Analiza harmonske vsebine signala generiranega z bipolarno sinusno pulzno širinsko modulacijo

Denis Sušin

Univerza v Ljubljani, Fakulteta za elektrotehniko, Tržaška 25, 1000 Ljubljana E-pošta: denis.susin@fe.uni-lj.si

Harmonic content analysis of signal generated with bipolar sinusoidal pulse width modulation

Abstract. In this paper harmonic content of signal generated with bipolar sinusoidal pulse width modulation (PWM) are analyzed. The impact of four quantities is studied: discretization of the sinusoidal control signal, amplitude and frequency ratio between saw signal and control signal and finally the influence of the dead time. To maximize the amplitude of the first harmonic and to minimize higher harmonics content, the dead time is supposed to be as short as possible and the ratio between PWM frequency and control signal frequency should be high. However, this is not always possible, thus different characteristics are shown based on simulation results.

1 Uvod

Pulzno širinska modulacija (PWM - angl. Pulse Width Modulation) je predvsem na področju močnostne elektronike zelo razširjena [1]. Zelo pogosto je uporabljena sinhronska sinusna bipolarna PWM, s ciljem generiranja sinusne napetosti oz. toka. Žal pa uporabljena modulacija generira tudi višjeharmonske komponente, ki pa velikokrat ostanejo prezrte oz. zanemarjene. Takšna poenostavitev v določenih aplikacijah ni dovoljena, zato je bil analiziran vpliv diskretizacije krmilnega signala, mrtvega časa ter amplitudnega in frekvenčnega razmerja med žago in krmilnim signalom. Simulacijski rezultati pridobljeni s programskim paketom Matlab so predstavljeni v nadaljevanju.

2 Kratek opis in realizacija bipolarne sinusne PWM

Tipična aplikacija za uporabo sinusne PWM je razsmernik.

Slika 1: Topologija enofaznega razsmernika, kjer je uporabljena bipolarna sinusna PWM

Enosmerno napetost U_{DC} in tok I_{DC} želimo pretvoriti v izmenično napetost U_{AC} in tok I_{AC} sinusne oblike. Temu cilju se uspemo približati s topologijo enofaznega mostičnega razsmernika, ki je prikazan na sliki 1. Shematski prikaz proženja tranzistorjev Q1, Q2, Q3 in Q4 je prikazan na sliki 2.

Slika 2: Shematski prikaz delovanja bipolarnega PWM generatorja

Za realizacijo PWM potrebujemo generator sinusnega signala s frekvenco f_{krm} , amplitudo $U_{amp,krm}$ in fazo φ_{krm}

$$u_{krm} = U_{amp,krm} \cdot \cos(2\pi \cdot f_{krm} \cdot t + \varphi_{krm}) \quad (1)$$

ter generator žagastega signala s frekvenco f_{PWM} in amplitudo $U_{amp,zage}$,

$$u_{zage} = \begin{cases} U_{amp,zage} \cdot \left(1 - 4 \cdot \frac{t}{T_{PWM}}\right), \text{pogoj 1} \\ U_{amp,zage} \cdot \left(4 \cdot \frac{t}{T_{PWM}} - 1\right), \text{pogoj 2} \end{cases}$$
(2)
$$pogoj1 : kT_{PWM} + \frac{T_{PWM}}{2} > t \ge kT_{PWM}$$
(3)
$$pogoj2 : kT_{PWM} + T_{PWM} > t \ge kT_{PWM} + \frac{T_{PWM}}{2} \end{cases}$$

pri čemer je T_{PWM} obratna vrednost frekvence žage f_{PWM} ; $k = 0, 1, 2, 3, \dots$

р

Predpostavljamo, da je frekvenca žage natančen večkratnik frekvence krmilnega signala (od tu ime sinhronska PWM), kar pomeni, da je razmerje frekvenc *m_f* celo število:

$$m_f = \frac{f_{PWM}}{f_{krm}} \tag{4}$$

2

Razmerje amplitud med krmilnim signalom in žago m_a pa je:

$$m_a = \frac{U_{amp,krm}}{U_{amp,zage}}$$
(5)

Žago in krmilni signal primerjamo in če je slednji večji, potem prevajata tranzistorja Q1 in Q4. V nasprotnem primeru prevajata tranzistorja Q2 in Q3. Izhodna napetost je tako lahko bodisi U_{DC} , bodisi $-U_{DC}$, od koder izhaja ime bipolarna PWM.

Pri generiranju PWM-a je obvezno še implementacija mrtvega časa t_d ob vsakem preklopu tranzistorjev, s čimer preprečimo hkratno prevajanje obeh tranzistorjev v posamezni veji pretvornika. Žal pa mrtvi čas povzroča parazitne efekte, ki se kažejo tudi v frekvenčnem spektru izhodne napetosti.

