2, 2) and (3, 3) are not Cayley graphs.

We will next derive a similar result for generalized hexagons. The line of proof is the
same as for generalized quadrangles. By extracting the main ideas and fine-tuning them,
we are able to give a self-contained proof, which in the end even leads to a somewhat
stronger result. We note that similar more general techniques and results on generalized
hexagons (but not our main results) have also been obtained by Temmermans, Thas, and
Van Maldeghem [27].

As in the above, we assume that the generalized hexagon of order (s, s) has an auto-
morphism group G that acts regularly on points as well as on lines. Thus, the order of G is
(s+ 1)(s4 + s2 + 1). We start with a lemma.

Lemma 3.4. Let p = 2, 3, or 5, and let g ∈ G be of order p. Then xg 6= x and xg is not
collinear to x, for every point x.

Proof. Let x be an arbitrary point. BecauseG is regular, g fixes no points, and also no lines
(otherwise g = e) so xg 6= x. In order to show that xg is not collinear to x, we assume that
` is a line through x and xg , and show that this leads to a contradiction.

If g has order 2, then `g is a line through xg and xg
2

= x, so `g = `, which is indeed a
contradiction.

If g has order 3, then x, xg , and xg
2

are pairwise collinear. Similar as in the previous
case (order 2), these three points cannot all be on the line `, and it follows that they “gener-
ate” three lines `, `g , and `g

2

. This however gives a 6-cycle in the incidence graph, which
is a contradiction, because its girth is 12.

Similarly, if g has order 5, then this gives rise to a 10-cycle in the incidence graph,
which is again a contradiction.

Note that the case p = 5 seems specific for generalized hexagons, whereas the cases
2 and 3 clearly also apply to generalized quadrangles, because their incidence graphs have
girth “only” 8.

Next, we consider the adjacency matrixA of the point graph of the generalized hexagon,
and let M = A+ I . Note that this matrix could also be used to obtain the results for gener-
alized quadrangles. Our matrixM has eigenvalue s2+s+1 with multiplicity one (from the
constant eigenvector), 2s, 0, and−s. From an automorphism g we make a permutation ma-
trixQ, whereQx,y = 1 if y = xg . Because g is an automorphism, we have thatQA = AQ,
and hence that QM = MQ. Using the eigenvalues of M , we obtain the following lemma.

Lemma 3.5.
trQM ≡ 1 (mod s).

Proof. If g has order n, then (QM)n = QnMn = Mn. It follows that QM has the
same eigenvalues as M , possibly multiplied by a root of unity. It has the same eigenvalue
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s2 + s + 1 with multiplicity one (from the constant eigenvector) as M . For each other
eigenvalue, also its conjugates are eigenvalues, and the sum of these is a multiple of the
“original” eigenvalue θ of M (because the sum of the relevant roots of unity is integer; for
details, see the similar proof for generalized quadrangles by Benson [9]). It follows that
the sum of all eigenvalues equals s2 + s+ 1 plus integer multiples of 2s, 0, and −s. Hence
trQM ≡ 1 (mod s).

We can now prove the following.

Proposition 3.6. If the incidence graph of a generalized hexagon of order (s, s) is a Cayley
graph, then s is a multiple of 6 and s+ 1 is not divisible by 5.

Proof. Suppose that the incidence graph is a Cayley graph, and that (s + 1)(s4 + s2 + 1)
is divisible by 2, 3, or 5. Then the generalized hexagon has a regular group G of automor-
phisms, acting regularly on both the point set and the line set. Because the order of this
group is divisible by 2, 3, or 5, there is an automorphism g ∈ G of order 2, 3, or 5. By
Lemma 3.4, xg 6= x and xg is not collinear to x, for every point x. It follows that both
Q and QA have zero diagonal, hence trQM = 0. But this contradicts Lemma 3.5, hence
(s+ 1)(s4 + s2 + 1) is not divisible by 2, 3, or 5, and this implies that s is a multiple of 6
and s+ 1 is not divisible by 5.

Because generalized hexagons of order (s, s) are only known for prime powers s, it
follows that all the incidence graphs of the known generalized hexagons are not Cayley
graphs. Note that automorphisms of a putative generalized hexagon of order (6, 6) have
been studied by Belousov [8].

Similarly, generalized quadrangles of order (s, s) are only known for prime powers s.
Among these known ones, Proposition 3.3 thus rules out all s except s = 4i (for i ∈ N).
Among the distance-regular incidence graphs of generalized polygons with valency at most
5, we still need to consider the incidence graph of the generalized quadrangle of order
(4, 4). For this, we also consider one of the halved graphs, i.e., the collinearity (or point)
graph.

