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Background. Laser speckle coherence imaging (LSCI) is an emerging imaging modality that enables noninvasive 
visualization and assessment of tissue perfusion and microcirculation. In this article, we evaluated LSCI in imaging per-
fusion in clinical oncology through a systematic review of the literature.
Methods. The inclusion criterion for the literature search in PubMed, Web of Science and Scopus electronic data-
bases was the use of LSCI in clinical oncology, meaning that all animal, phantom, ex vivo, experimental, research and 
development, and purely methodological studies were excluded.
Results. Thirty-six articles met the inclusion criteria. The anatomic locations of the neoplasms in the selected articles 
were brain (5 articles), breasts (2 articles), endocrine glands (4 articles), skin (12 articles), and the gastrointestinal tract 
(13 articles).
Conclusions. While LSCI is emerging as an appealing imaging modality, it is crucial for more clinical sites to initiate 
clinical trials. A lack of standardized protocols and interpretation guidelines are posing the most significant challenge. 
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Introduction

In the cancer research and treatment, the assess-
ment of tissue perfusion and microcirculation 
plays a pivotal role in understanding tumor physi-
ology, monitoring treatment responses, and deter-
mining surgical outcomes. Among the advanced 
visualization systems, fluorescence angiography 
utilizing indocyanine green (FA-ICG) has emerged 
as an objective tool for evaluating intraoperative 
perfusion.1-3 Despite its versatility, FA-ICG imaging 
has limitations: for example, it requires external 
dye injection, is constrained by pharmacokinetic 

factors in repeat assessments, and may potentially 
lead to allergic reactions to the dye.2 To overcome 
these shortcomings, novel imaging techniques 
have been explored for microvascular imaging.

One such modality is laser speckle contrast 
imaging (LSCI), a non-invasive optical imaging 
technique based on the unique properties of laser 
light to visualize blood flow and tissue perfusion 
in real-time.4,5 At the core of LSCI lies the phe-
nomenon of capturing the dynamic interference 
pattern, known as speckle, created when coherent 
laser light interacts with moving particles such 
as red blood cells, generating a real-time 2D color 
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heatmap of blood flow (Figure 1).6 By analyzing 
the temporal fluctuations in the speckle pattern, 
LSCI can quantitatively assess blood flow velocity, 
perfusion dynamics, and tissue microcirculation 
with high spatial and temporal resolution.

LSCI is a versatile modality with its applicabil-
ity ranging from material science7 to notable ap-
plications in medical therapeutic segments.8 LSCI 
has aided, among others, in studying retinal blood 
flow9, cardiovascular diseases10,11 and organ perfu-
sion6,12, while demonstrating potential as a valua-
ble tool for assessing burns13-15 and wound healing 
processes16-18, and monitoring perfusion during 
reconstructive surgery19 and neurosurgery.20-26 The 
value of LSCI in quantifying blood flow dynamics 
within clinical oncology remains unclear, and to 
that end, we systematically reviewed the literature 
with a specific focus on studies in which LSCI was 
conducted on patients in a clinical oncology set-
ting.

Methods

Authors conducted jointly—to minimize potential 
bias—a comprehensive literature search on April 
16, 2024, through PubMed, Web of Science and 
Scopus electronic databases using the following 
search terms: “laser speckle coherence imaging tu-
mors”, “laser speckle coherence imaging cancer”, 
“laser speckle coherence imaging carcinoma”, “la-
ser speckle coherence imaging anastomosis”, and 
“laser speckle coherence imaging thyroid”. No re-
strictions on publication date or language were im-
posed. The inclusion criterion was the application 
of LSCI in a clinical oncological setting, meaning 
that all animal and phantom, ex vivo, experimen-
tal, research and development, and purely meth-
odological studies were excluded. Special care was 
taken to remove duplicates across databases and 
studies; for example, if the study was first pub-
lished in proceedings and later in a journal, the 
proceedings article was considered a non-primary 
publication and therefore excluded. Studies were 
categorized with respect to the anatomical location 
of the tumors.

