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In this paper we propose a new static scheduling algorithm for allocating the task graph without commu-
nication costs to fully connected multiprocessors. A global comparison is carried out for the proposed
algorithm and three reported scheduling algorithms. The proposed algorithm outperforms the previous
algorithms in terms of the generated schedule length using Standard Task Graph set.

1 Introduction

To efficiently execute a program on a multiprocessor sys-
tem [11, 19, 20, 8, 18], it is essential to solve a mini-
mum execution time multiprocessor scheduling problem
[16, 13, 14, 2, 4, 5], which determines how to assign a
set of tasks to processors and in what order those tasks
should be executed to obtain the minimum execution time.
The tasks can then be scheduled to the processors for ex-
ecution by using a suitable scheduling algorithm, static in
compile-time or dynamic in run-time [7, 9, 3]. The optimal
static scheduling, except for a few highly simplified cases,
is an NP-complete problem. Thus, heuristic approaches
are generally sought to tackle the problem. Traditional
static scheduling algorithms attempt to minimize the sched-
ule length through iterative local minimization of the start
times of individual tasks. On the other hand for example
the Dynamic Level Scheduling (DLS) algorithm dynami-
cally selects tasks during the scheduling process [15]. As
optimal scheduling of tasks is a strong NP-hard problem,
many heuristic algorithms have been introduced in the lit-
erature [6].

In this paper we proposed a low time complexity mul-
tiprocessor static scheduling algorithm called MCP/CLR
without communication costs, which is based on critical
path (CP) algorithm, such as, for example, the MCP [21]
algorithm. It generates high quality scheduling solutions.

The remaining paper is organized as follows: In the next
section, we present a brief overview of various approaches
that have been proposed for the DAG scheduling problem.
In Section 3, we present the proposed algorithm, and dis-
cuss its design principles. We present the experimental re-
sults in Section 4, and conclude the paper with some final
remarks in Section 5.

2 The Multiprocessor Scheduling
Problem

In static scheduling, a parallel program is presented by a
directed acyclic graph (DAG) [19]). In a DAG, G = (V, E),
V is a set of v nodes, representing the tasks, and E is a set
of e directed edges, representing the communication mes-
sages. Edges in a DAG are directed and, thus, capture the
precedence constraints among the tasks. The cost of node
n;, denoted as w(n;), represents the computation cost of
the task. The cost of the edge, emerges from the source
node n; and incidents on the destination node n;, denoted
by c;;, represents the communication cost of the message.
The source node of an edge is called a parent node, while
the destination node is called a child node. A node with no
parent is called an entry node and a node with no child is
called an exit node. A node can only start execution after
it has gathered all of the messages from its parent nodes.
The b-level of a node is the length (sum of the computation
costs only) of the longest path from this node to an exit
node. The t-level of a node is the length of the longest path
from an entry node to this node (excluding the cost of this
node).

The objective of scheduling is to minimize the schedule
length, which is defined as the maximum finish time of all
the nodes, by properly assigning tasks to processors such
that the precedence constraints are preserved.

The existing scheduling algorithms are classified into
four categories by Ahmad and Kwok [2, 14]:

1. Bounded Number of Processors (BNP) Scheduling: A
BNP algorithm schedules a DAG to a limited number
of processors directly. The processors are assumed
to be fully connected without any regard to link con-
tention and scheduling of messages. The proposed al-
gorithm belongs to this class.

2. Unbounded Number of Clusters (UNC) Scheduling:
An UNC algorithm schedules a DAG to an unbounded
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number of clusters. The clusters generated by these
algorithms may be mapped onto the processors using
a separate mapping algorithm. These algorithms as-
sume the processors to be fully connected.

3. Arbitrary Processor Network (APN) Scheduling: An
APN algorithm performs scheduling and mapping on
an architecture in which the processors are connected
via a network topology. An APN algorithm also
explicitly schedules communication messages on the
network channels, taking care of the link contention
factor.

4. Task-Duplication-Based (TDB) Scheduling: A TDB
algorithm duplicates tasks in order to reduce the com-
munication overhead. Duplication, however, can be
used in any of the other three classes of algorithms.

For our purpose, we will compare the proposed algo-
rithm with three other BNP scheduling algorithms.