Proposition 3.7. The incidence graph of the generalized quadrangle GQ(4, 4) is not a
Cayley graph.

Proof. Suppose that this bipartite graph Γ is a Cayley graph. By Lemma 2.1, its halved
graphs are also Cayley graphs. These halved graphs (one of them being the collinearity
graph of the generalized quadrangle) are again distance-regular, with intersection array
{20, 16; 1, 5} [11, Proposition 4.2.2]. In other words, it is a strongly regular graph with
parameters (85, 20, 3, 5). By Sylow’s theorem, the only group of order 85 is the cyclic
group Z85. Using the properties of a generalized quadrangle and that the cyclic group is
abelian, it is easy to show that each line (a 5-clique) through e forms a subgroup of Z85,
but there is only one such subgroup, which gives a contradiction, because there are 5 lines
through each point.

We note that this result also follows from more extensive results by Bamberg and Giu-
dici [5, Theorem 1.1] and by Swartz [26, Theorem 1.3]. We remark that also the result that
Tutte’s 8-cage — the incidence graph of the unique generalized quadrangle of order (2, 2)
— is not a Cayley graph, can be obtained using the point graph. The latter is the comple-
ment of the triangular graph T (6). Sabidussi [25] determined the Cayley graphs among the
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triangular graphs (see also Section 3.4), and T (6) is not one of them. Thus, Tutte’s 8-cage,
also known as the Tutte-Coxeter graph, is not a Cayley graph.

Also Tutte’s 12-cage — the unique incidence graph of a generalized hexagon of order
(2, 2) — is not a Cayley graph for an elementary reason, i.e., because it is not vertex-
transitive. Note that there are two generalized hexagons of order (2, 2), and these are dual,
but not isomorphic, to each other. Thus, there are two orbits of vertices in the incidence
graph.

We note that similarly there are precisely two generalized quadrangles of order (3, 3),
and these are dual to each other. This implies that the corresponding incidence graph is not
vertex-transitive, and hence this gives another argument for why this graph is not a Cayley
graph.

Another argument for why Tutte’s 12-cage is not a Cayley graph is obtained by con-
sidering the point graphs of the two generalized hexagons of order (2, 2). These distance-
regular graphs have intersection array {6, 4, 4; 1, 1, 3} and automorphism group PSU(3, 3)
oZ2 [4]. If such a graph would be a Cayley graph Cay(G,S), then G must be a subgroup
of order 63 of the above group. Moreover, because the graph has no 4-cycles, the group
must be nonabelian by Lemma 2.2. However, we checked with GAP [14] that there are
no such subgroups, so we conclude that these graphs are not Cayley graphs. A similar
argument applies to the line graph of Tutte’s 12-cage, the unique distance-regular graph
with intersection array {4, 2, 2, 2, 2, 2; 1, 1, 1, 1, 1, 2}. Also this graph has automorphism
group PSU(3, 3) o Z2 [4] and no 4-cycles. Thus, after having checked that there are no
nonabelian subgroups of order 189, we conclude the following.

Proposition 3.8. The line graph of Tutte’s 12-cage and the point graphs of the two gener-
alized hexagons of order (2, 2) are not Cayley graphs.

Similarly, we can show that the unique distance-regular graph with intersection array
{6, 3, 3; 1, 1, 2}, the line graph of the incidence graph of the projective plane (generalized
3-gon) of order 3 is not a Cayley graph. Indeed, the automorphism group of the incidence
graph (and hence of its line graph) is PSL(3, 3)oZ2, and we checked again with GAP [14]
that it has no subgroups of order 52. We recall from Section 3.5 that the incidence graph
itself is a Cayley graph. We had already observed in [2, Theorem 5.8] that if the line graph
of the incidence graph of a projective plane of small odd order is a Cayley graph, then it
should come from a group of both collineations and correlations of the projective plane.

Proposition 3.9. The line graph of the incidence graph of the projective plane of order 3
is not a Cayley graph.

We next consider the line graph of the incidence graph of the generalized quadrangle
of order (3, 3).

Proposition 3.10. The line graph of the incidence graph of the generalized quadrangle of
order (3, 3) is not a Cayley graph.

Proof. Suppose that this graph Γ is a Cayley graph Cay(G,S). Then G is a subgroup
of the automorphism group of the incidence graph of the generalized quadrangle that acts
regularly on its 160 flags. It follows that G acts transitively on the point set P and on the
line set L. Hence |Gx| = |G`| = 4 for every x ∈ P and ` ∈ L. This implies that for every
point (and similarly, for every line), there is an involution in G that fixes it. On the other
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hand, it is not hard to show that every involution in G fixes either a point or a line, using
Benson’s results [9] or the approach as in Lemma 3.5 (see also [6, Lemma 3.4]).

