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Permutation Tests for Heterogeneity 
Comparisons in Presence of Categorical 
Variables with Application to University 

Evaluation 

Rosa Arboretti Giancristofaro1 and Stefano Bonnini2 

Abstract 

In social sciences researchers often meet the problem of determining if 
the distribution of a categorical variable is more concentrated in population 
X1 than in population X2. For example the effectiveness of two different 
PhD programs can be evaluated in terms of the heterogeneity of the set of 
job opportunities. The job opportunities are nominal categorical variables 
and populations X1 and X2 include all PhD holders for program 1 and 
program 2. We may define that a PhD program is “better than another” if it 
is able to offer a larger variety of job opportunities. Several other examples 
can be mentioned to highlight the importance of heterogeneity comparison 
problems in social sciences; moreover this problem occurs also very often 
in genetics, biology, medical studies and other sciences. 

The nonparametric solution of this problem has similarities to that of 
permutation testing for stochastic dominance on ordered categorical 
variables, i.e. testing under order restrictions. If ordering of probability 
parameters in H0 is unknown and it has to be estimated by sampling data, 
only approximate nonparametric solutions are possible within the 
permutation approach. Main properties of test solutions and some Monte 
Carlo simulations in order to evaluate the tests’ behaviour under H0 and H1, 
will be presented. A real problem concerned with University evaluation is 
also discussed. 

1 Indexes of heterogeneity 

In social sciences researchers often meet the problem of establishing if the 
distribution of a categorical variable is more concentrated in population X1 than in 
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population X2. For example the effectiveness of two different PhD programs can 
be evaluated in terms of the heterogeneity of the set of job opportunities. The job 
opportunities nominal categorical variables and populations X1 and X2 include all 
PhD holders for program 1 and program 2. We may define that a PhD program is 
“better than another” if it is able to offer a larger variety of job opportunities. In 
this case the monitoring of the first employment of PhD holders through a post-
doc survey is useful. Another example is given when a company can be interested 
in the evaluation of the degree of heterogeneity of the customer base. 
Heterogeneity can concern educational qualifications, hobbies or other categorical 
variables. In this case the heterogeneity of the customer base of product 1 and that 
of product 2 can be compared to obtain useful information for the marketing 
strategy.  

In the evaluation of an academic course the monitoring of the type of 
secondary school from which students come can be of interest for academic 
management. A heterogeneity measure of the distribution of the type of secondary 
school can be adopted in order to compare two different academic courses. Several 
other examples can be mentioned to highlight the importance of heterogeneity 
comparison problems in social sciences, but this problem occurs very often also in 
genetics, biology, medical studies and other sciences. 

The concept of heterogeneity is mostly used in the field of descriptive 
statistics. Homogeneity notoriously means the disposition of a statistical variable X 
to always be manifested in the same category Ai, i  = 1,…,k, 1< k <∞. A set of 
statistical units is therefore homogeneous if all units that make it up are 
characterized by the same category. If this does not occur, that is if at least two 
categories in the set of statistical units are found, then heretogeneity is indicated 
by absence of homogeneity. Therefore the degree of heterogeneity obviously 
depends on the number of categories observed as well as on their associated 
frequencies. In particular the heterogeneity is at a minimum if the distribution of 
the observed variable is degenerate, i.e. it presents a single category with a relative 
frequency equal to 1 and all the others with a frequency equal to 0. On the other 
hand heterogeneity is at a maximum if the variable is equally distributed on all 
categories. 

Consequently an index that syntetically translates the degree of heterogeneity 
of the observed phenomenon must have the following characteristics: 

To assume minimum value when the phenomenon under study is manifested 
with a single category, i.e. in the presence of maximum homogeneity; 

To assume increasingly greater values the more one moves away from the 
degenerate distribution and the more one approaches the equidistribution;. 

To assume the maximum value in presence of equidistribution. 
Heterogeneity can be associated not only with the concept of concentration but 

also with that of diversity, that is the attitude of a qualitative variable to assume 
different modalities. It is directly associated with the concept of uncertainty and 
that of information because in the case of minimum heterogeneity also the 
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uncertainty of a decision is at a minimum and the information derivable from the 
single observation is at a maximum. In the opposite case of maximum 
heterogeneity one has maximum uncertainty and minimum information derivable 
from the single unit. Starting from this notion, various indicators were proposed of 
which only the most commonly used will be mentioned. 

