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Abstract

For a sequence {an}n≥0 of real numbers, we define the sequence of its arithmetic
means {a∗n}n≥0 as the sequence of averages of the first n elements of {an}n≥0. For a
parameter 0 < p < 1, we define the sequence of p-binomial means {apn}n≥0 of the se-
quence {an}n≥0 as the sequence of p-binomially weighted averages of the first n elements
of {an}n≥0. We compare the convergence of sequences {an}n≥0, {a∗n}n≥0 and {apn}n≥0

for various 0 < p < 1, i.e., we analyze when the convergence of one sequence implies the
convergence of the other.

While the sequence {a∗n}n≥0, known also as the sequence of Cesàro means of a se-
quence, is well studied in the literature, the results about {apn}n≥0 are hard to find. Our
main result shows that, if {an}n≥0 is a sequence of non-negative real numbers such that
{apn}n≥0 converges to a ∈ R ∪ {∞} for some 0 < p < 1, then {a∗n}n≥0 also converges to
a. We give an application of this result to finite Markov chains.
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1 Introduction
For a sequence {an}n≥0 of real numbers and for a parameter 0 < p < 1, define the se-
quence of its arithmetic means {a∗n}n≥0 and the sequence of its p-binomial means {apn}n≥0

as

a∗n =
1

n+ 1

n∑
i=0

ai and apn =

n∑
i=0

(
n

i

)
piqn−iai,

∗This work is partially funded by the Slovenian Research Agency, Research Program P1-0297.
E-mail address: david.gajser@fmf.uni-lj.si (David Gajser)

cb This work is licensed under http://creativecommons.org/licenses/by/3.0/



394 Ars Math. Contemp. 10 (2016) 393–410

where q = 1 − p. We see that a∗n is a uniformly weighted average of the numbers
a0, a1, . . . , an and apn is a binomially weighted average of the numbers a0, a1, . . . , an.

In this article, we will analyse the relationship between the convergence of sequences
{an}n≥0, {apn}n≥0 and {a∗n}n≥0. Our results are presented in the following table.

{an}n≥0 {ap1n }n≥0 {ap2n }n≥0 {a∗n}n≥0

{an}n≥0 =⇒ =⇒ =⇒
{ap1n }n≥0 6=⇒ ? an≥0

=⇒ an≥0
=⇒

{ap2n }n≥0 6=⇒ =⇒ an≥0
=⇒

{a∗n}n≥0 6=⇒ 6=⇒ 6=⇒
Table 1: The table shows whether the convergence of a sequence in the leftmost column
implies the convergence of a sequence in the first row, for 0 < p1 < p2 < 1. The sym-
bol =⇒ means that the implication holds, and the symbol 6=⇒ means that there is a
counterexample with an ∈ {0, 1}, for all n ∈ N. If there is a condition above =⇒ , then
the implication does not hold in general, but it holds if the condition is true. If there is a
? before the condition, we do not know whether the condition is the right one (an open
problem), but the implication does not hold in general.

The sequence {a∗n}n≥0 is also known as the sequence of Cesàro means and is well
studied in the literature [1, 4]. On the other hand, information about the convergence of p-
binomial means is hard to find. Also, the notion of p-binomial means is coined especially
for the purpose of this article. However, there are a few definitions that are close to ours [1,
4, 5]. First, we have to mention the Hausdorff means [1, 4]: the p-binomial means as well
as the arithmetic mean are its special cases. Unfortunately, the Hausdorff means are a bit
too general for our purposes in the sense that the known results that are useful for this paper
can be quite easily proven in our special cases.

One of the closest notions to the k-binomial mean is the one of k-binomial trans-
form [5]:

ãkn =

n∑
i=0

(
n

i

)
knai,

which coincides with {apn}n≥0 for k = p = 0.5, but is different for other p and k. Another
similar definition is given with Euler means [4, pages 70, 71]:

an =
1

2n+1

n∑
i=0

(
n+ 1

i+ 1

)
ai.

Some results, like the first row and the first column of Table 1, are not hard to prove
(Section 3). Other results (Sections 4 and 5) require more careful ideas. This is true espe-
cially for the main result of this paper, Theorem 5.1, which proves, using the notation from
Table 1, that

{apn}n≥0
an≥0
=⇒ {a∗n}n≥0.

In Section 6 we give an application of this theorem to finite Markov chains.
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2 Preliminaries
Let N, R+ and R+

0 be the sets of non-negative integers, positive real numbers and non-
negative real numbers, respectively. For a ∈ R, let bac be the greatest integer not greater
than a and let dae be the smallest integer not smaller than a. We will allow a limit of
a sequence to be infinite and we will write a < ∞ (which means exactly a ∈ R) to
emphasize that a is finite.

For functions f, g : N→ R+
0 we say that

• f(n) = O(g(n)) if there is some C > 0 such that f(n) ≤ Cg(n) for all sufficiently
large n,

• f(n) = Θ(g(n)) if there are some C1, C2 > 0 such that C1g(n) ≤ f(n) ≤ C2g(n)
for all sufficiently large n,

• f(n) = o(g(n)) if g(n) is non-zero for all large enough n and lim
n→∞

f(n)

g(n)
= 0.