Now let H be a Sylow 2-subgroup of G. We claim that the intersection of Z(G) and H
is trivial. To show this, assume that it is not. Then H ∩Z(G) contains an involution σ, say,
and suppose without loss of generality that σ fixes a point x, say. Let ` be a line through x
and let θ be an involution that fixes `. If y = xθ, then it is easy to see that σ also fixes y,
and hence `. But then it fixes a flag (x, `), which is a contradiction.

Because Z(G) is normal in G, it follows that HZ(G) is a subgroup of G such that
|HZ(G)| = |H||Z(G)|. This implies that |Z(G)| = 1 or 5. We checked with GAP [14]
that there is no group of order 160 with |Z(G)| = 5 and there exists only one group G of
order 160 such that |Z(G)| = 1; this group is (Z4

2 o Z5) o Z2.
Now G has a normal subgroup N = Z4

2 o Z5 of index 2, and this group does not have
any dihedral subgroup, except the ones of order 2 and 4. Moreover, the two cosets of N
induce an equitable partition of the graph, with quotient matrix of the form[

m 6−m
6−m m

]
,

withm = |S∩N |. This implies that Γ must have an eigenvalue 2m−6 (besides eigenvalue
6) and because the integer eigenvalues of Γ are 6, 2, and −2, it follows that m = 2 or
m = 4.

By Theorem 2.5 and the fact thatG only has elements of orders 1, 2, 4, and 5, it follows
that S = (K1 ∪ K2) \ {e}, where K1 and K2 are subgroups of G of order 4 such that
K1 ∩K2 = {e}.

In both the casesm = 2 andm = 4, it follows that S∩N contains involutions s1 ∈ K1

and s2 ∈ K2. These two involutions generate a dihedral subgroup ofN , which implies that
this must be the dihedral group of order 4. But then s1 and s2 commute, and it is clear that
e and s1s2 have at least two common neighbors, while being at distance 2, and we have a
contradiction.

The last case we will handle in this section is that of the line graph of the incidence
graph of a generalized hexagon of order (3, 3). Note that it is currently unknown how
many such generalized hexagons there are.

Proposition 3.11. The line graph of the incidence graph of a generalized hexagon of order
(3, 3) is not a Cayley graph.

Proof. Suppose that this graph Γ is a Cayley graph Cay(G,S). Then by the same approach
as in the proof of Proposition 3.10, it follows that G = (Z3

2 o Z7) × D26. Again, G has
a normal subgroup N = (Z3

2 o Z7) × Z13 of index 2, and from the eigenvalues of Γ, we
obtain that m = 2 or m = 4, where m = |S ∩N |.

Observe that N contains seven involutions, which generate an abelian subgroup Z3
2.

Because S ∩ N contains an even number of elements, it also contains an even number of
involutions. But these involutions commute and there are no induced 4-cycles in Γ, so it
easily follows that S ∩ N contains no involutions. Because N only has elements of order
1, 2, 7, 13, 26, and 91, and Γ contains no induces odd-cycles besides triangles, it follows
that S ∩N only contains elements of order 26. Thus, the connection set S has at least two
elements of order 26.
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Next, we consider the normal subgroup K = Z3
2 × D26, with quotient group G/K

isomorphic to Z7. Note that all elements of order 26 in G are in K, so it follows that S∩K
contains at least two elements. Because the quotient matrix corresponding to the equitable
partition of the cosets of K is symmetric and cyclic, it follows that there are essentially
only three options; the first row of the quotient matrix must be[

4 1 0 0 0 0 1
]
,
[
2 2 0 0 0 0 2

]
, or

[
2 0 1 1 1 1 0

]
.

All three matrices have eigenvalues of degree 3 (related to eigenvalues of the 7-cycle; the
roots of x3 +x2− 2x− 1). But Γ has no such eigenvalues, so we have a contradiction.

Finally, we note that Bamberg and Giudici [5] claim that none of the classical gener-
alized hexagons and octagons have a group of automorphisms that acts regularly on the
points. This implies that none of the point graphs of the known generalized hexagons and
octagons are Cayley graphs.