PWM je možno realizirati izključno z analognimi elektronskimi vezji (slika 3), lahko pa za generiranje PWM signalov uporabimo tudi mikroprocesor (slika 4). Ta je realiziran tako, da je krmilni signal znotraj periode PWM-a oz. žage, vzorčen le enkrat [2], s čimer zagotovimo le en preklop v posamezni periodi PWM-a. Posledica diskretizacije pa je, da so harmonske komponente izhodne napetosti u_{AC} vedno zakasnjene za $0,5 \cdot T_{PWM}$. Med obema pristopoma so razlike majhne, pa vendar ta izbira vpliva na frekvenčni spekter izhodne napetosti u_{AC} .

Slika 3: Časovni poteki analogne PWM za $m_f = 4$, $m_a = 1$ in mrtvi čas $t_d = 0$

Slika 4: Časovni poteki diskretne PWM za $m_f = 4$, $m_a = 1$ in mrtvi čas $t_d = 0$

V praksi težimo k razmerju frekvenc $m_f \ge 20$ [3], kar pomeni, da so časovni poteki podobni razmeram s slike 5.

Slika 5: Časovni poteki diskretne PWM za $m_f = 20$, $m_a = 1$, in mrtvi čas $t_d = 0.01 \cdot T_{PWM}$

3 Analiza harmonske vsebine izhodne napetosti u_{AC} – simulacijski rezultati

Želja je torej, da na izhodu razsmernika dobimo sinusno napetost (samo osnovno harmonsko komponento brez višjeharmonskih komponent). Žal pa se zaradi narave PWM-a ne moremo izogniti dejstvu, da bodo poleg osnovne harmonske komponente prisotne še vsaj harmonske komponente v okolici m_f , $2m_f$, $3m_f$ itd. Frekvenčni spekter idealne analogne PWM prikazuje slika 6. Slednje lahko omilimo le z uporabo pasivnih analognih močnostnih filtrov, kot so npr. LC, LCL ali CLC filtri [3], kar pa presega namen tega dela. Težimo k čim večjemu frekvenčnemu razmerju m_f , saj je tako lažje zadušiti ta del frekvenčnega spektra.

Slika 6: Frekvenčni spekter izhodne napetosti u_{AC} za analogno PWM brez mrtvega časa za $m_f \ge 20$, $m_a = 1$ in mrtvi čas $t_d = 0$, kjer so prikazane amplitude harmonskih komponent izhodne napetosti u_{AC} kot delež od napetosti U_{DC}

Žal pa pasivna vezja relativno slabo dušijo višjeharmonske komponente od 2 do m_f , ki pa so v realnih aplikacijah vsekakor prisotne. Vzroki za pojavljanje teh harmonskih komponent so: uporaba diskretne PWM, vpliv mrtvega časa in morebitno prekrmiljenje (primeri, ko je $m_a > 1$). Vpliv prekrmiljenja na frekvenčni spekter izhodne napetosti

 u_{AC} je prikazan na sliki 7. Opazimo lahko, da v primerjavi s sliko 6 amplituda osnovne harmonske komponente rahlo naraste, občutno se povečajo harmonske komponente 3, 5, 7, 9, itd., zmanjša pa se vsebnost harmonskih komponent v okolici m_f , $2m_f$, $3m_f$ itd. Zaradi tega se prekrmiljenja običajno izogibamo.

Slika 7: Frekvenčni spekter izhodne napetosti u_{AC} za analogno PWM brez mrtvega časa za za $m_f \ge 20$, $m_a = 1,6$ in mrtvi čas $t_d = 0$, kjer so prikazane amplitude harmonskih komponent izhodne napetosti u_{AC} kot delež od napetosti U_{DC}

Slika 8: Karakteristika amplitude 1. harmonske komponente napetosti u_{AC} v odvisnosti od razmerja frekvenc m_f za diskretno PWM; $t_d = 0$

Slika 9: Karakteristika amplitude višjeharmonske komponente m_f napetosti u_{AC} v odvisnosti od razmerja frekvenc m_f za diskretno PWM; $t_d = 0$

Slika 8 prikazuje amplitudo osnovne harmonske komponente izhodne napetosti u_{AC} v odvisnosti od m_f , za diskretno PWM. Prikazane so različne karakteristike za posamezno amplitudno razmerje m_a . Razmerje frekvenc m_f ne vpliva na amplitudo osnovne harmonske komponente, razen za zelo nizke vrednosti m_f , a samo v primeru, ko je PWM realizirana diskretno. Razmerje frekvenc m_f mora biti večje od 2, da še lahko govorimo o sinusni PWM, v nasprotnem primeru gre za enopulzno PWM (kar pomeni, da ni razlike, če je krmilni signal sinusen ali konstanten). Če pa je m_f zelo velik, razlike med analogno in diskretno PWM praktično ni.

