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Permutation Tests for Heterogeneity
Comparisons in Presence of Categorical
Variables with Application to University

Evaluation

Rosa Arboretti Giancristofat@nd Stefano Bonnihi

Abstract

In social sciences researchers often meet the emolf determining if
the distribution of a categorical variable is maancentrated in population
X; than in populationX,. For example the effectiveness of two different
PhD programs can be evaluated in terms of the bgésreity of the set of
job opportunities. The job opportunities are nonhinategorical variables
and populationsX; and X, include all PhD holders for program 1 and
program 2. We may define that a PhD program istdyethan another” if it
is able to offer a larger variety of job opportie&. Several other examples
can be mentioned to highlight the importance ofehegeneity comparison
problems in social sciences; moreover this probtaours also very often
in genetics, biology, medical studies and otheesces.

The nonparametric solution of this problem has kinties to that of
permutation testing for stochastic dominance oneogd categorical
variables, i.e. testing under order restrictionfs.otdering of probability
parameters iHgy is unknown and it has to be estimated by sampliatad
only approximate nonparametric solutions are pdesilwithin the
permutation approach. Main properties of test sohg and some Monte
Carlo simulations in order to evaluate the tesehdviour undeHy and Hy,
will be presented. A real problem concerned withiygnsity evaluation is
also discussed.

Indexes of heterogeneity

In social sciences researchers often meet the @mobbdf establishing if the
distribution of a categorical variable is more centated in populatioX; than in
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populationX,. For example the effectiveness of two differenDPprograms can
be evaluated in terms of the heterogeneity of theoEgob opportunities. The job
opportunities nominal categorical variables andaponsX; and X, include all
PhD holders for program 1 and program 2. We mayngethat a PhD program is
“better than another” if it is able to offer a largvariety of job opportunities. In
this case the monitoring of the first employmentRfD holders through a post-
doc survey is useful. Another example is given whetompany can be interested
in the evaluation of the degree of heterogeneity thé customer base.
Heterogeneity can concern educational qualificatidgmbbies or other categorical
variables. In this case the heterogeneity of thearuer base of product 1 and that
of product 2 can be compared to obtain useful m@tion for the marketing
strategy.

In the evaluation of an academic course the momgprof the type of
secondary school from which students come can bentsdrest for academic
management. A heterogeneity measure of the distabuif the type of secondary
school can be adopted in order to compare two iffeacademic courses. Several
other examples can be mentioned to highlight the@artance of heterogeneity
comparison problems in social sciences, but thablem occurs very often also in
genetics, biology, medical studies and other science

The concept ofheterogeneityis mostly used in the field of descriptive
statistics.Homogeneitynotoriously means the disposition of a statistiaiiableX
to always be manifested in the same categry = 1,...k, 1<k <o. A set of
statistical units is therefore homogeneous if aflites that make it up are
characterized by the same category. If this doesocotr, that is if at least two
categories in the set of statistical units are thutihen heretogeneity is indicated
by absence of homogeneity. Therefore the degree otdérdgeneity obviously
depends on the number of categories observed ak asebn their associated
frequenciesln particular the heterogeneity is at a minimumhé tdistribution of
the observed variable is degenerate, i.e. it prtssaisingle category with a relative
frequency equal to 1 and all the others with a festpy equal to 0. On the other
hand heterogeneity is at a maximum if the varialsleequally distributed on all
categories.

Consequently an index that syntetically translatesdiagree of heterogeneity
of the observed phenomenon must have the followhayacteristics:

To assume minimum value when the phenomenon undely Ss manifested
with a single category, i.e. in the presence of mmaxn homogeneity;

To assume increasingly greater values the more ooeesmaway from the
degenerate distribution and the more one approattteesquidistribution;.

To assume the maximum value in presence of equilligton.

Heterogeneity can be associated not only with theepnhof concentration but
also with that of diversity, that is the attitude afqualitative variable to assume
different modalities. Itis directly associated with the concept of uncettaignd
that of information because in the case of minimbeterogeneity also the
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uncertainty of a decision is at a minimum and thf@rnmation derivable from the
single observation is at a maximum. In the oppost®@se of maximum
heterogeneity one has maximum uncertainty and mininmformation derivable
from the single unit. Starting from this notion,ricus indicators were proposed of
which only the most commonly used will be mentioned.

