
Informatica 26 (2002) 433^38 433

A List Scheduling Heuristic for Allocating the Task Graph to Multiprocessors

Janez Brest and Viljem Žumer
University of Maribor
Faculty of Electrical Engineering and Computer Science
Smetanova 17, 2000 Maribor, Slovenia
E-mail: janez.brest@uni-mb.si, http://marcel.uni-mb.si/janez

Keywords: parallel processing, compiler, static scheduling

Received: July 2, 2002

In this paper we propose a new static scheduling algorithm for allocating the task graph without commu-
nication costs to fully connected multiprocessors. A global comparison is carried out for the proposed
algorithm and three reported scheduling algorithms. The proposed algorithm outperforms the previous
algorithms in terms of the generated schedule length using Standard Task Graph set.

1 Introduction

To efficiently execute a program on a multiprocessor sys-
tem [11, 19, 20, 8, 18], it is essential to solve a mini­
mum execution tirne multiprocessor scheduling problem
[16, 13, 14, 2, 4, 5], which determines how to assign a
set of tasks to processors and in what order those tasks
should be executed to obtain the minimum execution tirne.
The tasks can then be scheduled to the processors for ex-
ecution by using a suitable scheduling algorithm, static in
compile-time or dynamic in run-time [7, 9, 3]. The optimal
static scheduling, except for a few highly simplified cases,
is an NP-complete problem. Thus, heuristic approaches
are generally sought to tackle the problem. Traditional
static scheduling algorithms attempt to minimize the sched­
ule length through iterative local minimization of the start
times of individual tasks. On the other hand for example
the Dynamic Level Scheduling (DLS) algorithm dynami-
cally selects tasks during the scheduling process [15]. As
optimal scheduling of tasks is a strong NP-hard problem,
many heuristic algorithms have been introduced in the lit­
erature [6].

In this paper we proposed a low time complexity mul­
tiprocessor static scheduling algorithm called MCP/CLR
without communication costs, which is based on critical
path (CP) algorithm, such as, for example, the MCP [21]
algorithm. It generates high quality scheduling solutions.

The remaining paper is organized as follovvs: In the next
section, we present a brief overview of various approaches
that have been proposed for the DAG scheduling problem.
In Section 3, we present the proposed algorithm, and dis-
cuss its design principles. We present the experimental re-
sults in Section 4, and conclude the paper with some final
remarks in Section 5.

2 The Multiprocessor Scheduling
Problem

In static scheduling, a parallel program is presented by a
direcled acyclic graph (DAG) [19]. In a DAG, G = (V, E),
y is a set of v nodes, representing the tasks, and £J is a set
of e directed edges, representing the communication mes-
sages. Edges in a DAG are directed and, thus, capture the
precedence constraints among the tasks. The cost of node
rii, denoted as ui(ni), represents the computation cost of
the task. The cost of the edge, emerges from the source
node Uj and incidents on the destination node rij, denoted
by Cij, represents the communication cost of the message.
The source node of an edge is called a parent node, while
the destination node is called a child node. A node with no
parent is called an entry node and a node with no child is
called an exit node. A node can only start execution after
it has gathered aH of the messages from its parent nodes.
The b-level of a node is the length (sum of the computation
costs only) of the longest path from this node to an exit
node. The t-level of a node is the length of the longest path
from an entry node to this node (excluding the cost of this
node).

The objective of scheduling is to minimize the schedule
length, which is defined as the maximum finish time of ali
the nodes, by properly assigning tasks to processors such
that the precedence constraints are preserved.

The existing scheduling algorithms are classified into
four categories by Ahmad and Kwok [2, 14]:

1. BoundedNumberofProcessors(BNP) Scheduling: A
BNP algorithm schedules a DAG to a limited number
of processors direcdy. The processors are assumed
to be fully connected vvithout any regard to link con-
tention and scheduling of messages. The proposed al­
gorithm belongs to this class.

2. Unbounded Number of Clusters (UNC) Scheduling:
An UNC algorithm schedules a DAG to an unbounded

mailto:janez.brest@uni-mb.si
http://marcel.uni-mb.si/janez

434 Informatica 26 (2002) 433^38 J. Brest et al.

number of clusters. The clusters generated by these
algorithms may be mapped onto the processors using
a separate mapping algorithm. These algorithms as-
sume the processors to be fully connected.