4 Distance-regular graphs with valency 3

All distance-regular graphs with valency 3 are known; see [11, Theorem 7.5.1]. In Table 1,
we give an overview of all possible intersection arrays and corresponding graphs, and indi-
cate which of these is a Cayley graph. The latter will follow from the results in the previous
section, and the investigations in the current section, as commented in the table. Note that
for each intersection array in Table 1 there is a unique distance-regular graph. By n, d, and
g, we denote the number of vertices, diameter, and girth, respectively. The first graph in

Table 1: Distance-regular graphs with valency 3.

Intersection array n d g Name Cayley Comments

{3; 1} 4 1 3 K4 Yes Sec. 3.1
{3, 2; 1, 3} 6 2 4 K3,3 Yes Sec. 3.1
{3, 2, 1; 1, 2, 3} 8 3 4 Cube ∼ K∗3,3 Yes Sec. 3.1
{3, 2; 1, 1} 10 2 5 Petersen ∼ O3 No Sec. 3.4
{3, 2, 2; 1, 1, 3} 14 3 6 Heawood ∼ IG(7, 3, 1) Yes Sec. 3.5
{3, 2, 2, 1; 1, 1, 2, 3} 18 4 6 Pappus ∼ Yes Prop. 3.2

IG(AG(2, 3) \ pc)
{3, 2, 2, 1, 1; 1, 1, 2, 2, 3} 20 5 6 Desargues ∼ DO3 No Prop. 3.1
{3, 2, 1, 1, 1; 1, 1, 1, 2, 3} 20 5 5 Dodecahedron No Folklore
{3, 2, 2, 1; 1, 1, 1, 2} 28 4 7 Coxeter No Prop. 4.1
{3, 2, 2, 2; 1, 1, 1, 3} 30 4 8 Tutte’s 8-cage ∼ No Prop. 3.3

IG(GQ(2, 2))

{3, 2, 2, 2, 2, 1, 1, 1; 90 8 10 Foster No Prop. 4.2
1, 1, 1, 1, 2, 2, 2, 3}

{3, 2, 2, 2, 1, 1, 1; 102 7 9 Biggs-Smith No Prop. 4.4
1, 1, 1, 1, 1, 1, 3}

{3, 2, 2, 2, 2, 2; 126 6 12 Tutte’s 12-cage ∼ No Prop. 3.6
1, 1, 1, 1, 1, 3} IG(GH (2, 2))
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the table that does not occur in the previous section is the dodecahedron. It is however well
known that this graph is not a Cayley graph; see for example [19], where it is shown that
the only fullerene Cayley graph is the football (or buckyball) graph.

Also the fact that the Coxeter graph is not a Cayley graph is folklore. In the literature,
e.g., [17], it is mentioned as one of the four non-Hamiltonian vertex-transitive graphs on
more than two vertices, and it is noted that none of these four is a Cayley graph. Indeed, the
automorphism group of the Coxeter graph is PGL(2, 7), and this group has no subgroups
of order 28.

Proposition 4.1. The Coxeter graph is not a Cayley graph.

The Foster graph is a bipartite distance-regular graph that can be described as the inci-
dence graph of a partial linear space that can be considered as a 3-cover of the generalized
quadrangle of order (2, 2). Its halved graphs are distance-regular with intersection array
{6, 4, 2, 1; 1, 1, 4, 6} (e.g., see [11, Proposition 4.2.2]). The halved graph on the points is
the collinearity graph of this partial linear space.

Proposition 4.2. The Foster graph is not a Cayley graph.

Proof. Suppose that the Foster graph is a Cayley graph. By Lemma 2.1, its halved graphs
are also Cayley graphs, and these are distance-regular with intersection array {6, 4, 2, 1;
1, 1, 4, 6} on 45 vertices. So suppose that this halved graph is a Cayley graph Cay(G,S),
withG of order 45 and S of size 6. By Sylow’s theorem,Gmust be abelian. By Lemma 2.2,
it follows that Γ contains a 4-cycle, which contradicts the fact that both the intersection
numbers a1 and c2 are equal to 1. Thus, a distance-regular graph with intersection array
{6, 4, 2, 1; 1, 1, 4, 6} cannot be a Cayley graph, and hence neither can the Foster graph.

As a side result, we have thus obtained the following.

Corollary 4.3. The collinearity graph of the 3-cover of the generalized quadrangle
GQ(2, 2), the unique distance-regular graph with intersection array {6, 4, 2, 1; 1, 1, 4, 6},
is not a Cayley graph.

What remains is to consider the Biggs-Smith graph. The eigenvalues of this graph are
very exceptional for a distance-regular graph. It has five distinct irrational eigenvalues, and
distinct rational eigenvalues 3, 2, and 0.

Proposition 4.4. The Biggs-Smith graph is not a Cayley graph.

