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Abstract

The thickness θ(G) of a graph G is the minimum number of planar subgraphs into
whichG can be decomposed. In this paper, we provide a new upper bound for the thickness
of the complete tripartite graphs Kn,n,n (n ≥ 3) and obtain θ(Kn,n,n) =

⌈
n+1
3

⌉
, when

n ≡ 3 (mod 6).
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1 Introduction
The thickness θ(G) of a graph G is the minimum number of planar subgraphs into which
G can be decomposed. It was defined by Tutte [11] in 1963, derived from early work on
biplanar graphs [2, 10]. It is a classical topological invariant of a graph and also has many
applications to VLSI design, graph drawing, etc. Determining the thickness of a graph
is NP-hard [7], so the results about thickness are few. The only types of graphs whose
thicknesses have been determined are complete graphs [1, 3], complete bipartite graphs [4]
and hypercubes [5]. The reader is referred to [6, 8] for more background on the thickness
problems.

In this paper, we study the thickness of complete tripartite graphs Kn,n,n, (n ≥ 3).
When n = 1, 2, it is easy to see thatK1,1,1 andK2,2,2 are planar graphs, so the thickness of
both ones is one. Poranen proved θ(Kn,n,n) ≤

⌈
n
2

⌉
in [9] which was the only result about

the thickness of Kn,n,n, as far as the author knows. We will give a new upper bound for
θ(Kn,n,n) and provide the exact number for the thickness of Kn,n,n, when n is congruent
to 3 mod 6, the main results of this paper are the following theorems.

Theorem 1.1. For n ≥ 3, θ(Kn,n,n) ≤
⌈
n+1
3

⌉
+ 1.

Theorem 1.2. θ(Kn,n,n) =
⌈
n+1
3

⌉
when n ≡ 3 ( mod 6).
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2 The proofs of the theorems
In [4], Beineke, Harary and Moon determined the thickness of complete bipartite graph
Km,n for almost all values of m and n.

Lemma 2.1. [4] The thickness of Km,n is
⌈

mn
2(m+n−2)

⌉
except possibly when m and n are

odd, m ≤ n and there exists an integer k satisfying n =
⌊ 2k(m−2)

m−2k
⌋
.

Lemma 2.2. For n ≥ 3, θ(Kn,n,n) ≥
⌈
n+1
3

⌉
.

Proof. Since Kn,2n is a subgraph of Kn,n,n, we have θ(Kn,n,n) ≥ θ(Kn,2n). From
Lemma 2.1, the thickness of Kn,2n (n ≥ 3) is

⌈
n+1
3

⌉
, so the lemma follows.

For the complete tripartite graph Kn,n,n with the vertex partition (A,B,C), where
A = {a0, . . . , an−1}, B = {b0, . . . , bn−1} and C = {c0, . . . , cn−1}, we define a type
of graphs, they are planar spanning subgraphs of Kn,n,n, denoted by G[aibj+ick+i], in
which 0 ≤ i, j, k ≤ n− 1 and all subscripts are taken modulo n. The graph G[aibj+ick+i]
consists of n triangles aibj+ick+i for 0 ≤ i ≤ n− 1 and six paths of length n− 1, they are

a0bj+1ck+2a3bj+4ck+5 . . . a3ibj+3i+1ck+3i+2 . . . ,

cka1bj+2ck+3a4bj+5 . . . ck+3ia3i+1bj+3i+2 . . . ,

bjck+1a2bj+3ck+4a5 . . . bj+3ick+3i+1a3i+2 . . . ,

a0ck+1bj+2a3ck+4bj+5 . . . a3ick+3i+1bj+3i+2 . . . ,

bja1ck+2bj+3a4ck+5 . . . bj+3ia3i+1ck+3i+2 . . . ,

ckbj+1a2ck+3bj+4a5 . . . ck+3ibj+3i+1a3i+2 . . . .