The index of heterogenity proposed by Gini (1912), for a variable X which 
assumes k categories with relative frequencies fi, i=1,2,...,k, is 
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whose normalized version is G*  = G(k – 1)/k. 
Shannon's index of diversity, also called index of entropy of a distribution, is 

associated with information theory (Shannon, 1948) and is 
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where log(⋅⋅⋅⋅) are natural logarithms, even though in the original version they were 
in base 2, and we assume that 0 log(0) = 0. The normalized version is H* = 
H/log(k). 

A generalized index taken from the field of information theory, is the 
generalized index of entropy of order α proposed by Rényi (1966)   
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with α ≠ 1. Hα is a non-increasing function of α. As α varies, one obtains different 
indices of heterogeneity and some particular cases among the most frequently used 
are: 
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2 Permutation tests for heterogeneity: The two-
sample case 

In the previous section we dealt with heterogeneity from the descriptive point of 
view, namely considering the indices that measure the degree of heterogeneity of a 
distribution of frequencies in a certain set of statistical units. From now on we will 
take into consideration the inferential problem which consists of comparing the 
sampling heterogeneity of a categorical variable X in two populations, in order to 
test the hypothesis that the heterogeneity of one population is greater than that of 
the other. In doing so we shall use some of the indices described in section 1. It is 
assumed that the values of the variable X can fall within one of the k categories A1, 
A2,..., Ak.  

From a formal point of view, given two populations X1 e X2, if we indicate 
with Het(Xj) the degree of heterogeneity of the population Xj (j  =1,2), the problem 
of hypothesis testing can be expressed as follows 

 
( ) ( )210 : XHetXHetH =  

 
against 

 
( ) ( )211 : XHetXHetH > . 

 
We take into consideration the indeces of Gini G = Σ i pi(1 - pi), of Shannon   H 

= - Σ i pi log(pi) and the versions of that of Rényi for α = 3 and for α → ∞, 
corresponding to H3 = - 1/2 log( Σ i pi

 3 ) and H∞ = - log [ supi ( pi )], where pi =   
Pr {X ∈ Ai}. The choice of H3 instead of H2, which is perhaps the index of Rényi 
most used in the literature, is dictated by the fact that H2 is one-to-one related with 
G, and therefore the two indices imply the same inferential conclusions when 
applying theory and methods of permutation tests. In other words, two indices are 
permutationally equivalent. By indicating with pi, i  = 1,2,...k, the parameters of the 
underlying distribution, with p(i ), i  =1,2,...,k, we indicate the same parameters 
arranged in non-increasing order: p(1) ≥ p(2) ≥ ... ≥ p(k). Four indices G, H, H3 e H∞ 
are order invariant, i.e. their value does not change if they are calculated with 
ordered parameters p(i ) instead of with parameters pi. If we indicate with pj (i ), 
i=1,2,...,k, the ordered probabilities for population j , j  = 1,2, the fact that the 
indices of heterogeneity are order invariant allows us to express heterogeneity 
through ordered parameters: two  populations  such  that {p1(i ) = p2(i ), i=1,2,...,k}, 
i.e. with the same ordered distribution, are equally heterogeneous. Moreover, if 
{p1(i ) = p2(i ), i=1,2,...,k} data of two samples are exchangeable and so the 
permutation testing principle applies.  In addition, if Pj (i ) = ∑s≤i pj (s) are the 
cumulative probabilities for population j  referred to the ordered parameters, the 
null hypothesis of our problem is equivalent to:  
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( ) ( )ii PPH 210 : = , i  = 1,2,...,k. 

 
Vice versa, in the case of greater heterogeneity of population X1 with respect to 

population X2  implies that P1(i ) ≤ P2 (i ) must be valid and the strict inequality  is 
valid for some values of i . In formal terms we can write: 

 

)(2)(11 : ii PPH ≤  i∀  and 
)(2)(1 ii PP <  for at least one i . 