Results

In total, 309 articles were found to be of interest 
in the PubMed, Web of Science and Scopus data-
bases. After excluding duplicates and applying the 
exclusion criteria, first considering the title and 

abstract and then, if necessary, reading the en-
tire article, 36 articles were identified for further 
analysis. The anatomical locations of tumors in the 
selected articles were as follows: brain (5 articles), 
breasts (2 articles), endocrine glands (4 articles), 
skin (12 articles), and the gastrointestinal (GI) tract 
(13 articles).

Brain

Parthasarathy et al.21 made a pioneering effort in 
the evaluation of perfusion in clinical oncology 
using LSCI. Their pilot study focused on imaging 
cerebral blood flow either before (1 patient) or after 
(2 patients) tumor resections, across various corti-
cal regions. The same group continued research on  
larger patient groups (10 and 8, respectively), dem-
onstrating the feasibility of using LSCI to monitor 
blood flow during neurosurgery.22,27 Despite these 
promising outcomes, their research output ceased 
after 2017.

Another research group25 highlighted the po-
tential of LSCI for functional brain mapping 
during awake craniotomy for tumor removal. 
They observed a strong correlation between cor-
tical microvascular blood flow, as determined by 
LSCI, and electrocortical stimulation mapping. 
Additionally, Ideguchi et al.28 emphasized the ca-
pability of LSCI for noninvasive and rapid intraop-
erative real-time recognition of mass lesion-related 

FIGURE 1. Schematic representation of the laser speckle 
contrast imaging (LSCI) method. (A) The technique relies 
on the interference of light backscattered from moving 
particles, creating distinct dark and bright areas (speckle 
pattern) captured by a camera. (B) Variations in the speckle 
pattern are predominantly driven by the movement of red 
blood cells, enabling interpretation as perfusion. (C) Analysis 
of speckle-pattern variations yields an image displayed on 
the monitor, where white and yellow depict areas with high 
perfusion, contrasting with darker areas indicating lower 
perfusion areas. Taken from Berggren et al. 19 and reprinted 
with permission from the publisher.
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TABLE 1. Included articles reporting the use of laser speckle contrast imaging (LSCI) to quantify perfusion in clinical applications in oncology

Reference Year of 
publication

Number of 
patients Oncologic setting

Brain

Parthasarathy et al.21 2010 3 Tumor resection

Richards et al.22 2014 10 Tumor resection

Richards et al.27 2017 8 Tumor resection

Klijn et al.25 2013 8 Tumor resection

Ideguchi et al.28 2017 12 Tumor resection

Breasts

Tesselaar et al.29 2017 15 Adjuvant radiotherapy for stage I-II breast cancer

Zötterman et al.30 2020 23 Deep inferior epigastric artery perforator (DIEP) flap surgery

Endocrine glands

de Paula et al.31 2021 42 Non-functioning adrenal incidentaloma

Mannoh et al.32 2017 28 Thyroidectomy/parathyroidectomy

Mannoh et al.33 2021 72 Thyroidectomy

Mannoh et al.34 2023 21 Thyroidectomy/parathyroidectomy

Skin

Tchvialeva et al.35 2012 214 lesions Malignant melanoma, squamous cell carcinoma, basal cell carcinoma, 
melanocytic nevus, seborrheic keratosis

Reyal et al.36 2012 12 Basal cell carcinoma

Zhang et al.37 2019 12 (total 143) Facial nerve palsy due to nerve tumor (also including other etiology)

Zieger et al.38 2021 9 Basal cell carcinoma

Tenland et al.39 2019 13 Oculoplastic reconstructive surgery (tarsoconjunctival flaps)

Berggren et al.40 2019 9 Oculoplastic reconstructive surgery (tarsoconjunctival flaps)

Tenland et al.41 2021 12 Oculoplastic reconstructive surgery after squamous cell carcinoma, 
basal cell carcinoma, and intradermal nevus 

