

Also available at http://amc-journal.eu ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.) ARS MATHEMATICA CONTEMPORANEA 12 (2017) 135–144

Remarks on the thickness of $K_{n,n,n}$

Yan Yang *

Department of Mathematics, Tianjin University, Tianjin, P.R.China

Received 10 March 2015, accepted 14 March 2016, published online 3 November 2016

Abstract

The thickness $\theta(G)$ of a graph G is the minimum number of planar subgraphs into which G can be decomposed. In this paper, we provide a new upper bound for the thickness of the complete tripartite graphs $K_{n,n,n}$ $(n \ge 3)$ and obtain $\theta(K_{n,n,n}) = \left\lceil \frac{n+1}{3} \right\rceil$, when $n \equiv 3 \pmod{6}$.

Keywords: Thickness, complete tripartite graph, planar subgraphs decomposition. Math. Subj. Class.: 05C10

1 Introduction

The *thickness* $\theta(G)$ of a graph G is the minimum number of planar subgraphs into which G can be decomposed. It was defined by Tutte [11] in 1963, derived from early work on biplanar graphs [2, 10]. It is a classical topological invariant of a graph and also has many applications to VLSI design, graph drawing, etc. Determining the thickness of a graph is NP-hard [7], so the results about thickness are few. The only types of graphs whose thicknesses have been determined are complete graphs [1, 3], complete bipartite graphs [4] and hypercubes [5]. The reader is referred to [6, 8] for more background on the thickness problems.

In this paper, we study the thickness of complete tripartite graphs $K_{n,n,n}$, $(n \ge 3)$. When n = 1, 2, it is easy to see that $K_{1,1,1}$ and $K_{2,2,2}$ are planar graphs, so the thickness of both ones is one. Poranen proved $\theta(K_{n,n,n}) \le \left\lceil \frac{n}{2} \right\rceil$ in [9] which was the only result about the thickness of $K_{n,n,n}$, as far as the author knows. We will give a new upper bound for $\theta(K_{n,n,n})$ and provide the exact number for the thickness of $K_{n,n,n}$, when n is congruent to 3 mod 6, the main results of this paper are the following theorems.

Theorem 1.1. For $n \ge 3$, $\theta(K_{n,n,n}) \le \left\lceil \frac{n+1}{3} \right\rceil + 1$.

Theorem 1.2. $\theta(K_{n,n,n}) = \left\lceil \frac{n+1}{3} \right\rceil$ when $n \equiv 3 \pmod{6}$.

^{*}Supported by the National Natural Science Foundation of China under Grant No. 11401430 *E-mail address:* yanyang@tju.edu.cn (Yan Yang)

2 The proofs of the theorems

In [4], Beineke, Harary and Moon determined the thickness of complete bipartite graph $K_{m,n}$ for almost all values of m and n.

Lemma 2.1. [4] The thickness of $K_{m,n}$ is $\lceil \frac{mn}{2(m+n-2)} \rceil$ except possibly when m and n are odd, $m \leq n$ and there exists an integer k satisfying $n = \lfloor \frac{2k(m-2)}{m-2k} \rfloor$.

Lemma 2.2. For $n \geq 3$, $\theta(K_{n,n,n}) \geq \left\lceil \frac{n+1}{3} \right\rceil$.

Proof. Since $K_{n,2n}$ is a subgraph of $K_{n,n,n}$, we have $\theta(K_{n,n,n}) \ge \theta(K_{n,2n})$. From Lemma 2.1, the thickness of $K_{n,2n}$ $(n \ge 3)$ is $\lceil \frac{n+1}{3} \rceil$, so the lemma follows.