3. Arbitrary Processor Network (APN) Scheduling: An
APN algorithm performs scheduling and mapping on
an architecture in which the processors are connected
via a network topology. An APN algorithm also
explicitly schedules communication messages on the
network channels, taking čare of the link contention
factor.

4. Task-Duplication-Based (TDB) Scheduling: A TDB
algorithm duplicates tasks in order to reduce the com­
munication overhead. Duplication, however, can be
used in any of the other three classes of algorithms.

For our purpose, we will compare the proposed algo­
rithm with three other BNP scheduling algorithms.

In a traditional scheduling algorithm, the scheduling list
is statically constructed before node allocation begins, and,
more importantly, the sequencing in the list is not modified.

The Earliest Task First (ETF) algorithm [10] ušes static
node priorities and assumes only a bounded number of pro­
cessors [16,17]. The High Level First with Estimated Time
(HLFET) algorithm [1] assigns the nodes in a DAG to the
processors, level by level.

Similar to the ETF and HLFET algorithms, the Modified
Critičal Path (MCP) algorithm [21] constructs a list of tasks
before the scheduling process starts. The MCP algorithm
ušes the ALAP (As-Late-As-Possible) start tirne of a node
as the scheduling priority. The MCP algorithm first com-
putes the ALAP times of aH the nodes, then constructs a
list of nodes in ascending order of ALAP times. Ties are
broken by considering the ALAP times of the children of
a node. The MCP algorithm then schedules the nodes on
the list one by one so that a node is scheduled to a pro­
cessor that allows the earliest start tirne using the insertion
approach. The MCP algorithm looks for an idle time slot
for a given node. The algorithm is briefly described in Fig­
ure 1 [21, 16, 14]. The complexity of the MCP algorithm
is 0(f^ logf).

3 The Heuristic Algorithm
In this section we discuss some of the principles used in
the design of proposed algorithm. To minimize the final
schedule length, we select a node as it is selected in the
MCP algorithm. At each step of the scheduling process,
the first node is removed from the list of nodes (the list
of nodes is sorted in increasing lexicographical order of the
latest possible start times) and it is scheduled to a processor.
While we are able to identify a selected node, we stili need
a method to select an appropriate processor for schedul­
ing that node into the most suitable idle time slot. At each
step, the algorithm needs to find the most suitable proces-

(1) Compute the ALAP time of each node.
(2) For each node, create a list vvhich consists of the

ALAP times of the node itself and aH its children
in descending order.

(3) Sort these lists in ascending lexicographical or­
der. Create a node list according to this order.

Repeat
(4) Schedule the first node in the node list to a pro­

cessor that allows the earliest execution, using the
insertion approach.

(5) Remove the node from the node list.
Untii the node list is empty.

Figure 1: The MCP algorithm.

sor which contains the most suitable plače in time for a
selected node.

The MCP algorithm schedules the selected node to a pro­
cessor that allows for the earliest start time. The proposed
algorithm has another processor selection criteria and they
are described as follovvs.

3.1 The IMCP/CLR Algorithm

Build_ALAP{);
Sort_ALAPO;
//v is number of tasks
for (i = 0; i < u; i++}
{

ti = EST(ALAP(ni));
if a processor j exists where SLj (i) < ti
then

schedule node n^ to a processor j where
SLj{i) — ti is minimal

else
schedule node rii to a processor that
allows the earliest execution

Figure 2: The MCP/CLR algorithm.

The function Build_ALAP{) computes the ALAP time
of each node and creates a list, which consists of the ALAP
times of the node itself and aH its children in descending or­
der. Function Sort_ALAP{) sorts these lists in ascending
lexicographical order as in the MCP algorithm.

Assumed that, in the scheduling process there are al-
ready scheduled i — 1 nodes. Next selected node is HJ.
SLj{i) is the schedule length of the step i of the scheduling
process on the processor j . The MCP/CLR (MPC/Close-
Left-Right) algorithm (see Fig. 2) tries to find a processor
j for the selected node n^. It is needed to distinguish two
cases of the processor selection step. If a processor ex-
ists, say j , which satisfy that SLj{i) is less or equal to
the earliest start time (EST) of the selected node Uj, our

A LIST SCHEDULING HEURISTIC... Informatica 26 (2002) 433-438 435.

algorithm assigns the selected node n^ to the processor j
with the smallest value SLj{i) — t^. Otherwise it assigns
the selected node ni to a processor that allows the earliest
execution (like the MCP algorithm), using non-insertion
approach. The complexity of the MCP/CLR algorithm is
0{v^\ogv), too.