Proof. Suppose that the Biggs-Smith graph Γ is a Cayley graph Cay(G,S). Then |G| =
102, so G has a subgroup H of order 51. It follows that the two cosets of H induce an
equitable partition for Γ. Because Γ is connected and not bipartite, the quotient matrix is
of the form [

m 3−m
3−m m

]
,

where m = 1 or m = 2. This implies that Γ has an eigenvalue −1 or 1, which is a
contradiction.

Now we can conclude this section by the following result.

Theorem 4.5. Let Γ be a distance-regular Cayley graph with valency 3. Then Γ is isomor-
phic to one of the following graphs:
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• the complete graph K4,

• the complete bipartite graph K3,3,

• the cube Q3,

• the Heawood graph IG(7, 3, 1),

• the Pappus graph IG(AG(2, 3) \ pc).

5 Distance-regular graphs with valency 4

The feasible intersection arrays for distance-regular graphs with valency four were deter-
mined by Brouwer and Koolen [13]. In Table 2, we give an overview of these intersection
arrays and corresponding graphs, and indicate which of these is a Cayley graph, like in the
previous section. Note that for each intersection array in the table there is a unique distance-
regular graph, except possibly for the last array, which corresponds to the incidence graph
of a generalized hexagon of order (3, 3).

Table 2: Distance-regular graphs with valency 4.

Intersection array n d g Name Cayley Reference

{4; 1} 5 1 3 K5 Yes Sec. 3.1
{4, 1; 1, 4} 6 2 3 K2,2,2 Yes Sec. 3.1
{4, 3; 1, 4} 8 2 4 K4,4 Yes Sec. 3.1
{4, 2; 1, 2} 9 2 3 P (9) ∼ H(2, 3) Yes Sec. 3.2
{4, 3, 1; 1, 3, 4} 10 3 4 K∗5,5 Yes Sec. 3.1
{4, 3, 2; 1, 2, 4} 14 3 4 IG(7, 4, 2) Yes Sec. 3.5
{4, 2, 1; 1, 1, 4} 15 3 3 L(Petersen) No [2, Prop. 5.1]
{4, 3, 2, 1; 1, 2, 3, 4} 16 4 4 Q4 Yes Sec. 3.3
{4, 2, 2; 1, 1, 2} 21 3 3 L(Heawood) Yes [2, Ex. 5.7]
{4, 3, 3; 1, 1, 4} 26 3 6 IG(13, 4, 1) Yes Sec. 3.5
{4, 3, 3, 1; 1, 1, 3, 4} 32 4 6 IG(A(2, 4) \ pc) Yes Prop. 3.2
{4, 3, 3; 1, 1, 2} 35 3 6 O4 No Sec. 3.4
{4, 2, 2, 2; 1, 1, 1, 2} 45 4 3 L(Tutte’s 8-cage) No Prop. 2.6
{4, 3, 3, 2, 2, 1, 1; 70 7 6 DO4 No Prop. 3.1

1, 1, 2, 2, 3, 3, 4}
{4, 3, 3, 3; 1, 1, 1, 4} 80 4 8 IG(GQ(3, 3)) No Prop. 3.3
{4, 2, 2, 2, 2, 2; 189 6 3 L(Tutte’s 12-cage) No Prop. 3.8

1, 1, 1, 1, 1, 2}
{4, 3, 3, 3, 3, 3; 728 6 12 IG(GH (3, 3)) No Prop. 3.6

1, 1, 1, 1, 1, 4}

In [2], distance-regular Cayley graphs with least eigenvalue −2 were studied. It was,
among others, shown that the line graph of the Petersen graph is not a Cayley graph (see
[2, Proposition 5.1]), and that the line graph of Tutte’s 8-cage is not a Cayley graph (see
Section 2.5). On the other hand, it was shown that the line graph of the Heawood graph
is a Cayley graph, over Z7 o Z3 (see [2, Example 5.7]). In Proposition 3.8, we obtained
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that the line graph of Tutte’s 12-cage is not a Cayley graph. We can therefore conclude this
section with the following result.

Theorem 5.1. Let Γ be a distance-regular Cayley graph with valency 4. Then Γ is isomor-
phic to one of the following graphs:

• the complete graph K5,

• the octahedron graph K2,2,2,

• the complete bipartite graph K4,4,

• the Paley graph P (9),

• the complete bipartite graph K5,5 minus a complete matching,

• the incidence graph of the 2-(7, 4, 2) design,

• the cube graph Q4,

• the line graph of the Heawood graph,

• the incidence graph of the projective plane over GF(3),

• the incidence graph of the affine plane over GF(4) minus a parallel class of lines.