The index of heterogenity proposed by Gini (1912}, &ovariableX which
assumek categories with relative frequencigsi=1,2,...k, is

G=Y5, fill-f)=1-3K 2, (1.1)

whose normalized version G* = G(k — 1)k.
Shannon's index of diversity, also called indexeafropyof a distribution, is
associated with information theory (Shannon, 1948) s

H =&, filog(l/ f;) = -2, fi log(f; ) (1.2)

where log()J arenatural logarithms, even though in the originalsren they were
in base 2, and we assume that 0 log(0) = 0. Thenabzed version isH*=
H/log (k).

A generalized index taken from the field of inforiwa theory, is the
generalized index of entromf ordera proposed by Rényi (1966)

Hg =

1
l_alogzikzlfia ) (13)

with a # 1. Hq is a non-increasing function of Asa varies, one obtains different
indices of heterogeneity and some particular casesng themost frequently used
are:

. 1 K call_ K _
Hl = Ial.r:n1|:1_a|Og(Zi:1 fi )} - _Zizl fi log(fi ) =H>
H, = —Iog(zik=l fiz): -log(L-G)

H, = [IlifrlL_lalog(zrzl f“ )} = —|09{5Up(fi )} '

i=1,..k
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2 Permutation tests for heterogeneity: The two-
sample case

In the previous section we dealt with heterogené&ityn the descriptive point of
view, namely considering the indices that measueediégree of heterogeneity of a
distribution of frequencies in a certain set oftisttacal units. From now on we will
take into consideration the inferential problem @¥hiconsists of comparing the
sampling heterogeneity of a categorical variaklan two populations, in order to
test the hypothesis that the heterogeneity of onailadipn is greater than that of
the other. In doing so we shall use some of théecesldescribed in section 1. It is
assumed that the values of the varia¥lean fall within one of th& categoriesA,
A, ..., A

From a formal point of view, given two populatioXs e X,, if we indicate
with Het(X;) the degree of heterogeneity of the populatij =1,2), the problem
of hypothesis testing can be expressed as follows

Hg : Het(X;) = Het(X>)
against
H, : Het(X) > Het(X5)-

We take into consideration the indeces of Gént Z; pi(1 - pi), of Shannon H
= - Zi pi log(pi)) and the versions of that of Rényi far= 3 and fora - oo,
corresponding tdHs = - 1/2 log(Z; pi 3) andH. = - log [ sup ( p;i )], wherep; =
Pr {X O A}. The choice oHjsinstead ofH,, which is perhaps the index of Rényi
most used in the literature, is dictated by the thatH, is one-to-one relatedith
G, and therefore the two indices imptile same inferential conclusions when
applying theory and methods of permutation testother words, two indices are
permutationally equivalent. By indicating wih, i = 1,2,..k, the parameters of the
underlying distribution, withpg), i =1,2,...k, we indicate the same parameters
arranged in non-increasing ordgiy = p) 2 ... 2 pr). Four indicesG, H, Hz e Ha,
are order invariant i.e. their value does not change if they are dated with
ordered parameterp( instead of with parametens. If we indicate withp;g,
i=1,2,...k, the orderedprobabilities for populatiorj, j = 1,2, the fact that the
indices of heterogeneity are order invariant allowss to express heterogeneity
through ordered parametettsvo populations such thdpig = p2g, i=1,2,...Kk},
i.e. with the same ordered distribution, are equadtleterogeneousMoreover, if
{p1iy = p2¢y, i=1,2,...k} data of two samples are exchangeable and so the
permutation testing principle applies.In addition, if Pji) = Xsi pjs are the
cumulative probabilities for populationreferred to the ordered parameters, the
null hypothesis of our problem is equivalent to:
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Vice versa, in the case of greater heterogeneipopiulationX; with respect to
populationX, implies thatPi; < P, j must be valid and the striatequality is
valid for some values af In formal terms we can write:

H,:P, <P, 0 andp, <p, for atleastone.

The definition of the problem by means of cumulatm®babilities makes it
very similar to the problem of stochastic dominarice ordered categorical
variables, with the peculiarity that the order igedeined according to the values
of the parameterpg; and not according to the categories the variabtan assume.
Therefore, our problen can be referred to as einedominance in heterogeneity
We may observe thaX in problems of heterogeneity can be a nominal \deia
because heterogeneity is a property that concernbaprilities and does not
involve the categorie®\, of X, whereas the problems of stochastic dominance
assume thatlassesA;, Ay,..., Ac.are ordered.