3.2 Scheduling Example

In this section, we present an example to demonstrate the
operation of the proposed algorithm using the task graph
shown in Fig. 3. The task graph was drawn using the
Graphlet Tool {http://www.fini.uni-passau.de/Graphlet). The
schedules of the algorithms are shown in Fig. 4. The entry
and exit node are dummy. The MCP algorithm creates a list
of edges and schedules the task graph onto the multiproces-
sor machine with 2 processors (processing elements) in the
order: ni,n2,ns,n3,ns,n7,n4,nii,nio,ng,n6,ni2. The
HLFET and MCP/CLR schedule the nodes in the same or­
der aš the MCP algorithm. The ETF algorithm schedules
the nodes in the order: ni,n2,n5,n3,ni,nT,ns,nio,ne,
ng,7111,1112. The order of nodes n4,nr,ns and the pro­
cessor selection during the scheduling process, have caused
different schedules of the task graph, and therefore also dif-
ferent schedule lengths.

Figure 3: An example of a task graph with 12 nodes.

4 Results

In this section, we present the performance results of the
proposed algorithm and compare them with the results of
the HLFET, ETF and MCP algorithms.

We have implemented the scheduling algorithms on a
SUN workstation using C/C-H-. They were evaluated by
using a Standard Task Graph set:
http://www.kasahara.elec.waseda.ac.jp/schedule/. The Stan­
dard Task Graph set has 900 task graphs with 50 to 2700
tasks.

PED

PE 1

Z

5

0

••',
8|3^!

\u

(a)
• b . , ' ,-0 r i , -

U')!«?., |B-i'{jMi!, •'lelfjfl -,

feo '30 , '40

' j t i

:••,>,•]

'"%""

•iU.l.,,'

""ti

(b)
PEO

PE 1

.-. J

2̂

T'-
V-

Is- • •

|;r

7

3 - ,

tO ^ 0 -

A

11

t

10

;?;;;.;:,.
•-fe

,
•;a8|5

..,-.-„-1....-^^

K.I
-m^. 1

fe-

PEO

PE1

£

S

D

| 3 ,

' , o ' '

|7 h
'Vo"

(C)

1 ̂^
|4_))Q

30 'iD

u I
• -h

"" k i " "
"̂ 1 '
• ' r k o '

Figure 4: The schedules of the task graph on Fig. 3 gen-
erated by: (a) ETF algorithm (schedule length - 67 tirne
units); (b) HLFET and MCP algorithms (schedule length
= 64 time units); and (c) MCP/CLR algorithm (schedule
length - 63 time units).

Table 3: Number of times the optimal schedule is found,
and a global error

Algorithm
ETF

HLFET
MCP

MCP/CLR

Optimal
schedule

33
50
57
167

%
12.94
19.61
22.53
65.49

GTdbar
error
5577
3189
1531
257

The results obtained in our experiments are shown in Ta­
ble 1. The second and third columns indicate the name of
the task graph instance and number of nodes, respectively.
In next four columns results of the schedule length for the
ali of algorithrns are shown, respectively. In the last column
the optimal schedule length value is shown. If the optimal
schedule is found,,the schedule length value is.boldface.
For some problem instances, the optimal schedule length is
not known.

In order to rank aH the algorithms in terms of the sched­
ule lengths, we made a global comparison [17]. We ob-
served the number of times each algorithm performed bet-
ter, vvorse or the same compared to each of the other algo­
rithms. This comparison is presented in Fig. 5, where some
boxes have the left and the right side. Each left side of the
box compares two algorithms - the algorithm on the left
side and the algorithm on the top. Each left side of the box
contains three numbers preceded by ">", "<", and "="
signs which indicate the number of times the algorithm on
the left performed better, worse, or the same, respectively,
compared to the algorithm shown on the top. Each compar­
ison is based on the total of 300 task graphs. Each right side
of the box contains the number of times when one of algo­
rithms, the algorithm on the left side or the algorithm on
the top, find the optimal schedule length. Optimal sched-

http://%7bhttp://www.fini.uni-passau.de/Graphlet
http://www.kasahara.elec.waseda.ac.jp/schedule/