 
The definition of the problem by means of cumulative probabilities makes it 

very similar to the problem of stochastic dominance for ordered categorical 
variables, with the peculiarity that the order is determined according to the values 
of the parameters pi and not according to the categories the variable X can assume. 
Therefore, our problen can be referred to as one of  dominance in heterogeneity. 
We may observe that X in problems of heterogeneity can be a nominal variable 
because heterogeneity is a property that concerns probabilities and does not 
involve the categories Ai of X, whereas the problems of stochastic dominance 
assume that classes A1, A2,..., Ak.are ordered. 

For problems of stochastic dominance the literature offers quite a long list of 
exact and approximate solutions. Among the many, we mention those of Agresti 
and Klingerberg (2005), Han et al. (2004), Hirotsu (1986), Loughin and Scherer 
(1998), Loughin (2004), Lumely (1996), Nettleton and Banerjee (2001). For the 
univariate case most of the methodological solutions proposed are based on the 
restricted maximum likelihood ratio test. Among these we mention Cohen et al. 
(2000), Silvapulle and Sen (2005), Wang (1996). In general these solutions are 
criticized because the distributions under the null and alternative hypotheses are 
asymptotically mixtures of chi-squared variables with weights essentially 
dependent on the unknown distribution P of the population. Nonparametric 
proposals are those of Troendle (2002), Brunner and Munzel (2000), Pesarin (1994 
and 2001), and Pesarin and Salmaso (2006). The latters, based on the 
nonparametric combination of dependent permutation tests (NPC), are exact, 
unbiased, and consistent tests. As far as we are concerned in difference of 
heterogeneity, it is reasonable to set as test statistic the difference of sampling 
indices therefore arriving at statistics such as: 

 
TG = G1 – G2 = Σ i (f2(i )

2 -  f1(i )
2) (test statistic based on Gini’s index G ), 

 
TH = H1 – H2 = Σ i [f2(i )log(f2(i ))- f1(i )log(f1(i ))] (test statistic based on Shannon’s 

entropy H), 
 
TH3 = H31 – H32 = 1/2 [log(Σ i f2(i )

3)-log(Σ i f1(i )
3)] (test statistic based on Rényi’s 

index H3), 
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TH∞ = H∞ 1 – H∞ 2 = log(supi f2(i ))- log(supi f1(i )) (test statistic based on Rényi’s 
index H∞), 

 
where Gj, Hj, H3j and H∞ j indicate the sampling values calculated for sample j , j = 
1,2. Clearly the tests will be significant for large values, i.e. large values observed 
in the test statistic can lead to the rejection of the null hypothesis in favour of the 
alternative. In order to apply the tests according to the usual approach, it is 
necessary to know their sampling distributions subject to a proper estimate under 
H0 of the vector of the marginal ordered probabilities ( ) ( ) ( )( )kppp ••• ,...,, 21

′, because the 

vectors of the probabilities (pj1, pj2,...,pjk)′ as well as those of the ordered 
probabilities (pj (1), pj (2),..., pj (k))′, j  = 1,2, are unknown. In reality this question is 
not easy to solve exactly, with perhaps the exception where k = 2. For this 
purpose, instead of the true ordering of unknown parameters {pj (1), pj (2),..., pj (k); 
j=1,2 }, we utilize their estimates based on ordereing the observed frequencies 
(two empirical orderings): 

 

( ) ( ) ( ) ( ) ( ) ( )kk pppfff 1211112111 ˆ...ˆˆ... ≥≥≥≡≥≥≥  

 
and 

 

( ) ( ) ( ) ( ) ( ) ( )kk pppfff 2221222212 ˆ...ˆˆ... ≥≥≥≡≥≥≥ , 

 
thus, obtaining the following ordered table: 

 

Table 1: Estimation of the probabilities ordered by relative frequencies. 