For problems of stochastic dominance the literanffers quite a long list of
exact and approximate solutions. Among the manynveation those of Agresti
and Klingerberg (2005), Haat al. (2004), Hirotsu (1986), Loughin and Scherer
(1998), Loughin (2004), Lumely (1996), Nettleton aBdnerjee (2001). For the
univariate case most of the methodological solgipnoposed are based on the
restricted maximum likelihood ratio test. Among $kewe mention Coheat al
(2000), Silvapulle and Sen (2005), Wang (1996).gbnmeral these solutions are
criticized because the distributions under the rantl alternative hypotheses are
asymptotically mixtures of chi-squared variables witheights essentially
dependent on the unknown distributidh of the population. Nonparametric
proposals are those of Troendle (2002), BrunnerMndzel (2000), Pesarin (1994
and 2001), and Pesarin and Salmaso (2006). Theerdattbased on the
nonparametric combination of dependent permutatiests (NPC), are exact,
unbiased, and consistent test&s far as we are concerned in difference of
heterogeneity, it is reasonable to set as testssiatihe difference of sampling
indices therefore arriving at statistics such as:

Te = G1 — Gy = 3 (f2y” - f1y°) (test statistic based on Gini’s indéx),

Th = Hy — Ho = Z; [foplog(fa))- filoa(fi)] (test statistic based on Shannon’s
entropyH),

Ths = Hay — Haz = 1/2 [log€i f2)°)-log(Zi f1y%)] (test statistic based on Rényi’s
index Hs),
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The = He 1 — He 2 = log(supfzg))- log(sup f1g)) (test statistic based on Rényi's
indexH.),

whereG;j, H;, Hz; andH. j indicate the sampling values calculated for sampjle=
1,2. Clearly the tests will be significant for largalues, i.e. large values observed
in the test statistic can lead to the rejectiortha null hypothesis in favour of the
alternative. In order to apply the tests accordingthe usual approach, it is
necessary to know their sampling distributions scbje a proper estimate under

Ho of the vector of the marginal ordered probabiktig,,,p.,....p.,) s Pecause the

vectors of the probabilitiespf, pj2....pK)" as well as those of the ordered
probabilities Pja), Pi2)---» Piw)'» ] = 1,2, are unknown. In reality this question is
not easy to solve exactly, with perhaps the excepidrere k = 2. For this
purpose, instead of the true ordering of unknownapeeters{p;.), Pj2).--, PiK);
j=1,2 }, we utilize their estimates based on ordereing dbserved frequencies
(two empirical orderings):

thus,obtaining the following ordered table:

Table 1: Estimation of the probabilities ordered by relativequencies.

Classes Sample sizes
Population (1) (2) k)
P f11) f12) o f1) Ny
P2 f2 () f2 2 f2 w N,
fD(]_) f|:|(2) s fD(k) N

We note that the order is realized separately fchesample and as it is based
on relative frequencies rather than on classespuid be that the-th column of
Table 1 refers to two diverse classes for the tanm@les. In other words clasg (
corresponds to the class whose observed relatigguéncy occupies theth
position in the ordered sequence and can be diftefer the two samples.
Obviously the order imposed by the frequencies prtssamandontomponent and
may varydepending upon sampling variations. Therefore uridgidata are not
exactly exchangeable as it would be if the true profiepopulation parameters
were known and used. The exchangeability property oaly be obtained
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asymptotically. Therefore, permutation solutions approximate for finite sample
sizes and exact only asymptotically.

Using the data in Table 1, the observed valueheftest statistic3g, T3, T,

and T,; are calculated. For each permutation of the datase obtains a new

permuted table (as in Table 2), with different \vedufrom those of the observed
table but with fixed marginal frequencies.

Table 2: Absolute frequencies after a permutation of data.