6 Distance-regular graphs with valency 5

In Table 3, we list all known putative intersection arrays for distance-regular graphs with
valency 5. We expect that this list is complete, but there is no proof for this. It contains
all intersection arrays with diameter at most 7. This can be derived from the tables in [10]
and [28]. All of the graphs in the table are unique, given their intersection arrays, except
possibly the incidence graph of a generalized hexagon of order (4, 4) (the last case).

It is well-known that the icosahedron is a Cayley graph. By using GAP [14] and similar
codes as in [1, p. 3], we checked that we can indeed describe the icosahedron as a Cayley
graph over the alternating group Alt(4), with connection set S = {(123), (132), (12)(34),
(134), (143)}. According to Miklavič and Potočnik [21], the icosahedron is the small-
est distance-regular Cayley graph over a non-abelian group, if we exclude cycles and the
graphs from Section 3.1.

Also the Armanios-Wells graph is a Cayley graph. As far as we know, this was not
known before.

Indeed, let G be the group generated by elements gi, with i = 1, 2, 3, 4, each of order
2, such that [gi, gj ] is the same element, a say, for all i 6= j. This group is isomorphic to
(Z2 × Q8) o Z2, where Q8 is the group of quaternions. Now let S = {g1, g2, g3, g4,
g1g2g3g4}. Then it is not hard to check that the Cayley graph Cay(G,S) is distance-
regular with the same intersection array as the Armanios-Wells graph Γ, and hence that it
must be the latter. In order to indeed check this, it is useful to know that Γ is an antipodal
double cover with diameter 4, and that in this case S4 = {a}, and consequently S3 = Sa
(see Section 2.3). We double-checked this with GAP [14], and thus we have the following.

Proposition 6.1. The Armanios-Wells graph is a Cayley graph over (Z2 ×Q8) o Z2.

A few more observations that we should make are the following. The center ofG equals
〈a〉, which is of order 2. The quotient G/〈a〉 is isomorphic to the elementary abelian 2-
group Z4

2, which leads to the well-known description of the quotient graph — the folded
5-cube — as a Cayley graph (see Section 3.3).
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Table 3: Distance-regular graphs with valency 5.

Intersection array n d g Name Cayley Reference

{5; 1} 6 1 3 K6 Yes Sec. 3.1
{5, 4; 1, 5} 10 2 4 K5,5 Yes Sec. 3.1
{5, 2, 1; 1, 2, 5} 12 3 3 Icosahedron Yes Folklore
{5, 4, 1; 1, 4, 5} 12 3 4 K∗6,6 Yes Sec. 3.1
{5, 4; 1, 2} 16 2 4 Folded 5-cube Yes Sec. 3.3
{5, 4, 3; 1, 2, 5} 22 3 4 IG(11, 5, 2) Yes Sec. 3.5
{5, 4, 3, 2, 1; 1, 2, 3, 4, 5} 32 5 4 Q5 Yes Sec. 3.3
{5, 4, 1, 1; 1, 1, 4, 5} 32 4 5 Armanios-Wells Yes Prop. 6.1
{5, 4, 2; 1, 1, 4} 36 3 5 Sylvester No Prop. 6.2
{5, 4, 4; 1, 1, 5} 42 3 6 IG(21, 5, 1) Yes Sec. 3.5
{5, 4, 4, 1; 1, 1, 4, 5} 50 4 6 IG(A(2, 5) \ pc) Yes Prop. 3.2
{5, 4, 4, 3; 1, 1, 2, 2} 126 4 6 O5 No Sec. 3.4
{5, 4, 4, 4; 1, 1, 1, 5} 170 4 8 IG(GQ(4, 4)) No Prop. 3.7
{5, 4, 4, 3, 3, 2, 2, 1, 1; 252 9 6 DO5 No Prop. 3.1

1, 1, 2, 2, 3, 3, 4, 4, 5}
{5, 4, 4, 4, 4, 4; 2730 6 12 IG(GH (4, 4)) No Prop. 3.6

1, 1, 1, 1, 1, 5}

The group G has a normal subgroup 〈g1g2, g2g3, g3g1〉, which is isomorphic to Q8.
This gives rise to an equitable partition of Γ into 4 cocliques of size 8.

In addition, the normal subgroup 〈g1g2, g2g3, g3g1, g4〉 is isomorphic to Z2×Q8, which
gives an equitable partition of Γ into two 1-regular induced subgraphs. Together these form
a matching, and removing the edges of this matching results in a bipartite 4-regular graph.
This turns out to be the incidence graph of the affine plane of order 4 minus a parallel class
(see Section 3.6 and Table 2). Alternatively, we obtain that the latter is isomorphic to the
Cayley graph Cay(G, {g1, g2, g3, g4}).