The following lemma will be useful later.

Lemma 2.1. Let u : N→ R\{0} and k : N→ R be functions such that lim
n→∞

u(n)k(n) =

lim
n→∞

u(n) = 0. Then

lim
n→∞

(
1 + u(n)

)k(n)/u(n)

ek(n)
= 1.

Proof. Because ex =
∑

xi

i! and ex ≥ 1 + x, there is an analytic function g : R → R+

such that ex = 1 + x + g(x)x2 and g(0) = 1
2 . Hence, if we omit writing the argument of

functions u and k,

lim
n→∞

(1 + u)k/u

ek
= lim
n→∞

(
eu − g(u)u2

eu

)k/u
= lim
n→∞

(1− g(u)u2

eu

) eu

g(u)u2


ukg(u)
eu

.

Because lim
n→∞

g(u)u2

eu
= 0 and because lim

x→0
(1− x)1/x = e−1, we have

lim
n→∞

(
1− g(u)u2

eu

) eu

g(u)u2

= e−1.

From

lim
n→∞

ukg(u)

eu
= 0,

the result follows.

Some properties of probability mass function of binomial distribution

Let X be a random variable having a binomial distribution with parameters p ∈ (0, 1) and
n ∈ N. For q = 1− p and i ∈ Z, we have by definition

Pr[X = i] = Bin(p) =

{ (
n
i

)
piqn−i if 0 ≤ i ≤ n

0 else.
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In this subsection, we state and mathematically ground some properties that can be seen
from a graph of binomial distribution (see Fig. 1). The results will be nice, some of them
folklore, but the proofs will be technical.
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Figure 1: Binomial distribution with n = 300 and p = 0.2 (red), p = 0.5 (green), p = 0.7
(blue). The graphs show Bin(p) with respect to i.

It is well known (see some basic probability book) that the expected value of X is
E(X) = pn. First, we will prove that also the “peak” of the probability mass function is
roughly at pn.

Lemma 2.2. For p ∈ (0, 1), n ∈ N and for 0 ≤ i ≤ n,

Bin(p) ≥ Bi−1
n (p) ⇐⇒ i ≤ (n+ 1)p.

Proof. The expression

Bin(p)

Bi−1
n (p)

=
(n− i+ 1)p

i(1− p)

is at least 1 iff i ≤ p(n+ 1).

Next, we state a Chernoff bound proven in [3, inequalities (6) and (7)], which explains
why the probability mass function for binomial distribution “disappears” (see Fig. 1), when
i is far enough from pn.

Theorem 2.3. Let X be a binomially distributed random variable with parameters p ∈
(0, 1) and n ∈ N. Then for each δ ∈ (0, 1),

Pr
[
|X− np| ≥ npδ

]
≤ 2e−δ

2np/3.

We will only use the following corollary of the theorem. It is not difficult to prove and
the proof is omitted.

Corollary 2.4. For p ∈ (0, 1), let α : N → R+ be some function such that α(n) < p
√
n

for all n. Then, for all n ∈ N, it holds∑
i: |i−np|≥

√
nα(n)

Bin(p) ≤ 2e−α
2(n)/(3p).
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This corollary also tells us that, for large n, roughly everything is gathered in an O(
√
n)

neighborhood of np. What is more, the next lemma implies that in o(
√
n) neighborhood of

np, Bin(p) does not change a lot.

Lemma 2.5. Let p ∈ (0, 1) be a parameter and let β(n) : N → R be a function such that
|β(n)| = O(

√
n) and lim

n→∞
|β(n)| =∞. Then, for all large enough n, it holds

B
bnpc
n (p)

B
bnpc−bβ(n)c
n (p)

≤ e
1

p(1−p) ·
bβ(n)c2

n .

Proof. For all large enough n for which β(n) ≥ 0, we have

B
bnpc
n (p)

B
bnpc−bβ(n)c
n (p)

=

(
n
bnpc

)
pbβ(n)c(

n
bnpc−bβ(n)c

)
(1− p)bβ(n)c

=

bβ(n)c−1∏
i=0

(n− bnpc+ bβ(n)c − i)p
(bnpc − i)(1− p)

(2.1)

≤
bβ(n)c−1∏
i=0

(
1 +

1

p(1− p)
· bβ(n)c

n

)
.

In the last inequality we used the fact that

(n− bnpc+ bβ(n)c − i)p
(bnpc − i)(1− p)

≤ 1 +
1

p(1− p)
· bβ(n)c

n

holds for large enough n, which is true because it is equivalent to

(np− bnpc) + (bβ(n)c − i)p+ i(1− p) +
ibβ(n)c
pn

≤ bnpc
np
bβ(n)c,

where

• np− bnpc ≤ 1,

• (bβ(n)c − i)p+ i(1− p) ≤ bβ(n)c ·max{p, 1− p}, since i < bβ(n)c and

• ibβ(n)c
pn = O(1), since β(n) = O(

√
n).