Classes Sample sizes
Population (1) (2) k)
P1 I’l*l(l) n*l(z) I’l*l(k) Ny
P> I’l*z (1) n*z 2) I’l*z K) no
Noy) No2) No N

Using the data of the permutated table in the datans of test statistics, one
obtains the permutation valudg’, T,/, T, e T, . Calculating the values that can
be obtained making all the possible permutations obtains the permutation
distribution of each test statistic. Alternativetyis possible to extract from the set
of all the possible permutations a random samptheis tobtaining conditional
Monte Carlo estimates. In this way, for each of thar tests it is possible to
calculate theg-value that, if B is the number of considered permutations, ismgive

by
=45 212 |x)iB,
0 H:#(THD >T3 |x)/B,

0 HS:#[TES >T8, |x)/B,

0 Heo :#(THoo > TS |x)/ B,

respectively for the test based @GnH, Hz andH., where #(TGD >TS |X) indicates

the number of times permutation values are not totian the observed ones,
conditionally on the datas&t={X;, i=1,...n; j=1,2}. Therefore, according to the
general deciding rule, if thp-valueis less than or equal to a fixed significance
level, the null hypothesis is rejected in favourtioé¢ alternative, otherwise the null
hypothesis cannot be rejected. In order to sumreasir procedure, with reference
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to permutation tests, after transformation of thgioal categories A Ao, ..., A«
into the ordered categories (1), (2), ..k),(where, for each sample, (1) is the
category with the highest frequency, (2) is theegaty with the second ordered
frequency,..., (k) is the category with the lowestquency, we apply a two sample
permutation test for categorical variables. Obsérdata are generally organized in
a 2 xK contingency table (see Table 1). Permutation aislig probably easier if,
in place of usual contingency tables, data are-byitinit represented by listing
then=n; + n, individual records. In the 2 K design, it is intended that in the
dataset firsi; records belong to the first sample and the regh&second. It is
worth observing that in univariate two-sample dasigsince they contain exactly
the same amount of information on the unknown distion of data, the marginal

frequencies the pooled data s¢tas well as any of its permutation)s* are
equivalent sets of sufficient statistics undy. UnderHy data are exchangeable,
hence it is possible to change the position (the)rof some statistical units iK
assigning them to a different sample respect to dhserved dataset. In other
words it is possible to make permutations of théadset. Considering all the

. (N

possible
m

of the test statistic for each permutation, it isspible to determine the
permutation distribution and to calculate the pwes of the test. After each
permutation, the number of units with associategary {) is equal tong; (for
eachj) and it does not change but number of these wss®ciated to the first
rows (sample 1) and to the othesr (sample 2) can change. For this reason the
column marginals and the row marginals of the aoygncy table remain constant
but the frequencies;; andfj; may vary.

j permutations, or a random sample of them, andutating the value

3 Simulation study

In order to assess the properties of the test wmsider a simulation study in which
data are generated according to the following model

XO1l+Int[KDU?]

whered//R, U 0OU(0,1) andint [ [0 denotes the integer part of].
The random variablX is therefore discrete and its domain consistsheffirstK
positive integers. The situation of maximum hetemgty can be simulated

makingd = 1, because in this case

X OU(L,2,...K) andfi =# (X =i) /n O1/K,
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wheren is the sample size. Increasidghe distribution ofX moves further away
from maximum heterogeneity, approaching that of mmasxm homogeneity where
frequencies tend to be concentrated on the firsggmay. The choice of this model,
as an alternative to the generation of data hymotiveg some distributions of
probabilities for the two populations, mainly dedsron the fact that studyirthe
power of a nonparametric test, the variety of psgime alternatives for
simulations is so vast that it is almost impossitdeconsider them all (Lehmann,
1953). In this way we can generate discrete digtrams with different degrees of
heterogeneity using a single parameter instead,0hs we would if data were
generated from a completely specified distributisach aspi, p2,..,px. Generating
the data as described, for some sample sizes, sonmes of parametes andd,
for respectively populatiorX; and X, and some values of nominal significance
level, we calculated the rejection rates of foustsein order to evaluate their
degree of approximation as well as their power.

Table 3: Rejection rates of four tests of heterogeneityartie null hypothesis (K=8).
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Table 4: Rejection rates of four tests of heterogeneity urile null hypothesis (K=16).