4^

0\

^ O ^ L ^ I ^ ^ n ^ M ^ ^ O ^ ^ ^ O ^ ^ - f ^ ' - ^ ' ^ ^

13 '^ "O 13 13 13 13 13 *0 13 13 '^ Ti ^ 13 13 13 13 13 *T3 ̂ 13 13 "O 13 "^ 'O 13 13 T3 "O 13 13 13 'O 13 'O 13 13 13 13 13 ̂ T3 13 13 'O 13 13 13
O O O O o o o o o o o o o o o o o o s „ „ „ „

o o o o o b b b b b b b o b b b b b o
t O N > t O r O N) t O K) l O t O t O K) h J N > N) N > t O N > t O K >

o
o
o

^ooo--JONL/i4^u>K)'--ovoco^aNUi4^u)to^-o^oo^c7\c/i-PkU3N>^-ovooo^o\<-ft4^u>ro — o ^ o o

o o
o o
o o
ON U\

C « V 3 C / 5 t r t C C W C « W 3 W C « U 5 C n W I Z l W « 5 W C / 5 C /] t « C « C f l C / l t / 3 C ^ W W I J O « l Z l W 3 W W 5 C « M W I Z l W C « W 5 C « C / 5 C / S C / 3 C /) W 3 t / 5 (/ 5 C / 3

TOcreo«(re(re(is(reoqoocre(NTOoqoqootretroo«ot300TOtrQCrotrQOooQ(rooQaQOQCratrectQOQTOCtQ(racra

I O I 0 1 0 I O b O t O K > (0 (O S) — — — — ^ 1 — ^ 1 — — — •— — — — — — — — ' ^ — „ .
t o u > ^ — — ' O O O J — — CT\0\o>^~J~o'-n^a\CT\<-o*^OMrorou) — — — ^
0 ^ £ 5 W O N O S " — O O U i t O W 4 ^ ^ ' - - O O N O ^ N £) r O O N - I ^ N > ' - ' l U i (- / l — U l O O j ^ O — L O t s J 4 ^ ^ - U i ^ O U > L f l t > J U J V O V O ^ O L n C s V O ^ L f t

^ O N > ' - - h J C T N M D V O N O N O O O V O \ C U) ^ ^ 4 : k V O W N J

^ * ^ ^ L n L O U l U > O C T N * . V O V O ^ S ' - ^ S ' < ^ - ' S <ji o Ln ~-- to a\ a\
OJ O o VO VO — K)
00 OJ VO LO Ul VO t ^

^ 4^ f-, f-ft Ln ON
o 00 ~ — M VD
-1^ ^ -« LO U) OO

L r t U) C S O l 4 ^ — - ^ N > t / 1 U) . _ ^ m
VO u>
:ii -J

— K > - J t O " — — O O t O — ^ — —
— 4 ^ ^ L n L O U > 4 ^ 0 a \ - t i . V O ^ s O - t i ^
L n ^ — V O M O ^ — O l v i t O J ^ t O
U > 0 N O O ^ - ^ ^ K) U » O t O ^ t 0

— ^ to UJ ̂ K)
OJ Ji. 4^ ̂ s 00
o u> to ui JS o
*. 00 VO — '-' \0

tj> o 1-" — to a\ o\
o o o VO VO to to
0\ — to 00 — OO o

ON ^ Ĵ
oo o ^
to ov ui

o î
to
Ov

Ln L/t ov
lO 00
o 00

4 ^ < - o ^ u i * . " ~ J t o t n i j i
v o u J b J o o o o L n * . u i (/) 0 \
o s o o t n t o v o j ^ v o o o o v u j

^ t o — — — o o t o — —' — —
- ^ L f t L O t O ^ O t - n J ^ V O V O U)

— J i t o U> ^
t o J i j ^ — >R J i ~ J — ^ t O - J - O — VOW — U J O O i l O O J i t O t O ^ O

^ J i O U l ' — L O J i ^ - ^ O O ^ L n - ^ ^ - ^ L n ^ O O ^ O v

i ^ O t - n ^ l o o v O v S ' - " ^ o o o v o o o t o — „ » - ^
0 \ —' ^ J i VO J i o\ n: *.

~J J i o ^
J i OJ

; i : Lft Lfi Ov
o o - - 00 K — ov u.

j i L J O v u i * ^ — - a t o t / i o o _ ^ t / i
J i O o u i v D v o v o f J J i O v i J i r ? ! - ^

^ * i - ~ a < y i t » j t o 4 i O U i 4 i V O v o u j S ^ ^ ? ^ ' j i O O a v ^ - u i - ~ i o v o i O h - t o o v S o N S i ^ t - ^
t O h - t r t ^ O O v O t O V O h ^ O O t n O v O ^ ^ O O J i U l t « !