Equivalently, the graph G[aibj+ick+i] is the graph with the same vertex set as Kn,n,n and
edge set

{aibj+i−1, aibj+i, aibj+i+1, aick+i−1, aick+i, aick+i+1 | 1 ≤ i ≤ n− 2}

∪{bj+ick+i−1, bj+ick+i, bj+ick+i+1 | 1 ≤ i ≤ n− 2}

∪{a0bj , a0bj+1, an−1bj+n−2, an−1bj+n−1}

∪{a0ck, a0ck+1, an−1ck+n−2, an−1ck+n−1)}

∪{bjck, bjck+1, bj+n−1ck+n−2, bj+n−1ck+n−1}.

Figure 1(a) illustrates the planar spanning subgraph G[aibici] of K5,5,5.
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Figure 1: A planar subgraphs decomposition of K5,5,5

Theorem 2.3. When n = 3p+ 2 (p is a positive integer), θ(Kn,n,n) ≤ p+ 2.

Proof. When n = 3p + 2 (p is a positive integer), we will construct two different planar
subgraphs decompositions of Kn,n,n according to p is odd or even, in which the number of
planar subgraphs is p+ 2 in both cases.

Case 1. p is odd. Let G1, . . . , Gp be p planar subgraphs of Kn,n,n where
Gt = G[aibi+3(t−1)ci+6(t−1)], for 1 ≤ t ≤ p+1

2 ; and Gt = G[aibi+3(t−1)ci+6(t−1)+2],
for p+3

2 ≤ t ≤ p and p ≥ 3. From the structure of G[aibj+ick+i], we get that no two
edges in G1, . . . , Gp are repeated. Because subscripts in Gt, 1 ≤ t ≤ p are taken modulo
n, {3(t− 1) (mod n) | 1 ≤ t ≤ p} = {0, 3, 6, . . . , 3(p− 1)}, {6(t− 1) (mod n) | 1 ≤ t ≤
p+1
2 } = {0, 6, . . . , 3(p−1)} and {6(t−1)+2 (mod n) | p+3

2 ≤ t ≤ p} = {3, 9, . . . , 3(p−
2)}, the subscript sets of b and c in Gt, 1 ≤ t ≤ p are the same, i.e.,
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{i+ 3(t− 1) (mod n) | 1 ≤ t ≤ p}

= {i+6(t− 1) (mod n) | 1 ≤ t ≤ p+ 1

2
} ∪ {i+6(t− 1) + 2 (mod n) | p+ 3

2
≤ t ≤ p}.

Furthermore, if there exists t ∈ {1, . . . , p} such that aibj is an edge in Gt, then aicj is an
edge in Gk for some k ∈ {1, . . . , p}. If the edge aibj is not in any Gt, then neither is the
edge aicj in any Gt, for 1 ≤ t ≤ p.

From the construction of Gt, the edges that belong to Kn,n,n but not to any Gt, 1 ≤
t ≤ p, are

a0b3(t−1)−1, a0c3(t−1)−1, 1 ≤ t ≤ p (1)

an−1b3(t−1), an−1c3(t−1), 1 ≤ t ≤ p (2)

aibi−3, aibi−2, 0 ≤ i ≤ n− 1 (3)

aici−3, aici−2, 0 ≤ i ≤ n− 1 (4)

bici+3(t−1)−1, bici+3(t−1), 0 ≤ i ≤ n− 1 and t =
p+ 3

2
(5)

b3(t−1)c6(t−1)−1, b3(t−1)−1c6(t−1), 1 ≤ t ≤ p+ 1

2
(6)

b3(t−1)c6(t−1)+1, b3(t−1)−1c6(t−1)+2,
p+ 3

2
≤ t ≤ p and p ≥ 3 (7)

LetGp+1 be the graph whose edge set consists of the edges in (3) and (5), andGp+2 be
the graph whose edge set consists of the edges in (1), (2), (4), (6) and (7). In the following,
we will describe plane drawings of Gp+1 and Gp+2.
(a) A planar embedding of Gp+1.
Place vertices b0, b1, . . . , bn−1 on a circle, place vertices ai+3 and ci+n+1