Using the fact that (1 + x) ≤ ex for all x ∈ R, we see that

B
bnpc
n (p)

B
bnpc−bβ(n)c
n (p)

≤
bβ(n)c−1∏
i=0

(
1 +

1

p(1− p)
· bβ(n)c

n

)

≤
bβ(n)c−1∏
i=0

e
1

p(1−p) ·
bβ(n)c
n

= e
1

p(1−p) ·
bβ(n)c2

n .
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For all large enough n for which β(n) < 0, we write b(n) = |bβ(n)c| and we have

B
bnpc
n (p)

B
bnpc−bβ(n)c
n (p)

=

(
n
bnpc

)
(1− p)b(n)(
n

bnpc+b(n)

)
pb(n)

=

b(n)−1∏
i=0

(bnpc+ b(n)− i)(1− p)
(n− bnpc − i)p

≤
b(n)−1∏
i=0

(np+ b(n)− i)(1− p)
(n(1− p)− i)p

≤
b(n)−1∏
i=0

(n− bn(1− p)c+ b(n)− i)(1− p)
(bn(1− p)c − i)p

,

which is the same as (2.1) in the case β(n) ≥ 0, only that p and (1 − p) are interchanged.

Now we know that the values of Bin(p) around the peaks in Fig. 1 are close to the
value of the peak. The next lemma will tell us that the peak of Bin(p) is asymptotically

1√
2πp(1−p)n

.

Lemma 2.6. For 0 < p < 1, it holds

lim
n→∞

√
2πp(1− p)nBbnpcn (p) = 1.

Proof. Using Stirling’s approximation

lim
n→∞

n!√
2πn

(
n
e

)n = 1,

we see that

lim
n→∞

√
2πp(1− p)nBbnpcn (p)

= lim
n→∞

√
2πp(1− p)n ·

√
2πn

(
n
e

)n
pbnpc(1− p)n−bnpc√

2πbnpc
(
bnpc
e

)bnpc
·
√

2π(n− bnpc)
(
n−bnpc

e

)n−bnpc
= lim
n→∞

nnpbnpc(1− p)n−bnpc

bnpcbnpc · (n− bnpc)n−bnpc

= lim
n→∞

(
np

bnpc

)bnpc
·
(
n− np
n− bnpc

)n−bnpc
= lim
n→∞

(
1 +

np− bnpc
bnpc

)bnpc
·
(

1− np− bnpc
n− bnpc

)n−bnpc
= lim
n→∞

enp−bnpc · e−(np−bnpc) = 1,

where the last line follows by Lemma 2.1.
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3 Comparing convergence of {an}n≥0 with convergence of {apn}n≥0

and {a∗n}n≥0

In this section we show that the convergence of {an}n≥0 implies the convergence of
{apn}n≥0 and {a∗n}n≥0 to the same limit. It is well known [4] that if {an}n≥0 converges to
a ∈ R ∪ {∞}, then so does {a∗n}n≥0. The next theorem tells us that in this case, {apn}n≥0

also converges to the same limit.

Theorem 3.1. If {an}n≥0 converges to a ∈ R ∪ {∞}, then {a∗n}n≥0 and {apn}n≥0 con-
verge to a for all 0 < p < 1.

Proof. The case a = ∞ is straightforward to handle, so suppose a < ∞. Take any ε > 0
and such N that |an − a| < ε for all n ≥ N . Then, for n ≥ N ,

|a∗n − a| =
1

n+ 1

∣∣∣∣∣
n∑
i=0

(ai − a)

∣∣∣∣∣
≤ 1

n+ 1

n∑
i=0

|ai − a|

≤ 1

n+ 1

N∑
i=0

|ai − a|+
1

n+ 1
· ε(n−N).

The last line converges to ε when n goes to infinity, which implies that {a∗n}n≥0 converges
to a.

To prove the convergence of binomial means, denote q = 1− p. For n ≥ N , we get

|apn − a| =

∣∣∣∣∣
n∑
i=0

(
n

i

)
piqn−i(ai − a)

∣∣∣∣∣
≤

N∑
i=0

(
n

i

)
piqn−i|ai − a|+ ε

n∑
i=N+1

(
n

i

)
piqn−i

≤
N∑
i=0

(
n

i

)
piqn−i|ai − a|+ ε.

The last line converges to ε because
(
n
i

)
grows as a polynomial in n for each fixed value

i ≤ N and piqn−i decreases exponentially. This implies that {apn}n≥0 also converges to
a.

One does not need to go searching for strange examples to see that convergence of
{a∗n}n≥0 or {apn}n≥0 does not imply the convergence of {an}n≥0. We state this as a
proposition.

Proposition 3.2. There exists a sequence {an}n≥0 of zeros and ones that does not con-
verge, whereas {a∗n}n≥0 and {apn}n≥0 converge for all 0 < p < 1.

Proof. Define

an =

{
0 if n is odd,
1 if n is even.
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Then {an}n≥0 does not converge and {a∗n}n≥0 converges to 1
2 , as can easily be verified.