In a traditional scheduling algorithm, the scheduling list
is statically constructed before node allocation begins, and,
more importantly, the sequencing in the list is not modified.

The Earliest Task First (ETF) algorithm [10] uses static
node priorities and assumes only a bounded number of pro-
cessors [16, 17]. The High Level First with Estimated Time
(HLFET) algorithm [1] assigns the nodes in a DAG to the
processors, level by level.

Similar to the ETF and HLFET algorithms, the Modified
Critical Path (MCP) algorithm [21] constructs a list of tasks
before the scheduling process starts. The MCP algorithm
uses the ALAP (As-Late-As-Possible) start time of a node
as the scheduling priority. The MCP algorithm first com-
putes the ALAP times of all the nodes, then constructs a
list of nodes in ascending order of ALAP times. Ties are
broken by considering the ALAP times of the children of
anode. The MCP algorithm then schedules the nodes on
the list one by one so that a node is scheduled to a pro-
cessor that allows the earliest start time using the insertion
approach. The MCP algorithm looks for an idle time slot
for a given node. The algorithm is briefly described in Fig-
ure 1 [21, 16, 14]. The complexity of the MCP algorithm
is O(v? logv).

3 The Heuristic Algorithm

In this section we discuss some of the principles used in
the design of proposed algorithm. To minimize the final
schedule length, we select a node as it is selected in the
MCP algorithm. At each step of the scheduling process,
the first node is removed from the list of nodes (the list
of nodes is sorted in increasing lexicographical order of the
latest possible start times) and it is scheduled to a processor.
While we are able to identify a selected node, we still need
a method to select an appropriate processor for schedul-
ing that node into the most suitable idle time slot. At each
step, the algorithm needs to find the most suitable proces-
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(1) Compute the ALAP time of each node.
(2) For each node, create a list which consists of the
ALAP times of the node itself and all its children

in descending order.

(3) Sort these lists in ascending lexicographical or-
der. Create a node list according to this order.

Repeat

(4) Schedule the first node in the node list to a pro-
cessor that allows the earliest execution, using the
insertion approach.

(5) Remove the node from the node list.

Until the node list is empty.

Figure 1: The MCP algorithm.

sor which contains the most suitable place in time for a
selected node.

The MCP algorithm schedules the selected node to a pro-
cessor that allows for the earliest start time. The proposed
algorithm has another processor selection criteria and they
are described as follows.

3.1 The MCP/CLR Algorithm

Build_ ALAP();
Sort _ALAP();
// v is number of tasks
for (i=0;1 < v;i++)
{
t; = EST(ALAP(n,));
if a processor j exists where SL; (i) < ¢;
then
schedule node n; to a processor j where
SL;(i) — t; is minimal
else
schedule node n; to a processor that
allows the earliest execution

Figure 2: The MCP/CLR algorithm.

The function Build_ALAP() computes the ALAP time
of each node and creates a list, which consists of the ALAP
times of the node itself and all its children in descending or-
der. Function Sort_ALAP() sorts these lists in ascending
lexicographical order as in the MCP algorithm.

Assumed that, in the scheduling process there are al-
ready scheduled ¢ — 1 nodes. Next selected node is n;.
SL; (i) is the schedule length of the step 7 of the scheduling
process on the processor j. The MCP/CLR (MPC/Close-
Left-Right) algorithm (see Fig. 2) tries to find a processor
j for the selected node n;. It is needed to distinguish two
cases of the processor selection step. If a processor ex-
ists, say j, which satisfy that SL;(¢) is less or equal to
the earliest start time (EST) of the selected node n;, our
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algorithm assigns the selected node n; to the processor j
with the smallest value SL;(i) — ¢;. Otherwise it assigns
the selected node n; to:a processor that allows the earliest
execution (like -the: MCP algorithm), using non-insertion
approach. The complexity of the MCP/CLR algorithm is
O(v? logv), too.