 Classes Sample sizes 
Population (1) (2) ... (k)  

P1 f1(1) f1(2) ... f1(k) n1 
P2 f2 (1) f2 (2) ... f2 (k) n2 

 f ⋅⋅⋅⋅ (1) f ⋅⋅⋅⋅ (2) ... f ⋅⋅⋅⋅ (k) N 

    
We note that the order is realized separately for each sample and as it is based 

on relative frequencies rather than on classes, it could be that the i-th column of 
Table 1 refers to two diverse classes for the two samples. In other words class (i) 
corresponds to the class whose observed relative frequency occupies the i-th 
position in the ordered sequence and can be different for the two samples. 
Obviously the order imposed by the frequencies presents a random component and 
may vary depending upon sampling variations. Therefore under H0 data are not 
exactly exchangeable as it would be if the true order of population parameters 
were known and used. The exchangeability property can only be obtained 



Permutation Tests for Heterogeneity Comparisons… 27 

 

 

asymptotically. Therefore, permutation solutions are approximate for finite sample 
sizes and exact only asymptotically. 

Using the data in Table 1, the observed values of the test statistics o
GT , o

HT , o
HT

3
 

and o
HT

∞
 are calculated. For each permutation of the dataset one obtains a new 

permuted table (as in Table 2), with different values from those of the observed 
table but with fixed marginal frequencies.  

 

Table 2: Absolute frequencies after a permutation of data. 

 Classes Sample sizes  
Population (1) (2) ... (k)  

P1 n*
1(1)

  n*
1(2) ... n*

1(k) n1 
P2 n*

2 (1) n*
2 (2) ... n*

2 (k) n2 
 n⋅⋅⋅⋅ (1) n⋅⋅⋅⋅ (2) ... n⋅⋅⋅⋅ (k) N 

    
Using the data of the permutated table in the calculations of test statistics, one 

obtains the permutation values ∗GT , ∗
HT , ∗

3HT  e ∗
∞HT . Calculating the values that can 

be obtained making all the possible permutations, one obtains the permutation 
distribution of each test statistic. Alternatively it is possible to extract from the set 
of all the possible permutations a random sample, thus obtaining conditional 
Monte Carlo estimates. In this way, for each of the four tests it is possible to 
calculate the p-value, that, if B is the number of  considered permutations, is given 
by 
 

� ( ) BTT o
GGG /|# X≥= ∗ , 

 

� ( ) BTT o
HHH /|# X≥= ∗ , 

 

� BTT o
HHH /|#

333
 ≥= ∗ X , 

 

� ( ) BTT o
HHH /|# X∞

∗
∞∞ ≥= , 

 

respectively for the test based on G, H, H3 and H∞, where ( )X|# o
GG TT ≥∗  indicates 

the number of times permutation values are not lower than the observed ones, 
conditionally on the dataset X={ Xji , i=1,…,nj; j=1,2}. Therefore, according to the 
general deciding rule, if the p-value is less than or equal to a fixed significance 
level, the null hypothesis is rejected in favour of the alternative, otherwise the null 
hypothesis cannot be rejected. In order to summarize our procedure, with reference 
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to permutation tests, after transformation of the original categories A1, A2, …, Ak 

into the ordered categories (1), (2), …, (k), where, for each sample, (1) is the 
category with the highest frequency, (2) is the category with the second ordered 
frequency,…, (k) is the category with the lowest frequency, we apply a two sample 
permutation test for categorical variables. Observed data are generally organized in 
a 2 × K contingency table (see Table 1). Permutation analysis is probably easier if, 
in place of usual contingency tables, data are unit-by-unit represented by listing 
the n = n1 + n2  individual records. In the 2 × K design, it is intended that in the 
dataset first n1 records belong to the first sample and the rest to the second. It is 
worth observing that in univariate two-sample designs, since they contain exactly 
the same amount of information on the unknown distribution of data, the marginal 

frequencies the pooled data set X as well as any of its permutations *X  are 
equivalent sets of sufficient statistics under H0. Under H0 data are exchangeable, 
hence it is possible to change the position (the row) of some statistical units in X 
assigning them to a different sample respect to the observed dataset. In other 
words it is possible to make permutations of the data set. Considering all the 

possible 





1n

N
 permutations, or a random sample of them, and calculating the value 

of the test statistic for each permutation, it is possible to determine the 
permutation distribution and to calculate the p-values of the test. After each 
permutation, the number of units with associated category (j) is equal to n⋅⋅⋅⋅ (j ) (for 
each j) and it does not change but number of these units associated to the first n1 
rows (sample 1) and to the other n2 (sample 2) can change. For this reason the 
column marginals and the row marginals of the contingency table remain constant 
but the frequencies nj(i)  and fj(i)  may vary.  