Next, we will prove that {apn}n≥0 converges to 1
2 . First, we see that, for 0 < p < 1 and

q = 1 − p, the value of q − p is strictly between −1 and 1, thus (q − p)n converges to 0
when n goes to infinity. Hence,

n∑
i is even

(
n

i

)
piqn−i −

n∑
i is odd

(
n

i

)
piqn−i = (q − p)n

converges to 0. Because
n∑

i is even

(
n

i

)
piqn−i +

n∑
i is odd

(
n

i

)
piqn−i = 1,

we have that {apn}n≥0 converges to 1
2 .

4 Comparing convergence of binomial means
In this section we compare convergence of sequences {apn}n≥0 for different parameters
p ∈ (0, 1). We will see that if 0 < p1 < p2 < 1, then the convergence of {ap2n }n≥0 implies
the convergence of {ap1n }n≥0 to the same limit, while the convergence of {ap1n }n≥0 does
not imply the convergence of {ap2n }n≥0 in general. We leave as an open problem whether
for an ≥ 0 it does.

First, let us prove the main lemma in this section, which tells us that the sequence of p2-
binomial means of the sequence of p1-binomial means of some sequence is the sequence
of (p1p2)-binomial means of the starting sequence.

Lemma 4.1. For 0 < p1, p2 < 1 and for a sequence {an}n≥0, let {bn}n≥0 be the sequence
of p1-binomial means of {an}n≥0, i.e., bn = ap1n for all n. Then bp2n = ap1p2n for all n.

Proof. Denote q1 = 1− p1 and q2 = 1− p2. We change the order of summation, consider(
j
i

)(
n
j

)
=
(
n
i

)(
n−i
j−i
)

for i ≤ j and replace j by k = j − i:

bp2n =

n∑
j=0

ap1j

(
n

j

)
pj2q

n−j
2

=

n∑
j=0

j∑
i=0

ai

(
j

i

)(
n

j

)
pi1q

j−i
1 pj2q

n−j
2

=

n∑
i=0

ai

(
n

i

)
pi1p

i
2

n∑
j=i

(
n− i
j − i

)
qj−i1 pj−i2 qn−j2

=

n∑
i=0

ai

(
n

i

)
pi1p

i
2

n−i∑
k=0

(
n− i
k

)
(q1p2)kqn−i−k2

=

n∑
i=0

ai

(
n

i

)
pi1p

i
2(q1p2 + q2)n−i

=

n∑
i=0

ai

(
n

i

)
(p1p2)i(1− p1p2)n−i.

The last line equals ap1p2n .
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The next theorem will now be trivial to prove.

Theorem 4.2. For 0 < p1 < p2 < 1 and for a sequence {an}n≥0, if {ap2n }n≥0 converges
to a ∈ R ∪ {∞}, then {ap1n }n≥0 also converges to a.

Proof. From Lemma 4.1 we know that {ap1n }n≥0 is the sequence of p1p2 -binomial means of
the sequence {ap2n }n≥0. By Theorem 3.1, it converges to a.

The next proposition tells us that the condition 0 < p1 < p2 < 1 in the above theorem
cannot be left out in general.

Proposition 4.3. For 0 < p1 < p2 < 1, there exists a sequence {an}n≥0, such that
{ap1n }n≥0 converges to 0, but {ap2n }n≥0 does not converge.

Proof. Denote q1 = 1− p1 and define {an}n≥0 as an = an for some parameter a ∈ R. If
a > −1, {an}n≥0 converges (possibly to∞), so let us examine the case when a ≤ −1. In
this case we have

ap1n =

n∑
i=0

(
n

i

)
aipi1q

n−i
1 = (ap1 + q1)n = (p1(a− 1) + 1)n,

which converges iff p1 < 2
1−a . So we can choose such an a that p1 < 2

1−a < p2, i.e.,
1 − 2

p1
< a < 1 − 2

p2
. It follows that {ap1n }n≥0 converges to 0, but {ap2n }n≥0 does not

converge.

The sequence {an}n≥0 in the above proof is growing very rapidly in absolute value
and the sign of its elements alternates. We think that this is not a coincidence and we state
the following open problem.

Open problem 4.4. Let {an}n≥0 be a sequence of non-negative real numbers. Is it true
that, for all 0 < p1, p2 < 1, the sequence {ap1n }n≥0 converges to a iff {ap2n }n≥0 converges
to a? If the answer is no, is there a counterexample where an ∈ {0, 1}?

Note that the condition an ≥ 0 is also required for the main result of the paper, Theo-
rem 5.1. If the answer on 4.4 were yes, then we would only have to prove Theorem 5.1 in
a special case, e.g. for p = 1

2 . The (possibly negative) answer would also make this paper
more complete (see Table 1). In the rest of this section we will try to give some insight into
this problem and we will present some reasons for why we think it is hard.

Suppose we have 0 < p1 < p2 < 1 and a sequence {an}n≥0 of non-negative real
numbers such that {ap1n }n≥0 converges to a ∈ R (the case when {ap2n }n≥0 converges is
covered by Theorem 4.2). The next lemma implies that {an}n≥0 has a relatively low upper
bound on how fast its elements can increase, ruling out too large local extremes.

