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In this paper we propose a new static scheduling algorithm for allocating the task graph without commu-
nication costs to fully connected multiprocessors. A global comparison is carried out for the proposed 
algorithm and three reported scheduling algorithms. The proposed algorithm outperforms the previous 
algorithms in terms of the generated schedule length using Standard Task Graph set. 

1 Introduction 

To efficiently execute a program on a multiprocessor sys-
tem [11, 19, 20, 8, 18], it is essential to solve a mini­
mum execution tirne multiprocessor scheduling problem 
[16, 13, 14, 2, 4, 5], which determines how to assign a 
set of tasks to processors and in what order those tasks 
should be executed to obtain the minimum execution tirne. 
The tasks can then be scheduled to the processors for ex-
ecution by using a suitable scheduling algorithm, static in 
compile-time or dynamic in run-time [7, 9, 3]. The optimal 
static scheduling, except for a few highly simplified cases, 
is an NP-complete problem. Thus, heuristic approaches 
are generally sought to tackle the problem. Traditional 
static scheduling algorithms attempt to minimize the sched­
ule length through iterative local minimization of the start 
times of individual tasks. On the other hand for example 
the Dynamic Level Scheduling (DLS) algorithm dynami-
cally selects tasks during the scheduling process [15]. As 
optimal scheduling of tasks is a strong NP-hard problem, 
many heuristic algorithms have been introduced in the lit­
erature [6]. 

In this paper we proposed a low time complexity mul­
tiprocessor static scheduling algorithm called MCP/CLR 
without communication costs, which is based on critical 
path (CP) algorithm, such as, for example, the MCP [21] 
algorithm. It generates high quality scheduling solutions. 

The remaining paper is organized as follovvs: In the next 
section, we present a brief overview of various approaches 
that have been proposed for the DAG scheduling problem. 
In Section 3, we present the proposed algorithm, and dis-
cuss its design principles. We present the experimental re-
sults in Section 4, and conclude the paper with some final 
remarks in Section 5. 

2 The Multiprocessor Scheduling 
Problem 

In static scheduling, a parallel program is presented by a 
direcled acyclic graph (DAG) [19]. In a DAG, G = (V, E), 
y is a set of v nodes, representing the tasks, and £J is a set 
of e directed edges, representing the communication mes-
sages. Edges in a DAG are directed and, thus, capture the 
precedence constraints among the tasks. The cost of node 
rii, denoted as ui(ni), represents the computation cost of 
the task. The cost of the edge, emerges from the source 
node Uj and incidents on the destination node rij, denoted 
by Cij, represents the communication cost of the message. 
The source node of an edge is called a parent node, while 
the destination node is called a child node. A node with no 
parent is called an entry node and a node with no child is 
called an exit node. A node can only start execution after 
it has gathered aH of the messages from its parent nodes. 
The b-level of a node is the length (sum of the computation 
costs only) of the longest path from this node to an exit 
node. The t-level of a node is the length of the longest path 
from an entry node to this node (excluding the cost of this 
node). 

The objective of scheduling is to minimize the schedule 
length, which is defined as the maximum finish time of ali 
the nodes, by properly assigning tasks to processors such 
that the precedence constraints are preserved. 

The existing scheduling algorithms are classified into 
four categories by Ahmad and Kwok [2, 14]: 

1. BoundedNumberofProcessors(BNP) Scheduling: A 
BNP algorithm schedules a DAG to a limited number 
of processors direcdy. The processors are assumed 
to be fully connected vvithout any regard to link con-
tention and scheduling of messages. The proposed al­
gorithm belongs to this class. 

2. Unbounded Number of Clusters (UNC) Scheduling: 
An UNC algorithm schedules a DAG to an unbounded 
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number of clusters. The clusters generated by these 
algorithms may be mapped onto the processors using 
a separate mapping algorithm. These algorithms as-
sume the processors to be fully connected. 

3. Arbitrary Processor Network (APN) Scheduling: An 
APN algorithm performs scheduling and mapping on 
an architecture in which the processors are connected 
via a network topology. An APN algorithm also 
explicitly schedules communication messages on the 
network channels, taking čare of the link contention 
factor. 

4. Task-Duplication-Based (TDB) Scheduling: A TDB 
algorithm duplicates tasks in order to reduce the com­
munication overhead. Duplication, however, can be 
used in any of the other three classes of algorithms. 

For our purpose, we will compare the proposed algo­
rithm with three other BNP scheduling algorithms. 

In a traditional scheduling algorithm, the scheduling list 
is statically constructed before node allocation begins, and, 
more importantly, the sequencing in the list is not modified. 

The Earliest Task First (ETF) algorithm [10] ušes static 
node priorities and assumes only a bounded number of pro­
cessors [16,17]. The High Level First with Estimated Time 
(HLFET) algorithm [1] assigns the nodes in a DAG to the 
processors, level by level. 