01 O ny no alfa nominal Test

0.01 0.05 0.10
1.5 1.5 20 10/ 0.0060 0.051p 0.10754 T
0.0030 | 0.0290] 0.0730 T
0.0125| 0.0585| 0.1185 .7
0.0120 | 0.0285| 0.0470 I
40 30| 0.0080| 0.0395 0.0810 4T
0.0060 | 0.0340] 0.0700 T
0.0095 | 0.0540] 0.0965% .7
0.0105| 0.0345| 0.0780 I
60 30| 0.0070| 0.0420 0.0910 4T
0.0045| 0.0390] 0.0840 T
0.0115| 0.0560] 0.1155% .7
0.0080 | 0.0305| 0.072% I
2 2 20 10| 0.0110[ 0.063% 0.1245 4T
0.0080 | 0.0490] 0.0955 T
0.0185| 0.0755| 0.1340 7
0.0100 | 0.0355| 0.0560 I
40 30| 0.0105| 0.057Q 0.1100 4T
0.0100 | 0.0525| 0.1020 T
0.0155| 0.0665| 0.1215% .7
0.0065 | 0.0350] 0.0730 I
60 30| 0.0085| 0.047Q9 0.102p T
0.0090 | 0.0465| 0.1070 T
0.0125| 0.0605| 0.1220 47
0.0060 | 0.0250] 0.0670 I
2.5 2.5 20 10/ 0.0125 0.061p 0.12004 T
0.0125| 0.0505| 0.1050 T
0.0200 | 0.0690] 0.1355% .7
0.0055 | 0.0265| 0.0500 nF
40 30| 0.0145| 0.057§ 0.114p 4T
0.0095| 0.0445| 0.1120 T
0.0135| 0.0545| 0.1195% .7
0.0050 | 0.0270] 0.0600 nF
60 30| 0.0115| 0.0605 0.1120 4T
0.0120| 0.0570] 0.1010 T
0.0150 | 0.0640] 0.1160 .7
0.0070 | 0.0320] 0.0720 I

Table 3 reports the rejection rates under the hypothesis for a discrete
variable withK=8 categories, for some degrees of heterogeneitl @i and &
ranging from 1 to 3. 2000 dataset were generatett @ath 2000 permutations in
order to approximate the related permutation distiion. Reported results show
that, in general, the most conservative test i$ blaged on the indeid, of Rényi.
For the other three tests the performances are sierifar, even though that based
on Hjz shows itself to be slightly anticonservative batany case we can conclude
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that the tests are substantially well approximatadgeneral, by increasing @,
0, andd;-04, the rejection rates tend to increase.

Table 4 shows the results of analogous simulatfon¥ = 16 categories. Also
in this case, in the presence of maximum heteraggnthe rejection rates are
clearly below the nominal significance levels. Agéhe two tests based on Rényi's
statistics stand oufly. for its lower than nominal rejection rates angs, vice
versa, for itstendency towards rejection rates slightly higheantithe nominal
levels. In any cas&ps; behaves not so far away from the tests based anr@m’s
and Gini’s statistics.

Table 5: Power of nonparametric tests of heterogeneity (Kellses).

01 O Ny no alfa nominal Test

0.01| 0.05| 0.10
2 2.5 90 30 0.08100.2050{0.3190| Ty
0.0830 0.2210/0.3420| T¢
0.0970 0.2290|0.3660| Tys
0.0460 0.1600|0.2520| Te
2 3 0.21100.4360/0.5790| Ty
0.23750.4690/0.6095|T¢g
0.2620 0.4920/0.6270| Tys
0.15650.3780/0.5110| The
2 3.5 0.41800.6630/0.7860| Ty
0.4330 0.6970/0.8090| Tg
0.4510 0.7090/0.8180| Tys
0.3320 0.5880| 0.7260| The
2 3 60 30 0.19900.4170{0.5710| Ty
0.2070 0.4280/0.5910| T¢
0.2440 0.4580/0.6130[ Tys
0.1400 0.3290|0.4790| The
2 3.5 0.35400.6150/0.7330| Ty
0.3710 0.6310/0.7540| T¢
0.3930 0.6470/0.7620| Tys
0.2690 0.5200| 0.6570| The
2 4 0.548(00.7790/0.8750[ Ty
0.5620 0.8090/0.8910| T¢
0.5900({0.8240] 0.8960| Tys
0.4500[0.7190{0.8320| Ty

To evaluate the power of four tests we consideredessituations in which the
heterogeneity of the two populations were differdntthis case 1000 dataset were
generated and, for each of these, 1000 permutati©hsiously, the power of the
tests increases with the increase in the differavfcheterogeneity parameteds
i=1,2 (Table 5). Comparing the performances of i ftests it emerges that the
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test Ty, seems slightly worse than the others, whereasetegence is shown for
the testTys, based on Rényi's entropy index of order 3.