3 Simulation study 

In order to assess the properties of the test we consider a simulation study in which 
data are generated according to the following model: 
 

X ∼ 1 + Int [ K ⋅ U δ ]  

where δ∈ R, U ∼ U(0,1) and Int [ ⋅⋅⋅⋅ ] denotes the integer part of [ ⋅⋅⋅⋅ ]. 
    
The random variable X is therefore discrete and its domain consists of the first K 

positive integers. The situation of maximum heterogeneity can be simulated 
making δ = 1, because in this case  

 
X ∼ U(1,2,...,K) and fi = # (X = i) / n  ≅ 1 / K, 
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where n is the sample size. Increasing δ the distribution of X moves further away 
from maximum heterogeneity, approaching that of maximum homogeneity where 
frequencies tend to be concentrated on the first category. The choice of this model, 
as an alternative to the generation of data hypothesizing some distributions of 
probabilities for the two populations, mainly depends on the fact that studying the 
power of a nonparametric test, the variety of proposable alternatives for 
simulations is so vast that it is almost impossible to consider them all (Lehmann, 
1953). In this way we can generate discrete distributions with different degrees of 
heterogeneity using a single parameter instead of K, as we would if data were 
generated from a completely specified distribution, such as: p1, p2,..,pk. Generating 
the data as described, for some sample sizes, some couples of parameters δ1 and δ2 
for respectively population X1 and X2 and some values of nominal significance 
level, we calculated the rejection rates of four tests in order to evaluate their 
degree of approximation as well as their power. 

 

Table 3: Rejection rates of four tests of heterogeneity under the null hypothesis (K=8). 

δ1 δ2 N1 n2 alfa nominal Test 
      
    0.01 0.05 0.10  

1 1 20 10 0.0020 0.0220 0.0670 TH 
    0.0005 0.0150 0.0510 TG 
    0.0020 0.0310 0.0815 TH3 
    0.0045 0.0130 0.0405 TH∞ 
2 2 20 10 0.0095 0.0485 0.0955 TH 
    0.0085 0.0480 0.0920 TG 
    0.0135 0.0620 0.1105 TH3 
    0.0070 0.0265 0.0500 TH∞ 
  40 30 0.0115 0.0455 0.1000 TH 
    0.0130 0.0515 0.1035 TG 
    0.0180 0.0625 0.1130 TH3 
    0.0095 0.0375 0.0685 TH∞ 
  60 30 0.0110 0.0505 0.0965 TH 
    0.0115 0.0550 0.1015 TG 
    0.0135 0.0590 0.1090 TH3 
    0.0075 0.0290 0.0670 TH∞ 
3 3 20 10 0.0120 0.0545 0.1030 TH 
    0.0120 0.0530 0.0995 TG 
    0.0130 0.0605 0.1165 TH3 
        0.0060 0.0265 0.0480 TH∞ 
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Table 4: Rejection rates of four tests of heterogeneity under the null hypothesis (K=16). 

δ1 δ2 n1 n2 alfa nominal Test 

    0.01 0.05 0.10  
1.5 1.5 20 10 0.0060 0.0510 0.1075 TH 

    0.0030 0.0290 0.0730 TG 
    0.0125 0.0585 0.1185 TH3 
    0.0120 0.0285 0.0470 TH∞ 
  40 30 0.0080 0.0395 0.0810 TH 
    0.0060 0.0340 0.0700 TG 
    0.0095 0.0540 0.0965 TH3 
    0.0105 0.0345 0.0780 TH∞ 
  60 30 0.0070 0.0420 0.0910 TH 
    0.0045 0.0390 0.0840 TG 
    0.0115 0.0560 0.1155 TH3 
    0.0080 0.0305 0.0725 TH∞ 
2 2 20 10 0.0110 0.0635 0.1245 TH 
    0.0080 0.0490 0.0955 TG 
    0.0185 0.0755 0.1340 TH3 
    0.0100 0.0355 0.0560 TH∞ 
  40 30 0.0105 0.0570 0.1100 TH 
    0.0100 0.0525 0.1020 TG 
    0.0155 0.0665 0.1215 TH3 
    0.0065 0.0350 0.0730 TH∞ 
  60 30 0.0085 0.0470 0.1025 TH 
    0.0090 0.0465 0.1070 TG 
    0.0125 0.0605 0.1220 TH3 
    0.0060 0.0250 0.0670 TH∞ 