Sprememba m_f na amplitudo višjeharmonske komponente m_f ne vpliva, pač pa občutno vpliva razmerje amplitud m_a . To velja tako za analogno kot tudi za diskretno PWM (slika 9). Manjše kot je razmerje amplitud m_a , višja je vsebnost višjeharmonske komponente m_f in okoliških harmonskih komponent. Prikazane so različne karakteristike za posamezno amplitudno razmerje m_a .

Sliki 10 in 11 (razlika je le v vrednosti m_{f}) prikazujeta vpliv diskretizacije krmilnega signala, kar se kaže kot povečanje amplitude tako sodih kot lihih višjeharmonskih komponent 2, 3, 4, 5, itd. Tudi to velja tako za analogno kot tudi za diskretno PWM. Če se m_{f} poveča, se vsebnost teh harmonskih komponent zmanjša.

Slika 10: Del frekvenčnega spektra napetosti u_{AC} za $m_a = 1$, $m_f = 20$ ter $t_d = 0$

Slika 11: Del frekvenčnega spektra napetosti u_{AC} za $m_a = 1$, $m_f = 100$ ter $t_d = 0$

Vpliv mrtvega časa na amplitudo osnovne harmonske komponente napetosti u_{AC} prikazuje slika 12, na amplitudo višjeharmonske komponente m_f pa slika 13. Povečanje mrtvega časa povzroči zmanjšanje amplitude osnovne harmonske komponente ter povečanje amplitude višjeharmonske komponente m_f .

Slika 12: Karakteristika amplitude 1. harmonske komponente napetosti u_{AC} v odvisnosti od mrtvega časa t_d za diskretno PWM; $m_f = 400$

Slika 13: Karakteristika amplitude višjeharmonske komponente m_f napetosti u_{AC} v odvisnosti od mrtvega časa t_d za diskretno PWM; $m_f = 400$

Mrtvi čas povzroči le lihe višjeharmonske komponente 3, 5, 7 itd., kar prikazujeta sliki 14 in 15. Večje vrednosti mrtvega časa povzročijo večje vrednosti amplitud višjeharmonskih komponent.

Slika 14: Del frekvenčnega spektra napetosti u_{AC} za $m_a = 1$, $m_f = 400$ ter $t_d = 0.05 \cdot T_{PWM}$

Slika 15: Del frekvenčnega spektra napetosti u_{AC} za $m_a = 1$, $m_f = 400$ ter $t_d = 0.01 \cdot T_{PWM}$

4 Zaključek

Analiziran je frekvenčni spekter in ovrednoten vpliv določenih parametrov na izhodno napetost enofaznega razsmernika u_{AC} , kjer je uporabljena bipolarna sinusna PWM. Preučen je tudi vpliv diskretne PWM, ki je realizirana v mikroprocesorju. Ta povzroči upad amplitude osnovnega harmonika in zakasnitev za $0.5 T_{PWM}$ ter prisotnost tako sodih kot lihih višjeharmonskih komponent (2, 3, 4, 5, ...), amplituda teh je ranga velikosti 1% (normirano na U_{DC}). Manjše razmerje frekvenc m_f povzroči večjo amplitudo višjeharmonskih komponent. Diskretizacija krmilnega signala pa praktično nič ne vpliva na del spektra v okolici harmonskih komponent m_f .

Precejšen vpliv na frekvenčni spekter u_{AC} ima tudi mrtvi čas, saj povzroči zmanjšanje amplitude osnovnega harmonika ter porast lihih harmonikov (3, 5, 7, ...), amplitude harmonikov v okolici višjeharmonskih komponent $m_{f_2} 2m_{f_2} 3m_{f_3}$ itd. pa se tudi povečajo.

Prikazani rezultati potrjujejo splošno nenapisano pravilo, da naj bo razmerje frekvenc m_f čim večje ter mrtvi čas t_d čim manjši. Na ta način dosežemo, da bo amplituda osnovne harmonske komponente največja, amplitude višjeharmonskih komponent pa najmanjše. Ker pa to ni vedno izvedljivo, je zelo koristno poznati vpliv posameznih parametrov na frekvenčni spekter.

Literatura

- N. Mohan, T. M. Undeland, in W. P. Robbins, *Power electronics: converters, applications, and design*, 3rd ed. Hoboken, NJ: John Wiley & Sons, 2003.
- [2] J. Richardson, "Implementation of a PWM Regular Sampling Strategy for AC Drives", str. 11.
- [3] R. N. Beres, X. Wang, M. Liserre, F. Blaabjerg, in C. L. Bak, "A Review of Passive Power Filters for Three-Phase Grid-Connected Voltage-Source Converters", *IEEE J. Emerg. Sel. Top. Power Electron.*, let. 4, št. 1, str. 54–69, mar. 2016.