Berggren et al.42 2021 7 Oculoplastic reconstructive surgery after squamous cell carcinoma and 
basal cell carcinoma

Berggren et al.43 2021 7 Oculoplastic reconstructive surgery after squamous cell carcinoma and 
basal cell carcinoma

Berggren et al.44 2021 1 Oculoplastic reconstructive surgery 

Berggren et al.45 2022 7 Oculoplastic reconstructive surgery after squamous cell carcinoma and 
basal cell carcinoma

Stridh et al.46 2024 1 Cutaneous angio-sarcoma

Gastrointestinal tract (open surgical setting)

Eriksson et al.47 2014 10 Liver resection

Milstein et al.48 2016 11 Esophagectomy

Ambrus et al.49 2017 45 Esophagectomy

Ambrus et al. 50 2017 25 Ivor-Lewis esophagectomy 

Di Maria et al.51 2017 2 Colorectal resection

Jansen et al.52 2018 26 Esophagectomy

Kojima et al.53 2019 8 Colorectal resection

Kaneko et al.54 2020 36 Colorectal resection (34 due to colorectal carcinoma)

Gastrointestinal tract (laparoscopic/ thoracoscopic setting)

Heeman et al.55 2019 10 Colorectal resection

Kojima et al.56 2020 27 Colorectal resection

Slooter et al.57 2020 24 Esophagectomy

Heeman et al.58 2023 67 Hemicolectomy and sigmoid resection

Nwaiwu et al.59 2023 40 Colectomy, also non-oncological interventions (Roux-en-Y gastric 
bypass and sleeve gastrectomy)
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vasculature, which could be crucial in mitigating 
ischemic complications and complementing neu-
rophysiological monitoring.

Breasts

Tesselaar et al.29 conducted a study exploring the 
relationship between radiation exposure and 
changes in microvascular perfusion in 15 women 
undergoing adjuvant radiation therapy for stage 
I-II breast cancer. Their findings suggested that 
LSCI holds promise as a useful tool for objectively 
assessing radiation-induced microvascular chang-
es in the skin, even before visible changes occur, 
thereby aiding in the earlier prediction of potential 
severe reactions.

In another prospective clinical pilot study con-
ducted across two centers30, LSCI was employed 
in 23 women undergoing primary, secondary, or 
tertiary deep inferior epigastric artery perforator 
(DIEP) procedures, either unilateral or bilateral. 
Researchers used laser speckle patterns to calcu-
late perfusion values in arbitrary units (PU), re-
flecting the concentration and mean velocity of red 
blood cells. Categorizing patients into high (> 30) 
and low (< 30) PU, they found that all flaps with 
perfusion < 30 PU immediately after surgery had 
postoperative complications, necessitating revi-
sion in 4 women. These results suggest potential 
utility of LSCI for early detection of flap necrosis, 
aiding surgeons in identifying viable parts of the 
flaps. Traditionally, assessment of flap viability 
relies on subjective methods like skin color, flap 
temperature, capillary refill time, and dermal edge 
bleeding.

Endocrine glands

Endothelial reactivity60,61 was evaluated by LSCI in 
patients with mostly benign non-functioning ad-
renal incidentaloma.31. Mannoh et al.32 used LSCI 
to assess parathyroid viability post-thyroidectomy 
in 20 patients, achieving an accuracy of 91.5% in 
distinguishing between well vascularized (n = 32) 
and compromised (n = 27) parathyroid glands 
compared to visual assessment by an experienced 
surgeon. Ability to detect vascular compromise 
with LSCI was further validated in parathyroidec-
tomies in 8 patients, showing that this technique 
could identify parathyroid gland devasculariza-
tion before it became visually apparent to the sur-
geon. LSCI demonstrated promise as a real-time, 
contrast-free, objective method to mitigate hy-
poparathyroidism after thyroid surgery.