Lemma 4.5. Let {an}n≥0 be a sequence of non-negative real numbers and let 0 < p < 1.
If {apn}n≥0 converges to a <∞, then an = O(

√
n).

Proof. We know that apn ≥ abnpcB
bnpc
n (p), whereBbnpcn (p) ≈ 1√

2πp(1−p)n
by Lemma 2.6

and apn ≈ a for large n. Hence, abnpc = O(
√
n).
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To see whether {ap2n }n≥0 converges, it makes sense to compare ap1bn/p1c with ap2bn/p2c,
since the peaks of the “weights” Bibn/p1c(p1) and Bibn/p2c(p2) (roughly) coincide at n (see
Fig 2). Now the troublesome thing is that, for large n, the peaks are not of the same height,
but rather they differ by a factor √

1− p2

1− p1

by Lemma 2.6. Because the weights Bibn/p1c(p1) and Bibn/p2c(p2) are (really) influen-
tial only in the O(

√
n) neighborhood of n (Corollary 2.4 and Lemma 2.5), where the

p1-weights are only a bit “downtrodden” p2-weights, it seems that the convergence of
{ap1n }n≥0 could imply the convergence of {ap2n }n≥0.

200 250 300 350 400
0.00

0.01

0.02

0.03

0.04

0.05

0.06

i

Bib300/0.7c(0.7)

Bib300/0.4c(0.4)

Figure 2: The graphs show Bibn/p1c(p1) and Bibn/p2c(p2) with respect to i in the neighbor-
hood of n for n = 300, p1 = 0.4 (red) and p2 = 0.7 (green).

On the other hand, one could take an = 0 for all except for some n where there would
be outliers of heights Θ(

√
n). Those outliers would be so far away from each other that

the weights Bin(p1) could “notice” two consecutive outliers, while the weights Bin(p2),
which are slimmer, could not (in Fig. 2, the two outliers could be at 280 and 320). Then
{ap1n }n≥0 could converge because there would be a small difference between [when the
weights Bin(p1) amplify one outlier] and [when they “notice” two outliers] (these two
events seem to be the most opposite). On the other hand, {ap2n }n≥0 would not converge.
From Chernoff bound (Corollary 2.4) and from Lemma 2.5 it follows that the (horizontal)
distance between outliers should be roughly C

√
n for some C. What C would be the most

appropriate?

5 Comparing convergence of {apn}n≥0 with convergence of {a∗n}n≥0

This section contains the main result of this paper, which is formulated in the next theorem.
The proof will be given later.

Theorem 5.1. Let {an}n≥0 be a sequence of non-negative real numbers such that {apn}n≥0

converges to a ∈ R ∪ {∞} for some 0 < p < 1. Then {a∗n}n≥0 converges to a.

An example of how this theorem can be used is given in Section 6.1. Here we give an
example where {apn}n≥0 converges to a ∈ R ∪ {∞} for all 0 < p < 1, but {a∗n}n≥0 does
not converge.
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Proposition 5.2. For the sequence {an}n≥0 given by an = (−1)nn, {apn}n≥0 converges
to 0 for all 0 < p < 1 and {a∗n}n≥0 does not converge.

Proof. Take 0 < p < 1 and denote q = 1− p. It holds

apn =

n∑
i=0

(−1)ii

(
n

i

)
piqn−i

= −np
n∑
i=1

(−1)i−1

(
n− 1

i− 1

)
pi−1qn−1−(i−1)

= −np(−p+ q)n−1.

Because q − p is strictly between −1 and 1, {apn}n≥0 converges to 0.
However, the induction shows that a∗2n+1 = − 1

2 and a∗2n = n
2n+1 , which implies that

{a∗n}n≥0 does not converge.

Next, we show that we cannot interchange {apn}n≥0 and {a∗n}n≥0 in Theorem 5.1.

Proposition 5.3. There exists a sequence {an}n≥0 of zeros and ones such that {a∗n}n≥0

converges to 0 and {apn}n≥0 diverges for all 0 < p < 1.

Proof. Define

an =

{
1 if there is some k ∈ N such that

∣∣n− 22k
∣∣ < 2kk

0 else.

So {an}n≥0 has islets of ones in the sea of zeros. The size of an islet at position N is
Θ(
√
N log(N)) and the distance between two islets near position N is Θ(N). It is easy to

see that the sequence a∗n converges to zero.
Now let 0 < p < 1. By Chernoff bound (Corollary 2.4) we see that Bin(p) is con-

centrated around i = bnpc and that, for |i − np| ≥
√
n log(n), we have roughly nothing

left. It is easy (but tedious) to show formally that
{
apb22k/pc

}
k≥0

converges to 1 and that{
apb22k−1/pc

}
k≥0

converges to 0, which implies that {apn}n≥0 diverges.