1̂ w 00
+i r - VO

K J H - t O h - ^ " — - ^ _ . —

o e S t n o t n ^ - t o o v o v S u i
© ® 4 i — o — U) J i -

u<
~ J J i ? ^ J i . t J i O v ; ^ J i t * > O v U i J i ^ , - « .
o o v i ^ v o o o o r a o o w K > ^ 0 6 - t i 4 i . t o (/ i j i r ; u >
^ U) g h - V O t O g j i ^ (/) t O V © t O I O I O C \ L O g < l

<l t o t n oo t i t n
fv k ^ t r, ^ ^ (^

— S J ~ J t O — — — O O t O ^ — — ^ . „ — ^ i t O O O
— J i ^ L r t U J t O J i O U l J i V O V D U J ^ t O J i J i ' —
J i ~ J O O \ ~ l y i ~ J O V O t O - ^ t O L n ^ O v - t . t O t O
^--N— L O L O O O ^ I O V O ^ — O O L / T U l U > ° ° O O ^ t O O J

t O „ — t o — — " " —
O O P g U l O l V l — t O O v O v
o i i ; o o o o o o o — O
0 " j i O O O O — tOVO

Ov o
t j j
l*J
4:i

o\
to
l ^

m
^ "—*

J i
0 0
VO

~ J
J i
to

Ln
u> Ov

t < j
J i

•—'
- J
00

o

a-

00

o
D.
C

O

'O

O
13

to
O o
t o

k

A LIST SCHEDULING HEURISTIC... Informatica 26 (2002) 433^38 437

1
2
3
4
5
6

Table 2: Schedule length with
Quality of the

solution (Error)
0% (optimum)

< 5 %
5%- 10%
10%-15%
15%-20%

Optimum not known
Total

ETF
33
178
30
11
3

45
300

respect to the optimal

HLFET
50
182
21
2
0

45
300

MCP
57
195
3
0
0
45
300

solution

MCP/CLR
167
88
0
0
0
45
300

(HLFET) C ;'MCP) (ETF) C=' ALL)

IKiP/GilOi)—'
>246;

<0 ;i67

= 54 1

>238 ;

<0 ;i67

= 62 1

1
>o ;
<212;57

= 88 1

—

1
> 2 6 6 |

<0 ;i67

= 34 1

>205 1

<51 ;50

= 44 1

1
>243]

<18 ;57

= 39 1

>750

<0

= 150

>205

<509

= 186

(ETF : y

Figure 5: A global comparison of four algorithms in terms
of better, worse, and equal performance.

these experiments, ali the algorithms can be sorted in the
foUovving order: MCP/CLR, MCP, HLFET and ETF The
same order of the MCP and ETF algorithms can be found in
[17], where Communications are also assumed among the
tasks.

5 Conclusion
This paper presents the static task scheduling algorithm
which can schedule directed acyclic graphs (DAGs) with a
complexity of 0{v^ log v), where v is the number of tasks
in the DAG. The algorithm schedules the tasks and it is suit-
able for the graphs with arbitrary computation and with-
out communication costs, and is applicable to the system
with homogeneous fully connected processors. The per-
formances of the proposed algorithm has been observed by
comparing it with other existing bounded number of pro-
cessor (BNP) scheduling algorithms in terms of the sched­
ule length.

ule lengths are known for 255 of ali 300 task graphs. They
were computed on a parallel machine using the ISH algo­
rithm [13, 12]. For example, the MCP/CLR algorithm per-
formed better than the MCP algorithm in 238 cases, never
performed worse, and performed the same in 62 cases. The
MCP/CLR algorithm or the MCP algorithm or both of them
found optimal solution of the schedule length in 167 cases.
An additional box for each algorithm compares that algo­
rithm with ali other algorithms combined.

The experimental results of the quality of the schedu­
le length are summarized in Table 2. For example, the
MCP/CLR algorithm found the optimal schedule length in
167 cases and, additionally, the solution vvithin 5% in 88
cases.

Table 3 shows number of times the algorithm has found
the optimal schedule, and global error which is defined as
difference between the sum of ali the optimal schedule val-
ues and the sum of ali the schedule values generated by the
algorithm.

It can be noticed that the proposed MCP/CLR algorithm
outperformed three other well known algorithms. Based on

References
[1] T. L. Adam, K. M. Chandy, and J. R. Dickson. A

comparison of list schedules for parallel processing
systems. Communications of the ACM, 17(12):685-
690, December 1974.