2.5 2.5 20 10 0.0125 0.0610 0.1200 TH 
    0.0125 0.0505 0.1050 TG 
    0.0200 0.0690 0.1355 TH3 
    0.0055 0.0265 0.0500 TH∞ 
  40 30 0.0145 0.0575 0.1145 TH 
    0.0095 0.0445 0.1120 TG 
    0.0135 0.0545 0.1195 TH3 
    0.0050 0.0270 0.0600 TH∞ 
  60 30 0.0115 0.0605 0.1120 TH 
    0.0120 0.0570 0.1010 TG 
    0.0150 0.0640 0.1160 TH3 

    0.0070 0.0320 0.0720 TH∞ 

 
Table 3 reports the rejection rates under the null hypothesis for a discrete 

variable with K=8 categories, for some degrees of heterogeneity with δ1 and δ2 

ranging from 1 to 3. 2000 dataset were generated each with 2000 permutations in 
order to approximate the related permutation distribution. Reported results show 
that, in general, the most conservative test is that based on the index H∞ of Rényi. 
For the other three tests the performances are very similar, even though that based 
on H3 shows itself to be slightly anticonservative but in any case we can conclude 
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that the tests are substantially well approximated. In general, by increasing of δ1, 
δ2 and δ2-δ1, the rejection rates tend to increase.  

Table 4 shows the results of analogous simulations for K = 16 categories. Also 
in this case, in the presence of maximum heterogeneity, the rejection rates are 
clearly below the nominal significance levels. Again the two tests based on Rényi's 
statistics stand out: TH∞  for its lower than nominal rejection rates and TH3, vice 
versa, for its tendency towards rejection rates slightly higher than the nominal 
levels. In any case TH3 behaves not so far away from the tests based on Shannon’s 
and Gini’s statistics.  

 

Table 5: Power of nonparametric tests of heterogeneity (K=16 classes). 

δ1 δ2 n1 n2 alfa nominal Test 
 
    0.01 0.05 0.10  
2 2.5 90 30 0.0810 0.2050 0.3190 TH 
    0.0830 0.2210 0.3420 TG 
    0.0970 0.2290 0.3660 TH3 
    0.0460 0.1600 0.2520 TH∞ 
2 3   0.2110 0.4360 0.5790 TH 
    0.2375 0.4690 0.6095 TG 
    0.2620 0.4920 0.6270 TH3 
    0.1565 0.3780 0.5110 TH∞ 
2 3.5   0.4180 0.6630 0.7860 TH 
    0.4330 0.6970 0.8090 TG 
    0.4510 0.7090 0.8180 TH3 
    0.3320 0.5880 0.7260 TH∞ 
2 3 60 30 0.1990 0.4170 0.5710 TH 
    0.2070 0.4280 0.5910 TG 
    0.2440 0.4580 0.6130 TH3 
    0.1400 0.3290 0.4790 TH∞ 
2 3.5   0.3540 0.6150 0.7330 TH 
    0.3710 0.6310 0.7540 TG 
    0.3930 0.6470 0.7620 TH3 
    0.2690 0.5200 0.6570 TH∞ 
2 4   0.5480 0.7790 0.8750 TH 
    0.5620 0.8090 0.8910 TG 
    0.5900 0.8240 0.8960 TH3 
    0.4500 0.7190 0.8320 TH∞ 

 
To evaluate the power of four tests we considered some situations in which the 

heterogeneity of the two populations were different. In this case 1000 dataset were 
generated and, for each of these, 1000 permutations. Obviously, the power of the 
tests increases with the increase in the difference of heterogeneity parameters δi, 
i=1,2 (Table 5). Comparing the performances of the four tests it emerges that the 
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test TH∞  seems slightly worse than the others, whereas a preference is shown for 
the test TH3, based on Rényi's entropy index of order 3.   