3.2 Scheduling Example

In this section, we present an example to demonstrate the
operation of the proposed algorithm using the task graph
shown in Fig. 3. The task graph was drawn using the
Graphlet Tool (http://www.fimi.uni-passau.de/Graphler). The
schedules of the algorithms are shown in Fig. 4. The entry
and exit node are dummy. The MCP algorithm creates a list
of edges and schedules the task graph onto the multiproces-
sor machine with 2 processors (processing elements) in the
order: ny, ng, ns, N3, Ny, N7, N4, N1, P10, N9, N6, N12. The
HLFET and MCP/CLR schedule the nodes in the same or-
der as the MCP algorithm. The ETF algorithm schedules
the nodes in the order: N1, M2, N5, N3, Mg, N7, T8, 010, 116,
ng,n11,n12- The order of nodes ny,n7,ng and the pro-
cessor selection during the scheduling process, have caused

- different schedules of the task graph, and therefore also dif-
ferent schedule lengths.

Figure 3: An example of a task graph with 12 nodes.

4 Results

In this section, we present the performance results of the
proposed algorithm and compare them with the results of
the HLFET, ETF and MCP algorithms.

We have implemented the scheduling algorithms on a
SUN workstation using C/C++. They were evaluated by
using a Standard Task Graph set:
http://www.kasahara.elec.waseda.ac jp/schedule/.  The Stan-
dard Task Graph set has 900 task graphs with 50 to 2700
tasks.
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Figure 4: The schedules of the task graph on Fig. 3 gen-
erated by: (a) ETF algorithm (schedule length = 67 time
units); (b) HLFET and MCP algorithms (schedule length
= 64 time units); and (c) MCP/CLR algorithm (schedule
length = 63 time units).

Table 3: Number of times the optimal schedule is found,
and a global error

Optimal “"Global |7
Algorithm schedule % error
ETF 33 12.94 5577
HLFET 50 19.61 3189
MCP 57 22.53 1531
MCP/CLR 167 65.49 257

The results obtained in our experiments are shown in Ta-
ble 1. The second and third columns indicate the name of
the task graph instance and number of nodes, respectively.
In next four columns results of the schedule length for the

. all of algorithms are shown, respectively. In the last column
.- the optimal schedule length value is shown. If the optimal: =
. schedule is found;.the.schedule length value-is boldface: .

For some problem instances, the optimal schedule length is
not known.

In order to rank all the algorithms in terms of the sched-
ule lengths, we made a global comparison [17]. We ob-
served the number of times each algorithm performed bet-
ter, worse or the same compared to each of the other algo-
rithms. This comparison is presented in Fig. 5, where some
boxes have the left and the right side. Each left side of the
box compares two algorithms — the algorithm on the left
side and the algorithm on the top. Each left side of the box
contains three numbers preceded by “>”, “<”, and “="
signs which indicate the number of times the algorithm on
the left performed better, worse, or the same, respectively,
compared to the algorithm shown on the top. Each compar-
ison is based on the total of 300 task graphs. Each rightside
of the box contains the number of times when one of algo-
rithms, the algorithm on the left side or the algorithm on
the top, find the optimal schedule length. Optimal sched-
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Table 1: Schedule results of 50 task graph instances