The remaining intersection array in Table 3 is that of the Sylvester graph. This graph
has distinct eigenvalues 5, 2,−1, and −3 and full automorphism group Sym(6) o Z2 [11,
p. 394].

Proposition 6.2. The Sylvester graph is not a Cayley graph.

Proof. Suppose that the Sylvester graph Γ is a Cayley graph Cay(G,S), then |G| = 36 and
|S| = 5. Because Γ has girth 5, the group G is non-abelian by Lemma 2.2. It is known that
there are 10 non-abelian groups of order 36, of which two do not have a normal subgroup
of order 9; these are Z3 ×Alt(4) and (Z2 × Z2) o Z9.

IfG is the latter group (and contains elements of order 9), then it has automorphisms of
order 9. This contradicts the fact that the full automorphism group of Γ equals Sym(6)oZ2.

Next, we will also show that G cannot be Z3 × Alt(4), and hence that G must have a
normal subgroup of order 9. Indeed, suppose that G equals Z3×Alt(4). The center of this
group is isomorphic to Z3, say Z(G) = 〈c〉, with c of order 3. Moreover, G has a normal
subgroupH isomorphic to Alt(4) (with cosetsH,Hc,Hc2 that form an equitable partition
of Γ).
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Now suppose that hci ∈ S for some h ∈ H and i = 0, 1, 2. Then the order of h must
be 2, for if it were 3 (or 1, the only other options), then e ∼ hci ∼ (hci)2 ∼ (hci)3 = e,
which contradicts the fact that Γ has girth 5. Moreover, if h ∈ S, then hc and hc2 = (hc)−1

are not in S because that would imply that e ∼ hc ∼ c ∼ hc2 ∼ e, which again gives a
contradiction.

Because Alt(4) has only three involutions, there are also only three involutions h1, h2,
and h3, say, in H . Thus, it follows without loss of generality that S = {h1, h2c, h2c2, h3c,
h3c

2}. However, now e ∼ h2c ∼ h3h2 ∼ h2c
2 ∼ e, which gives the final contradiction,

and hence G cannot be Z3 ×Alt(4).
Thus, the group G has a normal subgroup N of order 9. The four cosets of N form an

equitable partition of Γ with quotient matrix
n1 n2 n3 n4
n2 n1 n4 n3
n3 n4 n1 n2
n4 n3 n2 n1

 ,
for certain n1, n2, n3, n4 summing to 5, and because Γ is connected, at most one of n2, n3,
n4 can be 0. Now the quotient matrix has eigenvalues n1+n2+n3+n4, n1+n2−n3−n4,
n1 − n2 + n3 − n4, and n1 − n2 − n3 + n4. Because Γ has no eigenvalues 3 and 1, it
follows that n1 = 0, n2 = 1, n3 = 2, and n4 = 2, up to reordering of the latter three (we
omit the easy but technical details).

So there is one coset that intersects S in n2 = 1 element. Let us call this element a,
then clearly O(a) = 2, and the subgroup N〈a〉 is a normal subgroup (of index 2). Given
the quotient matrix, it follows easily that every vertex in the coset Na except a itself is at
distance 2 from e.

Now we claim that a is the only involution in N〈a〉. Clearly there are no involutions
in N because it has order 9. Every other element in Na is at distance 2 from e, and hence
can be written as s1s2 for some s1, s2 ∈ S. Suppose now that O(s1s2) = 2. Then
e ∼ s2 ∼ s1s2 ∼ s2s1s2 ∼ e, a contradiction since the girth of Γ is 5, and we proved our
claim.

Now suppose that s ∈ S, with s 6= a. Then s−1as ∈ N〈a〉 since N〈a〉 is a normal
subgroup. Because O(s−1as) = 2, it follows from our above claim that s−1as = a. Thus,
sa = as and e ∼ a ∼ sa = as ∼ s ∼ e, which is again a contradiction to the girth of Γ,
and which completes the proof.

Now we can conclude this section with the following proposition.

Proposition 6.3. Let Γ be a distance-regular Cayley graph with valency 5, with one of the
intersection arrays in Table 31. Then Γ is isomorphic to one of the following graphs:

• the complete graph K6,

• the complete bipartite graph K5,5,

• the icosahedron,

• the complete bipartite graph K6,6 minus a complete matching,

• the folded 5-cube,

1Currently, these are the only known putative intersection arrays for distance-regular graphs with valency 5.
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• the incidence graph of the 2-(11, 5, 2) design,

• the cube graph Q5,

• the Armanios-Wells graph,

• the incidence graph of the projective plane over GF(4),

• the incidence graph of the affine plane over GF(5) minus a parallel class of lines.