4 An example: University Evaluation 

In this section we deal with an application problem in the context of the University 
Evaluation. The data refer to the type of secondary school (TSS) attended by 
graduates of the Faculties of Engineering and Economics at the University of 
Ferrara in 2005 (see Table 6). The problem consists of the comparision of the two 
faculties from the point of view of TSS attended by graduates. The aspect of 
interest is the heterogeneity of TSS. High heterogeneity means that the 
undergraduate degree can be obtained by students coming from a large set of 
secondary schools. The goal of the study is to answer this question. “Is the 
heterogeneity of TSS of graduates in Economics greater than  that of TSS of 
graduates in Engineering?”. In order to answer this question we applied a two-
sample heterogeneity test  for categorical data and one-sided alternative 
hypothesis. 

 

Table 6: Type of secondary school attended by graduates at the University of Ferrara in 
2005 (relative frequencies). Data from Almalaurea (www.almalaurea.it). 

 

Type of Secondary School Economics Engineering 
Scientific 38.2 43.3 
Technical 48.5 50.2 
Humanistic 8.2 4.5 
For elementary school teacher 1.7 0.0 
Linguistic 1.7 0.0 
Vocational 1.7 2.0 
Artistic 0.0 0.0 
  100 100 

 
 
 

The system of hypotheses can be formulated as follows: 
 

H0: Het(Economics) = Het(Engineering)  

against  
 

H1: Het(Economics) > Het(Engineering). 
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Table 7: Ordered table of the relative frequencies. 

 Ordered frequencies Cumulative ordered frequencies 
Ordered 

Class Economics Engineering Economics Engineering 
(1) 48.5 50.2 48.5 50.2 
(2) 38.2 43.3 86.7 93.5 
(3) 8.2 4.5 94.9 98 
(4) 1.7 2.0 96.6 100 
(5) 1.7 0.0 98.3 100 
(6) 1.7 0.0 100 100 
(7) 0.0 0.0 100 100 

 

Looking at the plots in figure 1 we can say that, from a descriptive point of 
view, TSS of Economics dominates that of Engineering in heterogeneity. 

 
 
 
  

 

 

 

 

 

 

Figure 1: Cumulative relative frequencies for the ordered classes. 

 
Using a simple Monte Carlo random sampling of B = 50.000 permutations 

from the set of all permutations we obtain the p-values reported in Table 8.  
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Table 8: p-value of the nonparametric tests of heterogeneity. 

Test p-value 

TH 0.05924 

TG 0.10362 

TH3 0.14158 

TH∞ 0.38760 

  

5 Concluding remarks 

This work presents an inferential nonparametric procedure that allows us for a 
solution to the problem of hypothesis testing, in which the objective is comparing 
the heterogeneity of two populations on the basis of sampling data, i.e. to test the 
hypothesis that the heterogeneity of one population is greater than that of another 
population.  

The proposed test statistic consists of the comparison of the sampling indices 
of heterogeneity calculated for the two samples and it can vary according to the 
index of heterogeneity considered. Therefore we propose a general method to 
solve a peculiar problem. We think that other possible indeces of heterogeneity, 
i.e. other test statistics, can be adopted within the same framework. We think that 
the kind of index used is one of the aspect of the solution but not the main 
problem. In fact from the simulation results we can say that the performances of 
the four tests are very similar and we cannot conclude that one test is the best.  
The simulation study allowed us to assess that the proposed nonparametric tests of 
heterogeneity show high degree of approximation under the null hypothesis and 
good power behaviour under the alternative. The rejection rates increase with the 
increase in the homogeneity of distributions. Among the test statistics considered, 
that based on the index of Rényi of order 3 seems to show higher rejection rates 
under H0 but a slightly higher power under H1.  

Moreover the choice of a nonparametric test proves to be both practical and 
efficient, easy to apply and it requires few and weak nonparametric assumptions. 
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