For the complete tripartite graph $K_{n,n,n}$ with the vertex partition (A, B, C), where $A = \{a_0, \ldots, a_{n-1}\}$, $B = \{b_0, \ldots, b_{n-1}\}$ and $C = \{c_0, \ldots, c_{n-1}\}$, we define a type of graphs, they are planar spanning subgraphs of $K_{n,n,n}$, denoted by $G[a_i b_{j+i} c_{k+i}]$, in which $0 \le i, j, k \le n-1$ and all subscripts are taken modulo n. The graph $G[a_i b_{j+i} c_{k+i}]$ consists of n triangles $a_i b_{j+i} c_{k+i}$ for $0 \le i \le n-1$ and six paths of length n-1, they are

$$a_{0}b_{j+1}c_{k+2}a_{3}b_{j+4}c_{k+5}\dots a_{3i}b_{j+3i+1}c_{k+3i+2}\dots,$$

$$c_{k}a_{1}b_{j+2}c_{k+3}a_{4}b_{j+5}\dots c_{k+3i}a_{3i+1}b_{j+3i+2}\dots,$$

$$b_j c_{k+1} a_2 b_{j+3} c_{k+4} a_5 \dots b_{j+3i} c_{k+3i+1} a_{3i+2} \dots$$

$$a_0c_{k+1}b_{j+2}a_3c_{k+4}b_{j+5}\ldots a_{3i}c_{k+3i+1}b_{j+3i+2}\ldots,$$

 $b_j a_1 c_{k+2} b_{j+3} a_4 c_{k+5} \dots b_{j+3i} a_{3i+1} c_{k+3i+2} \dots,$

$$c_k b_{j+1} a_2 c_{k+3} b_{j+4} a_5 \dots c_{k+3i} b_{j+3i+1} a_{3i+2} \dots$$

Equivalently, the graph $G[a_i b_{j+i} c_{k+i}]$ is the graph with the same vertex set as $K_{n,n,n}$ and edge set

$$\begin{aligned} \{a_i b_{j+i-1}, a_i b_{j+i}, a_i b_{j+i+1}, a_i c_{k+i-1}, a_i c_{k+i}, a_i c_{k+i+1} \mid 1 \le i \le n-2 \} \\ \cup \{b_{j+i} c_{k+i-1}, b_{j+i} c_{k+i}, b_{j+i} c_{k+i+1} \mid 1 \le i \le n-2 \} \\ \cup \{a_0 b_j, a_0 b_{j+1}, a_{n-1} b_{j+n-2}, a_{n-1} b_{j+n-1} \} \\ \cup \{a_0 c_k, a_0 c_{k+1}, a_{n-1} c_{k+n-2}, a_{n-1} c_{k+n-1} \} \\ \cup \{b_j c_k, b_j c_{k+1}, b_{j+n-1} c_{k+n-2}, b_{j+n-1} c_{k+n-1} \}. \end{aligned}$$

Figure 1(a) illustrates the planar spanning subgraph $G[a_i b_i c_i]$ of $K_{5,5,5}$.

(a) The subgraph $G_1 = G[a_i b_i c_i]$ of $K_{5,5,5}$

Figure 1: A planar subgraphs decomposition of $K_{5,5,5}$

Theorem 2.3. When n = 3p + 2 (p is a positive integer), $\theta(K_{n,n,n}) \leq p + 2$.

Proof. When n = 3p + 2 (p is a positive integer), we will construct two different planar subgraphs decompositions of $K_{n,n,n}$ according to p is odd or even, in which the number of planar subgraphs is p + 2 in both cases.

Case 1. p is odd. Let G_1, \ldots, G_p be p planar subgraphs of $K_{n,n,n}$ where $G_t = G[a_i b_{i+3(t-1)} c_{i+6(t-1)}]$, for $1 \le t \le \frac{p+1}{2}$; and $G_t = G[a_i b_{i+3(t-1)} c_{i+6(t-1)+2}]$, for $\frac{p+3}{2} \le t \le p$ and $p \ge 3$. From the structure of $G[a_i b_{j+i} c_{k+i}]$, we get that no two edges in G_1, \ldots, G_p are repeated. Because subscripts in $G_t, 1 \le t \le p$ are taken modulo $n, \{3(t-1) \pmod{n} \mid 1 \le t \le p\} = \{0, 3, 6, \ldots, 3(p-1)\}, \{6(t-1) \pmod{n} \mid 1 \le t \le p\} = \frac{p+1}{2} = \{0, 6, \ldots, 3(p-1)\}$ and $\{6(t-1)+2 \pmod{n} \mid \frac{p+3}{2} \le t \le p\} = \{3, 9, \ldots, 3(p-2)\}$, the subscript sets of b and c in $G_t, 1 \le t \le p$ are the same, i.e.,