Now we go for the proof of Theorem 5.1. First, for a sequence {an}n≥0 and 0 < p < 1,
we define {ap∗n }n≥0 as a sequence of arithmetic means of the sequence {apn}n≥0. We get

ap∗n =
1

n+ 1

n∑
j=0

apj

=
1

n+ 1

n∑
j=0

j∑
i=0

ai

(
j

i

)
piqj−i

=
1

n+ 1

n∑
i=0

ai

n∑
j=i

(
j

i

)
piqj−i,

where q = 1− p.
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It makes sense to define weights win(p) =
∑n
j=i

(
j
i

)
piqj−i, so that it holds

ap∗n =
1

n+ 1

n∑
i=0

win(p)ai.
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Figure 3: The graph shows wi300(0.3) with respect to i. We see a steep slope at i = 90
plunging from height approximately 1

0.3 to 0.

We can see in Fig. 3 that the weights win(p) have a very specific shape. They are very
close to 1

p for i < np − ε(n) and very close to 0 for i > np + ε(n), for some small ε(n).
Such a shape can be well described using the next lemma (and its corollary), which gives
another way to compute win(p).

Lemma 5.4. For 0 < p < 1, q = 1− p, n ∈ N and 0 ≤ i ≤ n, it holds

win(p) =
1

p

1−
i∑

j=0

(
n+ 1

j

)
pjqn+1−j

 .

Proof. The idea is to use power series centered at q. For a function f : R → R, we will
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write f (i) : R→ R for its i-th derivative.

win(p) =

n∑
j=i

(
j

i

)
piqj−i

=
pi

i!

 n∑
j=0

xj

(i)
∣∣∣∣∣∣∣
x=q

=
pi

i!

(
1− xn+1

1− x

)(i)
∣∣∣∣∣
x=q

=
pi−1

i!

(
1−

(
x− q + q

)n+1

1− 1
p (x− q)

)(i)
∣∣∣∣∣∣
x=q

=
pi−1

i!

[(
1−

n+1∑
k=0

(
n+ 1

k

)
(x− q)kqn+1−k

)
·

( ∞∑
k=0

(x− q)kp−k
)](i)

∣∣∣∣∣∣
x=q

=
pi−1i!

i!

p−i − i∑
j=0

(
n+ 1

j

)
qn+1−jpj−i


=

1

p

1−
i∑

j=0

(
n+ 1

j

)
pjqn+1−j

 .

Define the function ε : N→ R+ as

ε(n) =

{ √
n log(n) if n ≥ 2

1 else.

Now the following corollary holds.

Corollary 5.5. For 0 < p < 1, n ∈ N and 0 ≤ i ≤ n, it holds

wbnp−ε(n)c
n (p) ≥ 1

p
− n−Θ(log(n)),

wbnp+ε(n)c
n (p) ≤ n−Θ(log(n)).

Proof. Use the Chernoff bound (Corollary 2.4) on the expression for win(p) from
Lemma 5.4.

For 0 < p < 1 and for a sequence {an}n≥0, define sequences {axn(p)}n≥0, {ayn(p)}n≥0
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and {azn(p)}n≥0 as

axn(p) =

bpn−ε(n)c∑
i=0

win(p)ai

ayn(p) =

bpn+ε(n)c−1∑
i=bpn−ε(n)c+1

win(p)ai

azn(p) =

n∑
i=bpn+ε(n)c

win(p)ai.

Hence, we have

ap∗n =
1

n+ 1

(
axn(p) + ayn(p) + azn(p)

)
.

From Corollary 5.5 we see that the weights in axn(p) are very close to 1
p , which suggests

that 1
n+1a

x
n(p) can be very close to a∗bnpc (see Lemma 5.8 below). From the same corollary

we see that 1
n+1a

z
n(p) can be very close to 0 (see Lemma 5.7 below). And because we

have a sum of only Θ(ε(n)) elements in ayn(p), 1
n+1a

y
n(p) could also be very close to 0

(see Lemma 5.6 below).
We have just described the main idea for the proof of the main theorem, which we give

next. It will use three lemmas just mentioned (one about axn(p), one about ayn(p) and one
about azn(p)), that will be proven later.

Proof of Theorem 5.1. Suppose that an ≥ 0 for all n and suppose that {apn}n≥0 converges
to a ∈ R ∪ {∞} for some 0 < p < 1. We know that this implies the convergence of
{ap∗n }n≥0 to a (Theorem 3.1).

First, we deal with the case a = ∞. We can use the fact that win(p) ≤ 1
p for all i (see

Lemma 5.4), which gives

ap∗n =
1

n+ 1

n∑
i=0

win(p)ai

≤ 1

n+ 1

n∑
i=0

1

p
ai

=
a∗n
p
.

Hence, {a∗n}n≥0 converges to a =∞.

In the case a <∞, we can use Lemma 5.6 and Lemma 5.7 to see that
{

1
n+1a

y
n(p)

}
n≥0

and
{

1
n+1a

z
n(p)

}
n≥0

converge to 0. Hence,
{

1
n+1a

x
n(p)

}
n≥0

converges to a. Lemma 5.8

tells us that in this case {a∗n}n≥0 also converges to a.