Subsequently, Mannoh et al.33 expanded their 
research, enrolling 72 patients who underwent 
thyroidectomy. They established an intraoperative 
speckle contrast threshold of 0.186 to distinguish 
between normoparathyroid and hypoparathyroid 
groups with 87.5% sensitivity and 84.4% specific-
ity. This threshold served as an indicator of ad-
equate parathyroid vascularization, with glands 
below the value of 0.186 considered adequately 
perfused (Figure 2).

Additionally, Mannoh et al.34 combined LSCI 
with ICG angiography in 21 patients undergoing 
thyroidectomy or parathyroidectomy. While both 
modalities offered similar information on parathy-
roid gland blood flow, they suggested advantages 
of LSCI, including lower costs, non-invasiveness, 
absence of contraindications, and compatibility 
with near-infrared autofluorescence (NIRAF) de-
tection, which has recently emerged as a reliable 
technique for intraoperative parathyroid gland lo-
calization or confirmation.62-64

Skin

Tchvialeva et al.35 applied LSCI to differentiate 
among 214 skin lesions, encompassing the three 
major types of skin cancers (malignant melanoma, 
squamous cell carcinomas, and basal cell carcino-
mas – BCCs), and two benign conditions (melano-
cytic nevus and seborrheic keratoses). In another 

FIGURE 2. Speckle contrast demonstrates lower values for well-vascularized 
parathyroid glands. Lower speckle contrast values indicate greater blood 
flow due to more blurring of the speckle pattern, while higher contrast values 
indicate less blood flow. The top row displays representative white light images, 
and the bottom row shows speckle contrast images of a well-vascularized (left), 
a compromised (middle), and a devascularized (right) parathyroid gland, with 
parathyroid glands marked with ellipses. The corresponding speckle contrast 
values were 0.11, 0.18, and 0.21, respectively. Taken from Mannoh et al. 33 and 
reprinted with permission from the publisher.
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early clinical study, LSCI was used to demonstrate 
that post-occlusive reactive hyperemia could occur 
in BCC as well.36 Zhang et al.37 explored differences 
in facial microvascular perfusion between ipsilat-
eral and contralateral sides in patients with facial 
nerve palsy (FNP), observing significant decreases 
on the ipsilateral side, which improved after treat-
ment. In their feasibility study, Zieger et al.38 intro-
duced a compact handheld LSCI device, affirming 
its reliability in assessing BCC.

In oculoplastics, Tenland et al.39 and Berggren 
et al.40 conducted studies using LSCI to monitor 
perfusion in patients with lower eyelid defects 
after post-tumor surgery large enough to require 
a tarsoconjunctival graft. Building on their initial 
work, the group continued research of employing 
LSCI in various oculoplastic reconstructive sur-
gery procedures. First, Tenland et al.41 monitored 
perfusion using LSCI in a study in which free bi-
lamellar eyelid grafts appeared to be an excellent 
alternative to the tarsoconjunctival flap procedure 
in the reconstruction of both upper and lower 
eyelid defects. Next, Berggren et al.42 noted rapid 
revascularization of H-plasty procedure flaps 
within a week postoperatively, attributing it to the 
pre-existing vascular network of the flap pedicle, 
rather than significant angiogenesis. In another 
study, Berggren et al.43 demonstrated complete rep-
erfusion of skin grafts in the periorbital area after 7 
weeks (Figure 3). Berggren et al.44 also presented a 
case illustrating nearly complete restoration of rep-
erfusion in a rotational full-thickness lower eyelid 
flap within 5 weeks. Finally, they assessed blood 
perfusion in glabellar flaps, finding rapid reper-
fusion.45 These convincing findings suggest that 
perioperative LSCI monitoring of perfusion in hu-
man periocular flaps and during oculoplastic re-
constructive surgery offers an attractive imaging 
modality for routine clinical use. Not surprising-
ly, Stridh et al.46 recently conducted a pilot study 
comprehensively combining LSCI with two other 

emerging non-invasive medical imaging modali-
ties, hyperspectral imaging 65-67 and photoacoustic 
imaging68 to monitor not only blood perfusion but 
also oxygen saturation and the molecular compo-
sition of the tissue. 