2
in the middle of

bi and bi+1, join each of ai+3 and ci+n+1
2

to both bi and bi+1, we get a planar embedding
of Gp+1. For example, when p = 1, n = 5, Figure 1(b) shows the subgraph G2 of K5,5,5.
(b) A planar embedding of Gp+2.
Firstly, we place vertices c0, c1, . . . , cn−1 on a circle, join vertex ai+3 to ci and ci+1, for
0 ≤ i ≤ n− 1 , so that we get a cycle of length 2n. Secondly, join vertex an−1 to c3(t−1)
for 1 ≤ t ≤ p, with lines inside of the cycle. Let `t be the line drawn inside the cycle
joining an−1 with c6(t−1)−1 if 1 ≤ t ≤ p+1

2 or with c6(t−1)+1 if p+3
2 ≤ t ≤ p (p ≥ 3). For

1 ≤ t ≤ p, insert the vertex b3(t−1) in the line `t. Thirdly, join vertex a0 to c3(t−1)−1 for
1 ≤ t ≤ p, with lines outside of the cycle. Let `′t be the line drawn outside the cycle joining
a0 with c6(t−1) if 1 ≤ t ≤ p+1

2 or with c6(t−1)+2 if p+3
2 ≤ t ≤ p (p ≥ 3). For 1 ≤ t ≤ p,

insert the vertex b3(t−1)−1 in the line `′t. In this way, we can get a planar embedding of
Gp+2. For example, when p = 1, n = 5, Figure 1(c) shows the subgraph G3 of K5,5,5.

Summarizing, when p is an odd positive integer and n = 3p+2, we get a decomposition
of Kn,n,n into p+ 2 planar subgraphs G1, . . . , Gp+2.

Case 2. p is even. Let G1, . . . , Gp be p planar subgraphs of Kn,n,n where
Gt = G[aibi+3(t−1)ci+6(t−1)+3], for 1 ≤ t ≤ p

2 ; andGt = G[aibi+3(t−1)ci+6(t−1)+2], for
p+2
2 ≤ t ≤ p. With a similar argument to the proof of Case 1, we can get that the subscript

sets of b and c in Gt, 1 ≤ t ≤ p are the same, i.e.,
{i+ 3(t− 1) (mod n) | 1 ≤ t ≤ p}

= {i+ 6(t− 1) + 3 (mod n) | 1 ≤ t ≤ p

2
} ∪ {i+ 6(t− 1) + 2 (mod n) | p+ 2

2
≤ t ≤ p}.
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From the construction of Gt, G p
2

and G p+2
2

have n − 2 edges in common, they are
bi+3( p+2

2 −1)
ci+6( p+2

2 −1)+1, 1 ≤ i ≤ n − 1 and i 6= n − 4, we can delete them in one
of these two graphs to avoid repetition.

The edges that belong to Kn,n,n but not to any Gt, 1 ≤ t ≤ p, are

a0b3(t−1)−1, a0c3(t−1)−1, 1 ≤ t ≤ p (8)

an−1b3(t−1), an−1c3(t−1), 1 ≤ t ≤ p (9)

aibi−3, aibi−2, 0 ≤ i ≤ n− 1 (10)

aici−3, aici−2, 0 ≤ i ≤ n− 1 (11)

bici−1, bici, bici+1, 0 ≤ i ≤ n− 1 (12)

b3(t−1)c6t−4, 1 ≤ t ≤ p

2
(13)

b3(t−1)c6t−5,
p+ 2

2
< t ≤ p (14)

b3(t−1)−1c6t−3, 1 ≤ t < p

2
(15)

b3(t−1)−1c6t−4,
p+ 2

2
≤ t ≤ p (16)