4 An example: University Evaluation

In this section we deal with an application problenthe context of the University
Evaluation. The data refer to the type of secondsslool (TSS) attended by
graduates of the Faculties of Engineering and Eoooe at the University of
Ferrara in 2005 (see Table 6). The problem consisthe comparision of the two
faculties from the point of view of TSS attended dsaduates. The aspect of
interest is the heterogeneity of TSS. High hetene}fy means that the
undergraduate degree can be obtained by studemisngofrom a large set of
secondary schools. The goal of the study is to ansthkis question. “Is the
heterogeneity of TSS of graduates in Economics tgrethan that of TSS of
graduates in Engineering?”. In order to answer tugstion we applied a two-
sample heterogeneity test for categorical data ame-sided alternative
hypothesis.

Table 6: Type of secondary school attended by graduatelseaUniversity of Ferrara in
2005 (relative frequencies). Data from Almalaureav(v.almalaurea.it).

Type of Secondary School Economics |Engineering
Scientific 38.2 43.3
Technical 48.5 50.2
Humanistic 8.2 4.5
For elementary school teacher 1.7 0.0
Linguistic 1.7 0.0
\Vocational 1.7 2.0
Artistic 0.0 0.0
100 100

The system of hypotheses can be formulated aswstlo

Ho: Het(Economics) =Het(Engineering)
against

H1i: Het(Economics) >Het(Engineering).
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Table 7: Ordered table of the relative frequencies.

Ordered frequencies | Cumulative ordered frequencies
Ordered
Class | Economics |Engineering| Economics Engineering

(1) 48.5 50.2 48.5 50.2
(2) 38.2 43.3 86.7 93.5
(3) 8.2 4.5 94.9 98

(4) 1.7 2.0 96.6 100
(5) 1.7 0.0 98.3 100
(6) 1.7 0.0 100 100
(7) 0.0 0.0 100 100

Looking at the plots in figure 1 we can say thagoni a descriptive point of
view, TSS of Economics dominates that of Enginggrmheterogeneity.

100 ~

90 +

80 +

—=— Economics
70 -

—e— Engineering

60 ~

50 +

Percentage Cumulative Frequences

40

@ @) (©) @ 6 (6) @)

Ordered classes

Figure 1: Cumulative relative frequencies for the orderealssks.

Using a simple Monte Carlo random sampling Bf= 50.000 permutations
from the set of all permutations we obtain fhealuesreported in Table 8.
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Table 8: p-value of the nonparametric tests of heteroggneit

Test p-value
Th 0.05924
Te 0.10362
Ths 0.14158
THeo 0.38760

5 Concluding remarks

This work presents an inferential nonparametriccprture that allows us for a
solution to the problem of hypothesis testing, ihieh the objective is comparing
the heterogeneity of two populations on the basisampling data, i.e. to test the
hypothesis that the heterogeneity of one populatsogreater than that of another
population.

The proposed test statistic consists of the comsparof the sampling indices
of heterogeneity calculated for the two samples anchn vary according to the
index of heterogeneity considered. Therefore weppse a general method to
solve a peculiar problem. We think that other pbkesindeces of heterogeneity,
i.e. other test statistics, can be adopted withm game framework. We think that
the kind of index used is one of the aspect of slodution but not the main
problem. In fact from the simulation results we ay that the performances of
the four tests are very similar and we cannot cotelthat one test is the best.
The simulation study allowed us to assess thaptbposed nonparametric tests of
heterogeneity show high degree of approximationeuritie null hypothesis and
good power behaviour under the alternative. Theatépn rates increase with the
increase in the homogeneity of distributions. Amdhg test statistics considered,
that based on the index of Rényi of order 3 seemnshbw higher rejection rates
underHp but a slightly higher power undeét.

Moreover the choice of a nonparametric test prowebe both practical and
efficient, easy to apply and it requires few andalv@onparametric assumptions.
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