Now we state and prove the remaining lemmas.

Lemma 5.6. Let 0 < p < 1 and let {an}n≥0 be a sequence of non-negative real numbers

such that {apn}n≥0 converges to a <∞. Then
{

1
n+1a

y
n(p)

}
n≥0

converges to 0.
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Proof. Fix ε̃ > 0, define δ(n) = blog2(n)c and let k : N → N be such that pn − ε(n) ≤
k(n) ≤ pn+ ε(n)− δ(n) holds for all n. We claim that

k(n)+δ(n)∑
i=k(n)

ai = O(
√
n),

where the constant behind the O is independent of k. To prove this, define N = N(n) =⌊
k(n)
p

⌋
. It follows that N = n±Θ(ε(n)). Note that, for large enough n,

k(n)+δ(n)∑
i=k(n)

aiB
i
N (p) ≤

N∑
i=0

aiB
i
N (p) < a+ ε̃,

because {apn}n≥0 converges to a. From Lemma 2.5 which bounds the coefficients BiN (p)
around i = pN it follows that, for all k(n) ≤ i ≤ k(n) + δ(n),

BiN (p) ≥ e− o(1)B
bNpc
N (p).

Using N = n±Θ(ε(n)) and the bound

B
bNpc
N (p) =

1

Θ(
√
N)

from Lemma 2.6, we get

k(n)+δ(n)∑
i=k(n)

ai < (a+ ε̃)eo(1) Θ(
√
n) = O(

√
n).

Next, we can see that

bpn+ε(n)c−1∑
i=bpn−ε(n)c+1

ai = O

(
n

log n

)
.

Just partition the sum on the left-hand side into
⌈

2ε(n)
δ(n)

⌉
sums of at most δ(n) elements.

Then we have
bpn+ε(n)c−1∑
i=bpn−ε(n)c+1

ai = O

(
ε(n)

δ(n)

√
n

)
= O

(
n

log n

)
.

Now using win(p) ≤ 1
p from Lemma 5.4, we get

1

n+ 1
ayn(p) ≤ 1

(n+ 1)p

bpn+ε(n)c−1∑
i=bpn−ε(n)c+1

ai =
1

(n+ 1)p
O

(
n

log n

)
,

which implies the convergence of
{

1
n+1a

y
n(p)

}
n≥0

to 0.
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Lemma 5.7. Let 0 < p < 1 and let {an}n≥0 be a sequence of non-negative real numbers

such that {apn}n≥0 converges to a <∞. Then
{

1
n+1a

z
n(p)

}
n≥0

converges to 0.

Proof. From Lemma 5.4 we see that the weights win(p) decrease with i, so

1

n+ 1
azn(p) ≤ w

bnp+ε(n)c
n (p)

(n+ 1)

n∑
bpn+ε(n)c

ai.

Corollary 5.5 gives us wbnp+ε(n)c
n (p) ≤ n−Θ(log(n)), while Lemma 4.5 implies ai =

O(
√
i). Hence,

{
1

n+1a
z
n(p)

}
n≥0

converges to 0.

Lemma 5.8. Let 0 < p < 1 and let {an}n≥0 be a sequence of non-negative real numbers

such that
{

1
n+1a

x
n(p)

}
n≥0

converges to a <∞. Then {a∗n}n≥0 converges to a.

Proof. Because the weights win(p) are bounded from above by 1
p (Lemma 5.4), we have

axn(p)

n+ 1
· (n+ 1)p

bpn− ε(n)c+ 1
≤ a∗bpn−ε(n)c,

where the left side converges to a.
Because the weights win(p) decrease with i (Lemma 5.4) and because wbnp−ε(n)c

n (p) ≥
1
p − n

−Θ(log(n)) (Corollary 5.5), we have

a∗bpn−ε(n)c ≤
axn(p)

n+ 1
· n+ 1

( 1
p − n−Θ(log(n))) · (bpn− ε(n)c+ 1)

,

where the right side converges to a. Hence, a∗bpn−ε(n)c is sandwiched between two se-
quences that converge to a. It follows that {a∗n}n≥0 converges to a.

6 Application of Theorem 5.1: a limit theorem for finite Markov
chains

For a stochastic matrix1 P , define the sequence {Pn}n≥0 as Pn = Pn. As in the one-
dimensional case, we define the sequence {P ∗n}n≥0 as P ∗n = 1

n+1

∑n
i=0 Pn. We say that

{Pn}n≥0 converges to A if, for all possible pairs (i, j), the sequence of (i, j)-th elements
of Pn converges to (i, j)-th element of A. In this section, we will prove the following
theorem.

Theorem 6.1. For any finite stochastic matrix P , the sequence {P ∗n}n≥0 converges to some
stochastic matrix A, such that AP = PA = A.