Gastrointestinal tract (open surgical 
setting)

The majority of clinical oncology studies with 
intraoperative LSCI were conducted in an open 
surgical setting, which we will review first. In 
an initial pilot clinical study, Eriksson et al.47 as-
sessed liver blood perfusion by occluding the 
portal vein and hepatic artery in ten consecutive 
patients undergoing liver resection for colorectal 
liver metastases. This early effort was followed 
by Milstein et al.48, who evaluated microvascular 
blood flow during esophagectomy, affirming that 
intraoperative LSCI offered a non-contact, non-in-
vasive approach for real-time analysis of potential 
anastomotic leakage without requiring a contrast 
medium. This finding was subsequently corrobo-
rated by Ambrus et al. who first performed gastric 
microvascular perfusion measurements during es-
ophagectomy in 45 patients49 and later used LSCI 
in Ivor-Lewis esophagectomy in 25 patients.50 

Di Maria et al.51 explored the feasibility of LSCI 
in 2 patients undergoing colorectal surgery, while 
Jansen et al.52 investigated the impact of thoracic 
epidural anesthesia during esophagectomy, once 
again demonstrating that LSCI could detect subtle 
changes in gastric microvascular perfusion in real-
time. Another group conducted an additional fea-
sibility study of intraoperative LSCI in 8 patients 
undergoing colorectal surgery.53 Kaneko et al.54 
further expanded on these feasibility studies by 
enrolling 36 patients undergoing colorectal resec-
tion, 34 of whom had colorectal carcinoma, aiming 
to compare demarcation lines determined by LSCI 
with transection lines where marginal vessels 

FIGURE 3. Representative examples of laser speckle contrast images, showing the blood perfusion in the free skin grafts, 
immediately postoperatively (0 weeks), and at follow-up after 1, 3, and 7 weeks. It can be seen that reperfusion occurred 
simultaneously in the center and periphery of the graft, and that complete reperfusion was achieved after 7 weeks. Taken 
from Berggren et al. 43 and reprinted with permission from the publisher.
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were divided. They found that 58.3% (21/36) of de-
marcation lines matched transection lines, with a 
median distance of 0.0 mm (0.0–12.1 mm) between 
the demarcation line determined by LSCI and the 
transection line.

Gastrointestinal tract (laparoscopic/
thoracoscopic setting)

Heeman et al.55 reported the first intraabdominal 
application combining a standard laparoscopic 
surgical setup with LSCI in 10 patients, enabling 
imaging of intestinal blood flow during a vascular 
occlusion test. Their findings were corroborated 
by Kojima et al.56 in a study involving 27 patients 
(Figure 4). Slooter et al.57 systematically compared 
four different emerging optical modalities, high-
lighting the clinical utility of FA-ICG as the most 
promising. Recently, Heeman et al.58 tested a com-
mercial LSCI system in the oncological clinical set-
ting, noting that the system was “non-disruptive 
of the surgical procedure with an average added 
surgical time of only 2.5 min and no change in 
surgical equipment”. They also observed a poten-
tial clinical benefit of the LSCI system, with 17% 
of operating surgeons altering anastomosis loca-
tions based on perfusion assessments. Nwaiwu 
et al.58 evaluated another commercial intraopera-
tive system combining LSCI and FA-ICG in mostly 
non-oncological patients, demonstrating that LSCI 
identified the same perfusion boundaries as FA-
ICG, with anastomoses and gastric remnants ap-
pearing well perfused.