Let Gp+1 be the graph whose edge set consists of the edges in (10), (11) and (12), and
Gp+2 be the graph whose edge set consists of the edges in (8), (9), (13), (14), (15) and
(16). We draw Gp+1 in the following way. Firstly, place vertices b0, c0, b1, c1, . . . , bn−1,
cn−1 on a circle C, join vertex ci to bi and bi+1, we get a cycle of length 2n. Secondly,
place vertices a0, a2, . . . , an−2 on a circle C ′ in the unbounded region defined by the circle
C such that C is contained in the closed disk defined by C ′, place vertices a1, a3, . . . , an−1
on a circle C ′′ contained in the bounded region of C. Join ai to bi−3, bi−2, ci−3, and ci−2,
join bi to ci+1. We can get a planar embedding of Gp+1, so it is a planar graph. Gp+2

is also planar because it is a subgraph of a graph homeomorphic to a dipole (two vertices
joined by some edges). For example, when p = 2, n = 8, Figure 2(c) and Figure 2(d) show
the subgraphs G3 and G4 of K8,8,8 respectively.

Summarizing, when p is an even positive integer and n = 3p+ 2, we obtain a decom-
position of Kn,n,n into p+ 2 planar subgraphs G1, . . . , Gp+2.

Theorem follows from Cases 1 and 2.

From the proof of Theorem 2.3, we draw planar subgraphs decompositions of K5,5,5

and K8,8,8 as illustrated in Figure 1 and Figure 2 respectively.
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Figure 2: A planar subgraphs decomposition of K8,8,8

Proof of Theorem 1.1. Because graph Kn−1,n−1,n−1 is a subgraph of Kn,n,n,
θ(Kn−1,n−1,n−1) ≤ θ(Kn,n,n), by Theorem 2.3, θ(Kn,n,n) ≤ p + 2 also holds, when
n = 3p or n = 3p+ 1 (p is a positive integer), the theorem follows. �

Proof of Theorem 1.2. When n = 3p is odd, i.e., n ≡ 3 (mod 6), we decompose Kn,n,n

into p + 1 planar subgraphs G1, . . . , Gp+1, where Gt = G[aibi+3(t−1)ci+6(t−1)], for 1 ≤
t ≤ p. With a similar argument to the proof of Theorem 2.3, we can get that the subscript
sets of b and c in Gt, 1 ≤ t ≤ p are the same, i.e.,

{i+ 3(t− 1) (mod n) | 1 ≤ t ≤ p} = {i+ 6(t− 1) (mod n) | 1 ≤ t ≤ p}.

If the edge aibj is in Gt for some t ∈ {1, . . . , p}, then there exists k ∈ {1, . . . , p} such that
aicj is in Gk. If the edge aibj is not in any Gt, then neither is the edge aicj in any Gt, for
1 ≤ t ≤ p.

From the construction of Gt = G[aibi+3(t−1)ci+6(t−1)], we list the edges that belong
to Kn,n,n but not to any Gt, 1 ≤ t ≤ p, as follows.

a0b3(t−1)−1, a0c6(t−1)−1, 1 ≤ t ≤ p (17)

an−1b3(t−1), an−1c6(t−1), 1 ≤ t ≤ p (18)

b3(t−1)c6(t−1)−1, b3(t−1)−1c6(t−1), 1 ≤ t ≤ p (19)

Let Gp+1 be the graph whose edge set consists of the edges in (17), (18) and (19). It is
easy to see that Gp+1 is homeomorphic to a dipole and it is a planar graph.

Summarizing, when p is an odd positive integer and n = 3p, we obtain a decomposi-
tion of Kn,n,n into p + 1 planar subgraphs G1, . . . , Gp+1, therefor θ(Kn,n,n) ≤ p + 1.
Combining this fact and Lemma 2.2, the theorem follows. �
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Figure 3: A planar subgraphs decomposition of K3,3,3

According to the proof of Theorem 1.2, we draw a planar subgraphs decomposition of
K3,3,3 as shown in Figure 3.

For some other θ(Kn,n,n) with small n, combining Lemma 2.2 and Poranen’s result
mentioned in Section 1, we have θ(K4,4,4) = 2, θ(K6,6,6) = 3. Since there exists a
decomposition of K7,7,7 with three planar subgraphs as shown in Figure 4, Lemma 2.2
implies that θ(K7,7,7) = 3. We also conjecture that the thickness of Kn,n,n is

⌈
n+1
3

⌉
for

all n ≥ 3.
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