$$\{i+3(t-1) \pmod{\mathsf{n}} \mid 1 \le t \le p\}$$

$$=\{i+6(t-1) \ (\text{mod n}) \ | \ 1 \leq t \leq \frac{p+1}{2}\} \cup \{i+6(t-1)+2 \ (\text{mod n}) \ | \ \frac{p+3}{2} \leq t \leq p\}.$$

Furthermore, if there exists $t \in \{1, ..., p\}$ such that $a_i b_j$ is an edge in G_t , then $a_i c_j$ is an edge in G_k for some $k \in \{1, ..., p\}$. If the edge $a_i b_j$ is not in any G_t , then neither is the edge $a_i c_j$ in any G_t , for $1 \le t \le p$.

From the construction of G_t , the edges that belong to $K_{n,n,n}$ but not to any G_t , $1 \le t \le p$, are

$$a_0 b_{3(t-1)-1}, \ a_0 c_{3(t-1)-1}, \ 1 \le t \le p$$
 (1)

$$a_{n-1}b_{3(t-1)}, \ a_{n-1}c_{3(t-1)}, \ 1 \le t \le p$$
 (2)

$$a_i b_{i-3}, \ a_i b_{i-2}, \ 0 \le i \le n-1$$
 (3)

$$a_i c_{i-3}, \ a_i c_{i-2}, \ 0 \le i \le n-1$$
 (4)

$$b_i c_{i+3(t-1)-1}, \ b_i c_{i+3(t-1)}, \ 0 \le i \le n-1 \text{ and } t = \frac{p+3}{2}$$
 (5)

$$b_{3(t-1)}c_{6(t-1)-1}, \ b_{3(t-1)-1}c_{6(t-1)}, \ 1 \le t \le \frac{p+1}{2}$$
 (6)

$$b_{3(t-1)}c_{6(t-1)+1}, \ b_{3(t-1)-1}c_{6(t-1)+2}, \ \ \frac{p+3}{2} \le t \le p \text{ and } p \ge 3$$
 (7)

Let G_{p+1} be the graph whose edge set consists of the edges in (3) and (5), and G_{p+2} be the graph whose edge set consists of the edges in (1), (2), (4), (6) and (7). In the following, we will describe plane drawings of G_{p+1} and G_{p+2} .

(a) A planar embedding of G_{p+1} .

Place vertices $b_0, b_1, \ldots, b_{n-1}$ on a circle, place vertices a_{i+3} and $c_{i+\frac{n+1}{2}}$ in the middle of b_i and b_{i+1} , join each of a_{i+3} and $c_{i+\frac{n+1}{2}}$ to both b_i and b_{i+1} , we get a planar embedding of G_{p+1} . For example, when p = 1, n = 5, Figure 1(b) shows the subgraph G_2 of $K_{5,5,5}$. (b) A planar embedding of G_{p+2} .