[2] I. Ahmad and Y.-K. Kwok. On parallelizing the mul-
tiprocessor scheduling problem. lEEETPDS: IEEE
Transactions on Parallel and Distributed Systems, 10,
1999.

[3] J. Brest, V. Žumer, and M. Ojsteršek. Dynamic
scheduling on a netvvork heterogeneous computer
system. LNCS 1557, pages 584-585,1999.

[4] J. Brest and V. Žumer. A Performance Evaluation
of List Scheduling Heuristics for Task Graphs with-
out Communication Costs. Proceedings of the Inter­
national V/orkshop on Parallel Processing (ICPP'00),
pages 421^28,2000.

[5] J. Brest, J. Jejčič, A. Vreze and V. Žumer. An Ap-
proximation Algorithm for the Static Task Schedul-

438 Informatica 26 (2002) 433-438 J. Brest et al.

ing on Multiprocessors. VECPAR'2000 4th Interna­
tional Meeting on Vector and Parallel Processing, Vol.
l.pages 46-56,2000.

"̂ [6] D. Darbha'and'D. P. Agrawal: Optimal scheduling
algorithm for distributed-memory machines. lEEET-
PDS: IEEE Transactions on Parallel and Distributed
Systems, 9, 1998.

[7] M. M. Eshagian, editor. Heterogeneous Computing.
Artech House, Inc., Norwood, MA 02062, ISBN 0-
89006-552-7,1996.

[8] I. Poster. Designing and Building Parallel Programs.
Addison-Wesley, ISBN 0-201-57594-9,1995.

[9] E. Haddan. Load Balancing and Scheduling in Net-
work Heterogeneous Computing. In M. M. Eshagian,
editor, Heterogeneous Computing, pages 224-276,
Norwood, MA 02062, ISBN 0-89006-552-7, 1996.
Artech House, Inc.

[10] J. J. Hwang, Y.-C. Chow, E D. Anger, and C.-Y. Lee.
Scheduling precedence graphs in systems with inter-
processor communication times. SIAM Journal on
Computing, 18(2):244-257, April 1989.

[11] K. Hwang and Z. Xu. Advanced Computer Ar-
chitecture: Technology, Architecture, Programming.
McGraw-Hill, New York, 1998.

[12] H. Kasahara, H. Honda, and S. Narita. Parallel pro-
cessing of near fine grain tasks using static schedul­
ing on OSCAR (optimally scheduled advanced multi-
processor). In IEEE, editor, Proceedings, Supercom-
puting '90: November 12-16, pages 856-864. IEEE
Computer Society Press, 1990.

[13] H. Kasahara and S. Narita. Practical multiproces-
sor scheduling algorithms for efficient parallel pro-
eessing. IEEE Trans, on Computers, 33(11):1023,
November 1984.

[14] Y.-K. Kwok. High-Performace Algorithms for
Compile-Time Scheduling of Parallel Processors.
PhD thesis, The Hong Kong University of Science
and Technology, 1997.

[15] Y.-K. Kwok and I. Ahmad. FASTEST: A practical
low-complexity algorithm for compile-time assign-
ment of parallel programs to multiprocessors. IEEE
Transactions on Parallel and Distributed Systems,
10(2):147-159,February 1999.

[16] Y.-K. Kwok and I. Ahmad. Parallel program schedul­
ing technique. In Buyya Raykumar, editor, High Per-
formance Cluster Computing: Architectures and Sys-
tems. Prentice Hali - PTR, NJ, USA, 1999.

[17] Y.-K. Kwok and I. Ahmad. Dynamic critical-path
scheduling: An effective technique for allocating task

graphs to multiprocessors:. IEEE Transactions on
Parallel and Distributed Systems, 7(5):506-521, May
1996.

[18] M. Quinn. Parallel Computing: Theory and Practice.
McGraw-Hill, 1994.

[19] B. Raykumar, editor. High Performance Cluster
Computing: Architectures and Systems. Prentice Hali
- PTR, NJ, USA, 1999.

[20] B. Wilkinson and M. AUen. Parallel Programming:
Technigues and Applications Using Networked Work-
stations and Parallel Computers. Prentice-Hall, En-
glevvood Cliffs, NJ 07632, USA, 1998.

[21] M.-Y. Wu and D. D. Gajski. Hypertool: A pro­
gramming aid for message-passing systems. IEEE
Transactions on Parallel and Distributed Systems,
l(3):330-343,July 1990.