Discussion

Based on this literature review, several advantages 
of LSCI emerge, including its non-invasive and 
non-contact nature, short acquisition time, high 
spatial and temporal resolution, low cost of equip-
ment, and simplicity of operation. In the oncologi-
cal clinical setting, LSCI holds particular promise 
for assessing skin flap perfusion post-oculoplastic 
reconstructive surgery and anastomotic perfu-
sion during gastrointestinal reconstruction. While 
LSCI offers numerous advantages in imaging 
blood flow dynamics, it is essential to recognize 
its limitations.

Limited penetration depth

One of the obvious limitations of LSCI in clinical 
oncology and medical applications, in general, is 

its restricted penetration depth. LSCI relies on de-
tecting motion contrast generated by moving red 
blood cells, limiting its applicability to superficial 
structures. Tumors and lesions located in deeper 
anatomical locations, such as within organs or soft 
tissues, may not be adequately visualized due to 
this limitation, hindering comprehensive evalu-
ation and monitoring of oncological conditions. 
However, studies like that of Stridh et al.46 demon-
strate that PAI as a complementary imaging tech-
nique can overcome this limitation. Another pos-
sibility to potentially consider is the use of optical 
clearance techniques69 to enhance tissue transpar-
ency and improve light penetration depth.

Motion artifacts

LSCI is susceptible to motion artifacts, which can 
arise from either involuntary movement of the 
subject or vibrations in the imaging setup. These 
artifacts can lead to image distortions and reduced 
image quality, compromising the accuracy and 
reliability of LSCI in clinical oncology. To address 
this, advanced post-processing algorithms are nec-
essary to improve image quality. Since motion ar-
tifacts are well-known sources of artifacts in LSCI, 
they have been extensively researched. One pos-
sibility is to implement motion compensation tech-
niques, such as image stabilization algorithms70 or 
gating strategies71, which can mitigate the effects 
of motion artifacts in LSCI. By minimizing motion-
induced distortions in the speckle pattern, these 

FIGURE 4. Typical laser speckle images in two patients. High-resolution laser 
speckle contrast imaging (LSCI) can indicate the bowel demarcation line at the 
point of ligation of the marginal vessels. (A) Normal color image before ligating 
the marginal vessels. (B) LSCI image before ligating the marginal vessels. (C) LSCI 
image after ligating the marginal vessels. Taken from Kojima et al.56 and reprinted 
with permission from the publisher.
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techniques improve the accuracy and reliability of 
blood flow measurements.

Inherent speckle noise 

The presence of inherent speckle noise in LSCI im-
ages can compromise the accuracy and reliability 
of blood flow measurements, particularly in low-
flow regions or under conditions of low contrast. 
Speckle noise can obscure subtle flow changes and 
restrict the sensitivity of LSCI in detecting small-
scale perfusion variations. Advanced noise reduc-
tion algorithms72 offer a solution by effectively 
suppressing speckle noise and enhancing the sig-
nal-to-noise ratio. These algorithms filter out un-
wanted noise components while retaining relevant 
flow information, thereby improving the sensitiv-
ity and specificity of LSCI in detecting perfusion 
changes, even in challenging imaging conditions.

Lack of standardized protocols and 
interpretation

A significant limitation of LSCI in clinical oncology 
is the lack of standardized protocols and interpre-
tation guidelines. Varying acquisition settings, im-
age processing algorithms, or interpretation meth-
odologies across different centers can yield incon-
sistent and non-comparable results. Establishing 
standardized protocols and guidelines tailored to 
oncology applications would enhance the accura-
cy and reproducibility of LSCI findings. 

Despite its potential, the clinical integration of 
LSCI faces obstacles, including the standardiza-
tion of imaging protocols, validation of its utility 
in large-scale clinical trials, and integration into 
existing surgical workflows. Addressing these 
limitations requires advancements in technology, 
algorithm refinement, and increased participation 
of clinical sites in conducting trials. Overcoming 
these challenges is essential for realizing the full 
potential of LSCI in clinical oncology; it is worth 
noting that other biomedical optical imaging tech-
niques 65-67,73-80 are likely to encounter similar chal-
lenges in the future.
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