Firstly, we place vertices $c_0, c_1, \ldots, c_{n-1}$ on a circle, join vertex a_{i+3} to c_i and c_{i+1} , for $0 \le i \le n-1$, so that we get a cycle of length 2n. Secondly, join vertex a_{n-1} to $c_{3(t-1)}$ for $1 \le t \le p$, with lines inside of the cycle. Let ℓ_t be the line drawn inside the cycle joining a_{n-1} with $c_{6(t-1)-1}$ if $1 \le t \le \frac{p+1}{2}$ or with $c_{6(t-1)+1}$ if $\frac{p+3}{2} \le t \le p$ ($p \ge 3$). For $1 \le t \le p$, insert the vertex $b_{3(t-1)}$ in the line ℓ_t . Thirdly, join vertex a_0 to $c_{3(t-1)-1}$ for $1 \le t \le p$, with lines outside of the cycle. Let ℓ'_t be the line drawn outside the cycle joining a_0 with $c_{6(t-1)}$ if $1 \le t \le \frac{p+1}{2}$ or with $c_{6(t-1)+2}$ if $\frac{p+3}{2} \le t \le p$ ($p \ge 3$). For $1 \le t \le p$, insert the vertex $b_{3(t-1)-1}$ in the line ℓ'_t . In this way, we can get a planar embedding of G_{p+2} . For example, when p = 1, n = 5, Figure 1(c) shows the subgraph G_3 of $K_{5,5,5}$.

Summarizing, when p is an odd positive integer and n = 3p+2, we get a decomposition of $K_{n,n,n}$ into p + 2 planar subgraphs G_1, \ldots, G_{p+2} .

Case 2. p is even. Let G_1, \ldots, G_p be p planar subgraphs of $K_{n,n,n}$ where $G_t = G[a_i b_{i+3(t-1)} c_{i+6(t-1)+3}]$, for $1 \le t \le \frac{p}{2}$; and $G_t = G[a_i b_{i+3(t-1)} c_{i+6(t-1)+2}]$, for $\frac{p+2}{2} \le t \le p$. With a similar argument to the proof of Case 1, we can get that the subscript sets of b and c in G_t , $1 \le t \le p$ are the same, i.e.,

 $\{i+3(t-1) \pmod{\mathbf{n}} \mid 1 \le t \le p\}$

$$= \{i + 6(t-1) + 3 \pmod{\mathbf{n}} \mid 1 \le t \le \frac{p}{2}\} \cup \{i + 6(t-1) + 2 \pmod{\mathbf{n}} \mid \frac{p+2}{2} \le t \le p\}.$$

From the construction of G_t , $G_{\frac{p}{2}}$ and $G_{\frac{p+2}{2}}$ have n-2 edges in common, they are $b_{i+3(\frac{p+2}{2}-1)}c_{i+6(\frac{p+2}{2}-1)+1}$, $1 \le i \le n-1$ and $i \ne n-4$, we can delete them in one of these two graphs to avoid repetition.

The edges that belong to $K_{n,n,n}$ but not to any G_t , $1 \le t \le p$, are

$$a_0 b_{3(t-1)-1}, \ a_0 c_{3(t-1)-1}, \ 1 \le t \le p$$
(8)

$$a_{n-1}b_{3(t-1)}, \ a_{n-1}c_{3(t-1)}, \ 1 \le t \le p$$
(9)

$$a_i b_{i-3}, \ a_i b_{i-2}, \ 0 \le i \le n-1$$
 (10)

$$a_i c_{i-3}, \ a_i c_{i-2}, \ 0 \le i \le n-1$$
 (11)

$$b_i c_{i-1}, \ b_i c_i, \ b_i c_{i+1}, \ 0 \le i \le n-1$$
 (12)

$$b_{3(t-1)}c_{6t-4}, \quad 1 \le t \le \frac{p}{2}$$
 (13)

$$b_{3(t-1)}c_{6t-5}, \quad \frac{p+2}{2} < t \le p$$
 (14)

$$b_{3(t-1)-1}c_{6t-3}, \quad 1 \le t < \frac{p}{2}$$
 (15)

$$b_{3(t-1)-1}c_{6t-4}, \quad \frac{p+2}{2} \le t \le p$$
 (16)