_ Graph [ #Nodes [[ ETF | HLFET [ MCP [ MCP/CLR [ Optimum |
1 proto000.stg 452 537 537 537 537 537
2 proto001.stg 473 1191 1179 1179 1178 1178
3 proto002.stg 499 357 363 355 343 341
4 proto003.stg 164 556 556 556 556 556
5 proto004.stg 457 267 238 234 222 —
6 proto003.stg 404 758 749 742 742 742
7 proto006.stg 273 171 154 149 142 —
8 proto007.stg 499 492 489 489 489 489
9 proto008.stg 399 578 582 579 572 571
10 | proto009.stg 438 625 625 625 625 625
11 proto010.stg 539 351 338 338 334 334
12 | proto011l.stg 759 513 496 494 484 —
13 | proto012.stg 939 1804 1795 1795 1793 1793
14 | proto013.stg 799 698 688 685 682 681
15 | proto014.stg 636 523 520 516 509 —
16 | proto015.stg 712 513 513 501 491 491
17 | proto016.stg 641 1016 1026 1022 1006 —
18 | proto017.stg 722 487 475 473 463 —
19 | proto018.stg 730 704 706 704 701 700
20 | proto019.stg 617 683 682 674 668 667
21 proto020.stg 1104 1523 1514 1511 1505 1504
22 | proto021.stg 1145 644 632 616 605 605
23 | proto022.stg 1189 1625 1620 1617 1610 1609
24 | proto023.stg 1353 1619 1628 1624 1614 1612
25 | proto024.stg 1218 1295 1291 1289 1283 1281
26 | proto025.stg 1258 1193 1198 1194 1191 1188
27 | proto026.stg 1239 1509 1502 1501 1500 1500
28 | proto027.stg 1055 2003 2001 2001 2001 2000
29 | proto028.stg 1424 1538 1506 1506 1504 1504
30 | proto029.stg 1341 845 830 830 830 830
31 proto280.stg 1668 2821 2809 2806 2800 2800
32 | proto281.stg 1622 977 970 921 897 896
33 | proto282.stg 1793 3131 3131 3127 3123 3123
34 | proto283.stg 1591 2479 2429 2428 2425 2422
35 | proto284.stg 1703 4499 4458 4447 4444 4444
36 | proto285.stg 1766 1333 1304 1285 1268 1268
37 | proto286.stg 1703 945 940 930 918 918
38 | proto287.stg 1615 1423 1422 1381 1360 1353
39 | proto288.stg 1672 1938 1944 1935 1926 1925
40 | proto289.stg 1642 1968 1922 1917 1915 1915
41 proto290.stg 2133 1453 1450 1438 1428 1428
42 | proto291.stg 2122 2611 2605 2597 2591 2591
43 | proto292.stg 2333 8022 8012 8011 8009 8009
44 proto293.stg 2089 1516 1477 1474 1472 1472
45 | proto294.stg 2014 1336 1307 1273 1259 1257
46 | proto295.stg 2168 1349 1329 1321 1318 1318
47 | proto296.stg 2162 2589 2590 2575 2563 2563
48 | proto297.stg 2136 7708 7710 7710 7703 7703
49 proto298.stg 2399 2492 2476 2474 2471 2471
50 | proto299.sig 2205 1171 1153 1147 1142 1141
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Table 2: Schedule length with respect to the optimal solution
Quality of the
solution (Error) ETF HLFET MCP MCP/CLR
1 0% (optimum) 33 50 57 167
2 < 5% 178 182 195 88
3 5% - 10% 30 21 3 0
4 10% - 15% 11 2 0 0
5 15% - 20% 3 0 0 0
6 | Optimum not known 45 45 45 45
Total 300 300 300 300

T
>238:
— <0 1167 |—
=62

>0 !
)

<212)57
=88 ,

Figure 5: A global comparison of four algorithms in terms
of better, worse, and equal performance.

ule lengths are known for 255 of all 300 task graphs. They
were computed on a parallel machine using the ISH algo-
rithm [13, 12]. For example, the MCP/CLR algorithm per-
formed better than the MCP algorithm in 238 cases, never
performed worse, and performed the same in 62 cases. The
MCP/CLR algorithm or the MCP algorithm or both of them
found optimal solution of the schedule length in 167 cases.
An additional box for each algorithm compares that algo-
rithm with all other algorithms combined.

The experimental results of the quality of the schedu-
le length are summarized in Table 2. For example, the
MCP/CLR algorithm found the optimal schedule length in
167 cases and, additionally, the solution within 5% in 88
cases.

Table 3 shows number of times the algorithm has found
the optimal schedule, and global error which is defined as
difference between the sum of all the optimal schedule val-
ues and the sum of all the schedule values generated by the
algorithm.

It can be noticed that the proposed MCP/CLR algorithm
outperformed three other well known algorithms. Based on

these experiments, all the algorithms can be sorted in the
following order: MCP/CLR, MCP, HLFET and ETF. The
same order of the MCP and ETF algorithms can be found in
[17], where communications are also assumed among the
tasks.

5 Conclusion

This paper presents the static task scheduling algorithm
which can schedule directed acyclic graphs (DAGs) with a
complexity of O(v? log v), where v is the number of tasks
in the DAG. The algorithm schedules the tasks and it is suit-
able for the graphs with arbitrary computation and with-
out communication costs, and is applicable to the system
with homogeneous fully connected processors. The per-
formances of the proposed algorithm has been observed by
comparing it with other existing bounded number of pro-
cessor (BNP) scheduling algorithms in terms of the sched-
ule length.
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