7 Distance-regular graphs with girth 3 and valency 6 or 7

Hiraki, Nomura, and Suzuki [16] determined the feasible intersection arrays of all distance-
regular graphs with valency at most 7 and girth 3 (i.e., with triangles). Besides the ones
with valency at most 5 that we have encountered in the previous sections, these are listed
in Table 4. For each of the intersection arrays {6, 3; 1, 2} and {6, 4, 4; 1, 1, 3}, there are
exactly two distance-regular graphs (as mentioned in the table). For all others, except pos-
sibly the last one with valency 6, the graphs in the table are unique, given their intersection
arrays. For this last case, it is unknown whether the generalized hexagon of order (3, 3) is
unique.

Table 4: Distance-regular graphs with girth 3 and valency 6 or 7.

Intersection array n d g Name Cayley Reference

{6; 1} 7 1 3 K7 Yes Sec. 3.1
{6, 1; 1, 6} 8 2 3 K2,2,2,2 Yes Sec. 3.1
{6, 2; 1, 6} 9 2 3 K3,3,3 Yes Sec. 3.1
{6, 2; 1, 4} 10 2 3 T (5) No Sec. 3.4
{6, 3; 1, 3} 13 2 3 P (13) Yes Sec. 3.2
{6, 4; 1, 3} 15 2 3 T (6) ∼ GQ(2, 2) No Sec. 3.4
{6, 3; 1, 2} 16 2 3 L2(4), Shrikhande Yes Sec. 3.3
{6, 4, 2; 1, 2, 3} 27 3 3 H(3, 3) Yes Sec. 3.3
{6, 4, 2, 1; 1, 1, 4, 6} 45 4 3 halved Foster No Cor. 4.3
{6, 3, 3; 1, 1, 2} 52 3 3 L(IG(13, 4, 1)) No Prop. 3.9
{6, 4, 4; 1, 1, 3} 63 4 3 GH (2, 2) (2×) No Prop. 3.8
{6, 3, 3, 3; 1, 1, 1, 2} 160 4 3 L(IG(GQ(3, 3))) No Prop. 3.10
{6, 3, 3, 3, 3, 3; 1456 6 3 L(IG(GH (3, 3))) No Prop. 3.11

1, 1, 1, 1, 1, 2}
{7; 1} 8 1 3 K8 Yes Sec. 3.1
{7, 4, 1; 1, 2, 7} 24 3 3 Klein Yes Prop. 7.1

What remains is to consider the Klein graph. We observe that this is a Cayley graph on
the symmetric group Sym(4). Indeed, one can check2 that with

S = {(123), (132), (12)(34), (13), (14), (1234), (1432)},

the Cayley graph Cay(Sym(4), S) is a distance-regular antipodal 3-cover ofK8, and hence
it must be the Klein graph. We note that in this case the set S3 = {(124), (142)}, and de-

2We double-checked this with GAP [14].
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spite the fact thatN3 = S3∪{e} is not a normal subgroup, its right cosets form an equitable
partition (with quotient K8, of course); cf. Section 2.3. We thus have the following.

Proposition 7.1. The Klein graph is a Cayley graph over Sym(4).

We also note that the normal subgroup {e, (12)(34), (13)(24), (14)(23)} gives an eq-
uitable partition into 6 parts, with each coset inducing a matching (which together gives
a perfect matching). More interesting is the (normal) alternating subgroup Alt(4), which
gives an equitable partition into two parts. On each part, the induced subgraph is the trun-
cated tetrahedron, which is thus a Cayley graph Cay(Alt(4), {(123), (132), (12)(34)}).
This is also the line graph of a bipartite biregular graph on 4 +

(
4
2

)
vertices with valen-

cies 3 and 2, respectively (the Pasch configuration), and a subgraph of the icosahedron;
cf. Section 6.

We conclude with the following proposition.

Proposition 7.2. Let Γ be a distance-regular Cayley graph with girth 3 and valency 6 or
7. Then Γ is isomorphic to one of the following graphs:

• the complete graph K7,

• the complete graph K8,

• the complete multipartite graph K2,2,2,2,

• the complete multipartite graph K3,3,3,

• the Paley graph P (13),

• the lattice graph L2(4),

• the Shrikhande graph,

• the Hamming graphs H(3, 3),

• the Klein graph.
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