Let G_{p+1} be the graph whose edge set consists of the edges in (10), (11) and (12), and G_{p+2} be the graph whose edge set consists of the edges in (8), (9), (13), (14), (15) and (16). We draw G_{p+1} in the following way. Firstly, place vertices $b_0, c_0, b_1, c_1, \ldots, b_{n-1}, c_{n-1}$ on a circle C, join vertex c_i to b_i and b_{i+1} , we get a cycle of length 2n. Secondly, place vertices $a_0, a_2, \ldots, a_{n-2}$ on a circle C' in the unbounded region defined by the circle C such that C is contained in the closed disk defined by C', place vertices $a_1, a_3, \ldots, a_{n-1}$ on a circle C'' contained in the bounded region of C. Join a_i to $b_{i-3}, b_{i-2}, c_{i-3}$, and c_{i-2} , join b_i to c_{i+1} . We can get a planar embedding of G_{p+1} , so it is a planar graph. G_{p+2} is also planar because it is a subgraph of a graph homeomorphic to a dipole (two vertices joined by some edges). For example, when p = 2, n = 8, Figure 2(c) and Figure 2(d) show the subgraphs G_3 and G_4 of $K_{8,8,8}$ respectively.

Summarizing, when p is an even positive integer and n = 3p + 2, we obtain a decomposition of $K_{n,n,n}$ into p + 2 planar subgraphs G_1, \ldots, G_{p+2} .

Theorem follows from Cases 1 and 2.

From the proof of Theorem 2.3, we draw planar subgraphs decompositions of $K_{5,5,5}$ and $K_{8,8,8}$ as illustrated in Figure 1 and Figure 2 respectively.

(a) The subgraph $G_1 = G[a_i b_i c_{i+3}]$ of $K_{8,8,8}$

(b) The subgraph $G_2 - b_4c_0 - b_5c_1 - b_6c_2 - b_0c_4 - b_1c_5 - b_2c_6$ of $K_{8,8,8}$ in which $G_2 = G[a_ib_{i+3}c_i]$

(c) The subgraph G_3 of $K_{8,8,8}$ (d) The subgraph G_4 of $K_{8,8,8}$

Figure 2: A planar subgraphs decomposition of $K_{8,8,8}$

Proof of Theorem 1.1. Because graph $K_{n-1,n-1,n-1}$ is a subgraph of $K_{n,n,n}$, $\theta(K_{n-1,n-1,n-1}) \leq \theta(K_{n,n,n})$, by Theorem 2.3, $\theta(K_{n,n,n}) \leq p+2$ also holds, when n = 3p or n = 3p + 1 (p is a positive integer), the theorem follows.

Proof of Theorem 1.2. When n = 3p is odd, i.e., $n \equiv 3 \pmod{6}$, we decompose $K_{n,n,n}$ into p + 1 planar subgraphs G_1, \ldots, G_{p+1} , where $G_t = G[a_i b_{i+3(t-1)} c_{i+6(t-1)}]$, for $1 \le t \le p$. With a similar argument to the proof of Theorem 2.3, we can get that the subscript sets of b and c in G_t , $1 \le t \le p$ are the same, i.e.,

$${i+3(t-1) \pmod{n} \mid 1 \le t \le p} = {i+6(t-1) \pmod{n} \mid 1 \le t \le p}.$$

If the edge $a_i b_j$ is in G_t for some $t \in \{1, ..., p\}$, then there exists $k \in \{1, ..., p\}$ such that $a_i c_j$ is in G_k . If the edge $a_i b_j$ is not in any G_t , then neither is the edge $a_i c_j$ in any G_t , for $1 \le t \le p$.

From the construction of $G_t = G[a_i b_{i+3(t-1)} c_{i+6(t-1)}]$, we list the edges that belong to $K_{n,n,n}$ but not to any G_t , $1 \le t \le p$, as follows.

$$a_0 b_{3(t-1)-1}, \ a_0 c_{6(t-1)-1}, \ 1 \le t \le p$$
 (17)

$$a_{n-1}b_{3(t-1)}, a_{n-1}c_{6(t-1)}, \quad 1 \le t \le p$$
(18)

$$b_{3(t-1)}c_{6(t-1)-1}, \ b_{3(t-1)-1}c_{6(t-1)}, \quad 1 \le t \le p$$
 (19)

Let G_{p+1} be the graph whose edge set consists of the edges in (17), (18) and (19). It is easy to see that G_{p+1} is homeomorphic to a dipole and it is a planar graph.