Similar to the ETF and HLFET algorithms, the Modified 
Critičal Path (MCP) algorithm [21] constructs a list of tasks 
before the scheduling process starts. The MCP algorithm 
ušes the ALAP (As-Late-As-Possible) start tirne of a node 
as the scheduling priority. The MCP algorithm first com-
putes the ALAP times of aH the nodes, then constructs a 
list of nodes in ascending order of ALAP times. Ties are 
broken by considering the ALAP times of the children of 
a node. The MCP algorithm then schedules the nodes on 
the list one by one so that a node is scheduled to a pro­
cessor that allows the earliest start tirne using the insertion 
approach. The MCP algorithm looks for an idle time slot 
for a given node. The algorithm is briefly described in Fig­
ure 1 [21, 16, 14]. The complexity of the MCP algorithm 
is 0(f^ logf). 

3 The Heuristic Algorithm 
In this section we discuss some of the principles used in 
the design of proposed algorithm. To minimize the final 
schedule length, we select a node as it is selected in the 
MCP algorithm. At each step of the scheduling process, 
the first node is removed from the list of nodes (the list 
of nodes is sorted in increasing lexicographical order of the 
latest possible start times) and it is scheduled to a processor. 
While we are able to identify a selected node, we stili need 
a method to select an appropriate processor for schedul­
ing that node into the most suitable idle time slot. At each 
step, the algorithm needs to find the most suitable proces-

(1) Compute the ALAP time of each node. 
(2) For each node, create a list vvhich consists of the 

ALAP times of the node itself and aH its children 
in descending order. 

(3) Sort these lists in ascending lexicographical or­
der. Create a node list according to this order. 

Repeat 
(4) Schedule the first node in the node list to a pro­

cessor that allows the earliest execution, using the 
insertion approach. 

(5) Remove the node from the node list. 
Untii the node list is empty. 

Figure 1: The MCP algorithm. 

sor which contains the most suitable plače in time for a 
selected node. 

The MCP algorithm schedules the selected node to a pro­
cessor that allows for the earliest start time. The proposed 
algorithm has another processor selection criteria and they 
are described as follovvs. 

3.1 The IMCP/CLR Algorithm 

Build_ALAP{); 
Sort_ALAPO; 
//v is number of tasks 
for (i = 0; i < u; i++} 
{ 

ti = EST(ALAP(ni)); 
if a processor j exists where SLj (i) < ti 
then 

schedule node n^ to a processor j where 
SLj{i) — ti is minimal 

else 
schedule node rii to a processor that 
allows the earliest execution 

Figure 2: The MCP/CLR algorithm. 

The function Build_ALAP{) computes the ALAP time 
of each node and creates a list, which consists of the ALAP 
times of the node itself and aH its children in descending or­
der. Function Sort_ALAP{) sorts these lists in ascending 
lexicographical order as in the MCP algorithm. 

Assumed that, in the scheduling process there are al-
ready scheduled i — 1 nodes. Next selected node is HJ. 
SLj{i) is the schedule length of the step i of the scheduling 
process on the processor j . The MCP/CLR (MPC/Close-
Left-Right) algorithm (see Fig. 2) tries to find a processor 
j for the selected node n^. It is needed to distinguish two 
cases of the processor selection step. If a processor ex-
ists, say j , which satisfy that SLj{i) is less or equal to 
the earliest start time (EST) of the selected node Uj, our 
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algorithm assigns the selected node n^ to the processor j 
with the smallest value SLj{i) — t^. Otherwise it assigns 
the selected node ni to a processor that allows the earliest 
execution (like the MCP algorithm), using non-insertion 
approach. The complexity of the MCP/CLR algorithm is 
0{v^\ogv), too. 

3.2 Scheduling Example 

In this section, we present an example to demonstrate the 
operation of the proposed algorithm using the task graph 
shown in Fig. 3. The task graph was drawn using the 
Graphlet Tool {http://www.fini.uni-passau.de/Graphlet). The 
schedules of the algorithms are shown in Fig. 4. The entry 
and exit node are dummy. The MCP algorithm creates a list 
of edges and schedules the task graph onto the multiproces-
sor machine with 2 processors (processing elements) in the 
order: ni,n2,ns,n3,ns,n7,n4,nii,nio,ng,n6,ni2. The 
HLFET and MCP/CLR schedule the nodes in the same or­
der aš the MCP algorithm. The ETF algorithm schedules 
the nodes in the order: ni,n2,n5,n3,ni,nT,ns,nio,ne, 
ng,7111,1112. The order of nodes n4,nr,ns and the pro­
cessor selection during the scheduling process, have caused 
different schedules of the task graph, and therefore also dif-
ferent schedule lengths. 

Figure 3: An example of a task graph with 12 nodes. 

4 Results 

In this section, we present the performance results of the 
proposed algorithm and compare them with the results of 
the HLFET, ETF and MCP algorithms. 