This theorem is nothing new in the theory of Markov chains. Actually, it also holds for
(countably) infinite transition matrices P . Although we did not find it formulated this way
in literature, it can be easily deduced from the known results. The hardest thing to show

1A stochastic matrix is a (possibly infinite) square matrix that has non-negative real entries and for which all
rows sum to 1. Each stochastic matrix represents transition probabilities of some discrete Markov chain. No prior
knowledge of Markov chains is needed for this paper.
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is the convergence of {P ∗n}n≥0 [2, page 32]. After we have it, we can continue as in the
proof of Theorem 6.1 below.

We will give a short proof of Theorem 6.1, using only linear algebra and Theorem 5.1.
First, we prove a result from linear algebra.

Lemma 6.2. Let P be a finite stochastic matrix and let P̃ = 1
2

(
P + I

)
. Then

a) for all eigenvalues λ of P̃ , it holds |λ| ≤ 1,

b) for all eigenvalues λ of P̃ for which |λ| = 1, it holds λ = 1,

c) the algebraic and geometric multiplicity of eigenvalue 1 of P̃ are the same.

Proof. Since the product and convex combination of stochastic matrices is a stochastic
matrix, Pn and P̃n are stochastic matrices for each n ∈ N. First, we will prove by con-
tradiction that, for all eigenvalues λ for P , it holds |λ| ≤ 1. Suppose that there is some
eigenvalue λ for P such that |λ| > 1. Let w be the corresponding eigenvector and let its
i-th component be non-zero. Then |(Pnw)i| = |λn| · |wi|, where the right side converges to
∞ and the left side is bounded by maxj |wj | (since Pn is a stochastic matrix). This gives
a contradiction. Hence, for all eigenvalues λ for P , it holds |λ| ≤ 1. Because P̃ is also
stochastic, the same holds for P̃ .

We see that we can get all eigenvalues of P̃ by adding 1 and dividing by 2 the eigen-
values of P . Because P has all eigenvalues in the unit disc around 0, P̃ has all eigenvalues
in a disc centered in 1

2 of radius 1
2 . Hence, for all eigenvalues λ of P̃ , for which |λ| = 1, it

holds λ = 1.
For the last claim of the lemma, suppose that the algebraic and geometric multiplicity of

eigenvalue 1 of P̃ are not the same. Then, by Jordan decomposition, there is an eigenvector
v for eigenvalue 1 and a vector w, such that P̃w = v + w. Then, for each n ∈ N,
we have P̃nw = nv + w. Because v has at least one non-zero component and because
all components of P̃nw are bounded in absolute value by maxj |wj |, we have come to
contradiction. Hence, the algebraic and geometric multiplicity of eigenvalue 1 of P̃ are the
same.

Proof of Theorem 6.1. For the matrix P̃ = 1
2

(
P + I

)
, let P̃ = XJX−1 be its Jordan

decomposition. From Lemma 6.2 a) and b) it follows that the diagonal of J consists only
of ones and entries of absolute value strictly less than one. From Lemma 6.2 c) it follows
that the Jordan blocks for eigenvalue 1 are all 1 × 1. It follows that Jn converges to some
matrix J0 with only zero entries and some ones on the diagonal. Hence, P̃n converges to
A = XJ0X

−1. Since P̃n is a stochastic matrix for all n, the same is true for A. Using
P̃n = P̃n, we see that {P̃n}n≥0 is just a sequence of 0.5-binomial means of the sequence
{Pn}n≥0, hence by Theorem 5.1 {P ∗n}n≥0 also converges to A. Thus, we have

AP =

(
lim
n→∞

1

n+ 1

n∑
i=0

P i

)
P

= lim
n→∞

n+ 2

n+ 1

(
1

n+ 2

n+1∑
i=0

P i − 1

n+ 2
I

)
= A.

The same argument shows also PA = A.



410 Ars Math. Contemp. 10 (2016) 393–410

An application of Theorem 6.1 in formal language theory. The following application
was suggested by an anonymous reviewer. To each formal language L ⊆ Σ∗ where Σ is a
finite alphabet, we can assign the sequence

fn(L) =
|Σn ∩ L|
|Σn|

of relative frequencies of words of length n in L. If this sequence is convergent, then
its limit can be taken as a measure for the size of L, which provides interesting informa-
tion about L. Unfortunately, the sequence fn(L) can be divergent even if L is a regular
language, such as, for example, the language E of all words of even length. But using
Theorem 6.1 we can show that f∗n(L) converges for every regular L as follows. If L
is regular, it is recognised by some deterministic finite automaton (Q, q0, F,Σ, δ) where
Q = {q0, q1, . . . , qm−1} is the set of states, q0 ∈ Q is the starting state, F ⊆ Q is the set
of final states, and δ : Q×Σ→ Q is the transition function. Define the matrix T ∈ Qm×m
with elements

ti,j =
|{a ∈ Σ; δ(qi, a) = qj}|

|Σ|
, i, j = 0, 1, . . . ,m− 1.

Then T is stochastic and fn(L) =
∑
qj∈F (Tn)0,j , so by Theorem 6.1, f∗n(L) is convergent

and we can define µ(L) = limn→∞ f∗n(L) to be the (finitely additive) measure of L. For
example, returning to the language E of words of even length, we find that µ(E) = 0.5.
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