Summarizing, when p is an odd positive integer and n = 3p, we obtain a decomposition of $K_{n,n,n}$ into p + 1 planar subgraphs G_1, \ldots, G_{p+1} , therefor $\theta(K_{n,n,n}) \leq p + 1$. Combining this fact and Lemma 2.2, the theorem follows.

(a) The subgraph $G_1 = G[a_i b_i c_i]$ of $K_{3,3,3}$

Figure 3: A planar subgraphs decomposition of $K_{3,3,3}$

According to the proof of Theorem 1.2, we draw a planar subgraphs decomposition of $K_{3,3,3}$ as shown in Figure 3.

For some other $\theta(K_{n,n,n})$ with small n, combining Lemma 2.2 and Poranen's result mentioned in Section 1, we have $\theta(K_{4,4,4}) = 2, \theta(K_{6,6,6}) = 3$. Since there exists a decomposition of $K_{7,7,7}$ with three planar subgraphs as shown in Figure 4, Lemma 2.2 implies that $\theta(K_{7,7,7}) = 3$. We also conjecture that the thickness of $K_{n,n,n}$ is $\lceil \frac{n+1}{3} \rceil$ for all $n \geq 3$.

142

(b) The subgraph $G_2 - a_1b_2 - a_2b_3 - a_3b_4 - a_4b_5 - a_5b_6 - b_0c_1 - b_1c_2 - b_3c_4 - b_4c_5 - b_5c_6$ of $K_{7,7,7}$ in which $G_2 = G[a_ib_{i+2}c_{i+4}]$

(c) The subgraph G_3 of $K_{7,7,7}$

Figure 4: A planar subgraphs decomposition of $K_{7,7,7}$

Acknowledgements

The author is grateful to the anonymous referees for many helpful comments and suggestions.

References

- V. Alekseev and V. Goncakov, The thickness of an arbitrary complete graph., *Math. USSR, Sb.* 30 (1978), 187–202, doi:10.1070/SM1976v030n02ABEH002267.
- [2] J. Battle, F. Harary and Y. Kodama, Every planar graph with nine points has a nonplanar complement., Bull. Am. Math. Soc. 68 (1962), 569–571, doi:10.1090/S0002-9904-1962-10850-7.
- [3] L. W. Beineke and F. Harary, The thickness of the complete graph, *Canad. J. Math* **17** (1965), 618–620.
- [4] L. W. Beineke, F. Harary and J. W. Moon, On the thickness of the complete bipartite graph, in: *Mathematical Proceedings of the Cambridge Philosophical Society*, Cambridge Univ Press, volume 60, 1964 pp. 01–05.
- [5] M. Kleinert, Die Dicke des n-dimensionalen Würfel-Graphen., J. Comb. Theory 3 (1967), 10– 15, doi:10.1016/S0021-9800(67)80010-3.
- [6] E. Mäkinen and T. Poranen, An annotated bibliography on the thickness, outerthickness, and arboricity of a graph., *Missouri J. Math. Sci.* 24 (2012), 76–87.
- [7] A. Mansfield, Determining the thickness of graphs is NP-hard., *Math. Proc. Camb. Philos. Soc.* 93 (1983), 9–23, doi:10.1017/S030500410006028X.
- [8] P. Mutzel, T. Odenthal and M. Scharbrodt, The thickness of graphs: a survey, *Graphs and combinatorics* **14** (1998), 59–73.
- [9] T. Poranen, A simulated annealing algorithm for determining the thickness of a graph., *Inf. Sci.* 172 (2005), 155–172, doi:10.1016/j.ins.2004.02.029.
- [10] W. Tutte, The non-biplanar character of the complete 9-graph., Can. Math. Bull. 6 (1963), 319–339, doi:10.4153/CMB-1963-026-x.
- [11] W. Tutte, The thickness of a graph, in: *Indagationes Mathematicae (Proceedings)*, Elsevier, volume 66, 1963 pp. 567–577.