We have implemented the scheduling algorithms on a 
SUN workstation using C/C-H-. They were evaluated by 
using a Standard Task Graph set: 
http://www.kasahara.elec.waseda.ac.jp/schedule/. The Stan­
dard Task Graph set has 900 task graphs with 50 to 2700 
tasks. 
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Figure 4: The schedules of the task graph on Fig. 3 gen-
erated by: (a) ETF algorithm (schedule length - 67 tirne 
units); (b) HLFET and MCP algorithms (schedule length 
= 64 time units); and (c) MCP/CLR algorithm (schedule 
length - 63 time units). 

Table 3: Number of times the optimal schedule is found, 
and a global error 

Algorithm 
ETF 

HLFET 
MCP 

MCP/CLR 

Optimal 
schedule 

33 
50 
57 
167 

% 
12.94 
19.61 
22.53 
65.49 

GTdbar 
error 
5577 
3189 
1531 
257 

The results obtained in our experiments are shown in Ta­
ble 1. The second and third columns indicate the name of 
the task graph instance and number of nodes, respectively. 
In next four columns results of the schedule length for the 
ali of algorithrns are shown, respectively. In the last column 
the optimal schedule length value is shown. If the optimal 
schedule is found,,the schedule length value is.boldface. 
For some problem instances, the optimal schedule length is 
not known. 

In order to rank aH the algorithms in terms of the sched­
ule lengths, we made a global comparison [17]. We ob-
served the number of times each algorithm performed bet-
ter, vvorse or the same compared to each of the other algo­
rithms. This comparison is presented in Fig. 5, where some 
boxes have the left and the right side. Each left side of the 
box compares two algorithms - the algorithm on the left 
side and the algorithm on the top. Each left side of the box 
contains three numbers preceded by ">", "<", and "=" 
signs which indicate the number of times the algorithm on 
the left performed better, worse, or the same, respectively, 
compared to the algorithm shown on the top. Each compar­
ison is based on the total of 300 task graphs. Each right side 
of the box contains the number of times when one of algo­
rithms, the algorithm on the left side or the algorithm on 
the top, find the optimal schedule length. Optimal sched-
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1 
2 
3 
4 
5 
6 

Table 2: Schedule length with 
Quality of the 

solution (Error) 
0% (optimum) 

< 5 % 
5%- 10% 
10%-15% 
15%-20% 

Optimum not known 
Total 

ETF 
33 
178 
30 
11 
3 

45 
300 

respect to the optimal 

HLFET 
50 
182 
21 
2 
0 

45 
300 

MCP 
57 
195 
3 
0 
0 
45 
300 

solution 

MCP/CLR 
167 
88 
0 
0 
0 
45 
300 

(HLFET ) C ;'MCP ) ( ETF ) C=' ALL ) 

IKiP/GilOi)—' 
>246; 

<0 ;i67 

= 54 1 

>238 ; 

<0 ;i67 

= 62 1 

1 
>o ; 
<212;57 

= 88 1 

— 

1 
> 2 6 6 | 

<0 ;i67 

= 34 1 

>205 1 

<51 ;50 

= 44 1 

1 
>243 ] 

<18 ;57 

= 39 1 

>750 

<0 

= 150 

>205 

<509 

= 186 

( ETF : y 

Figure 5: A global comparison of four algorithms in terms 
of better, worse, and equal performance. 

these experiments, ali the algorithms can be sorted in the 
foUovving order: MCP/CLR, MCP, HLFET and ETF The 
same order of the MCP and ETF algorithms can be found in 
[17], where Communications are also assumed among the 
tasks. 

5 Conclusion 
This paper presents the static task scheduling algorithm 
which can schedule directed acyclic graphs (DAGs) with a 
complexity of 0{v^ log v), where v is the number of tasks 
in the DAG. The algorithm schedules the tasks and it is suit-
able for the graphs with arbitrary computation and with-
out communication costs, and is applicable to the system 
with homogeneous fully connected processors. The per-
formances of the proposed algorithm has been observed by 
comparing it with other existing bounded number of pro-
cessor (BNP) scheduling algorithms in terms of the sched­
ule length. 

ule lengths are known for 255 of ali 300 task graphs. They 
were computed on a parallel machine using the ISH algo­
rithm [13, 12]. For example, the MCP/CLR algorithm per-
formed better than the MCP algorithm in 238 cases, never 
performed worse, and performed the same in 62 cases. The 
MCP/CLR algorithm or the MCP algorithm or both of them 
found optimal solution of the schedule length in 167 cases. 
An additional box for each algorithm compares that algo­
rithm with ali other algorithms combined. 

The experimental results of the quality of the schedu­
le length are summarized in Table 2. For example, the 
MCP/CLR algorithm found the optimal schedule length in 
167 cases and, additionally, the solution vvithin 5% in 88 
cases. 

Table 3 shows number of times the algorithm has found 
the optimal schedule, and global error which is defined as 
difference between the sum of ali the optimal schedule val-
ues and the sum of ali the schedule values generated by the 
algorithm. 

It can be noticed that the proposed MCP/CLR algorithm 
outperformed three other well known algorithms. Based on 
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