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ABSTRACT

We apply the 2D wavelet transform (WTMM) methodto perform a multifractal analysisof digitized
mammogramsWe shav thatnormalregionsdisplaymonofractakcalingpropertiesascharacterizethy theso-
calledHurstexponentH = 0.3+ 0.1 in fatty areaswhich look lik e antipersistenself-similarrandomsurfaces,
while H = 0.65+ 0.1 in denseareaswhich exibit long-rangecorrelationsand possibly multifractal scaling
properties We furtherdemonstrat¢hatthe2D WTMM methodprovidesa very efficientway to detecttumors
aswell asmicrocalcificationgMC) which correspondo muchstrongersingularitieshanthoseinvolvedin the
backgroundissueroughnessluctuations. Thesepreliminary resultsindicatethat the texture discriminatory
power of the 2D WTMM methodmay lead to significantimprovementin computerassisteddiagnosisin

digitizedmammograms.

Keywords: breasttissue, fractional Brownian motions, Hurst exponent, image analysis, mammogram,
microcalcificationsmultifractalformalism,roughsurface,scaleinvariance wavelettransform.

INTRODUCTION

In the past 20 years, sereral national mass
screeningnmammographyrograms HealthInsurance
Plan of GreatestNew-York (1982) and the Swedish
2-county Programof MammographyScreeningfor
BreastCancer(1992)have shawvn thatearly diagnosis
can significantly decreasebreastcancermortality of
about23 to 31 % in womenof age49 to 69. Thus
mammo-graphyX-ray examination)hasbecomethe
mostreliableimagingtechniquédor theearlydiagnosis
of breastcancerwhich is still the leading causeof
cancerrelateddeathin women.Indeedmammography
plays a vital role in diagnosisof the diseaseas well
asin pretherapeutimanagemerandin controlduring
andaftertreatmentBut the radiologicalinterpretation
of mammogramgs a rather difficult task since the
mammographi@ppearancef normaltissueis highly
variable. Thisexplainsthat10— 30%of cancersvhich
could have been detectedare missedwhile a high
percentageof patientscalled back at screeningturn
out not to have cancer Recently muchresearchhas
beendevoted to developing reliable computeraided
diagnosis (CAD) methods (see Doi et al., 1993,
for a generalreview). Many of these methodsare
basedon multiresolution analysis, global and local
thresholding differenceimagetechniquesstastistical
approachesneural networks, fuzzy logic, and the
wavelettransform(WT) andrelatedtechniquegHeine
et al., 1997; Netschet al., 1999; Qian et al., 2000).
Currently most of thesemethodsare often combined

to detectand classify clustersof microcalcifications
(MC) which is an importantmammographicign of
early(in situ) breasttancedespitethefactthatseveral
benign diseasesshov MC as well. In the middle
nineties fractalmethodshave alsobeenappliedto the
analysisof radiographidmageswith somesuccessn
improving theperformancesf previousCAD schemes
(Priebe et al., 1994, Lefebvre et al., 1995; Thiele
et al., 1996). But most of thesemethodshave been
intrinsically elaboratedon the prerequesitethat the
backgroundroughnesdfluctuationsof normal breast
texture arestatisticallyhomogenousi.e. monofractal)
and uncorrelated. Reggions that contain statistical
aberrationghat deviate from this monofractalpicture
are consideredas abnormalregions wheretumorsor
MC arelikely to befound.Our goalhereis to propose
an alternatve wavelet-based method to perform
multifractal analysisof digitized mammogramsThe
so-called2D WTMM methodwasoriginally designed
to describestatistically the roughnesdluctuationsof
fractal surfaces(Arneodoet al., 2000).In the present
work, we briefly summarizehow the 2D WTMM
method provides an efficient framevork to study
syntheticand naturalfractal images(Arneodoet al.,
2000; Decosteret al., 2000; Roux et al., 2000).Then
we report the resultsof a preliminary applicationof
this methodto mammogramanalysis,which arevery
encouragingfor potential use to classifying tissue
typesaswell asdetectinggumorsandclusteredviC.
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THE 2D WAVELET TRANSFORM
MODULUS MAXIMA (WTMM)
METHOD

Most of the fractal methods used to analyze
digitized mammogramsimply rely uponthe estimate
of the fractal dimension D which is related to
the so-called Hurst exponent H that characterizes
statisticallythe global roughnes®of the mammogram
landscape(Arneodo et al., 2000). The multifractal
formalism accountsfor possiblefluctuationsof the
local regularity of a rough surface as defined by
the Holder (local roughness)exponenth(r) of the
function f(r) whosegraphdefinesthe rough surface
understudy(f(r +1) — f(r) ~ [I|""|I| — 0). The2D
WTMM method(Arneodoetal., 2000)providesaway
to estimatethe so-calledD(h) singularity spectrum
defined as the Hausdorf dimension of the set of
points r where the local roughnessexponent h(r)
is h. This methodconsistsin performinga wavelet-
basedmultiscaleCanry edgedetection.Let us define
two wavelets: g (x,y) = d0(x,y)/dx and {,(x,y) =
00(x,y)/dy , where 6(x,y) is a 2D smoothing
function well localized aroundx =y = 0. For ary
function f(x,y) € L?(R), the WT definedwith respect
to ¢, andy, canbeexpressedisavector:

Ty[fl(b,a) = O{Ty[f](b,a)} ,

whereTy[f](b,a) = a2 [fd?r 6(at(r — b)) f(r). If

0 is just a gaussiand(r) = exp(—r2/2), thenEq. 1
definesthe 2D WT as the gradientvector of f(r)

oncesmoothedy dilatedversions(r /a) of thisfilter.

At a given scalea > 0, the WTMM are definedby
the positionsb wherethe WT modulus.#[f](b,a)

is locally maximumin the direction «[f](b,a) of
the gradient vector T[f]. When analyzing rough
surfacestheseWTMM lie on connectedhains(Figs.
1b and 1c). Thenthe WTMM maxima (WTMMM)

are identified as the local maximaof .# along the
WTMM chains.TheseWTMMM are disposedalong
connecteaturvesacrossscalesTheWT skeleton(Fig.
1d) definedby thesemaximalines containsa priori

all the informationaboutthe hierarchicalorganization
of the singularitiesof the function f(r). In particulay
onecan prove that, provided the first n, momentsof
W arezero,then.#,[f] ~ &' alonga maximaline
pointing to the point r, in the limit a — 0%, where
h(ry) (< ny) is the local Holder exponentof f. The
2D WTMM methodconsistdn definingthe following

partition functions directly from the WTMMM that
belongto the WT skeleton:

(1)

Z(q,a) = sup

q
( %w[f](x,a’))
ZeP(a) \(xA)eL a<a

~ a?, 2)

where g € R. Note that the scaling exponent 7(q)
haswell-knowvn meaningfor somespecificvaluesof
g: (i) —1(0) is the fractal dimensionof the set of
singularitiesof f; (i) (1) is relatedto the fractal
dimensiorof theroughsurfaceS (z= f(x,y)): d;(S) =
max2,1— 1(1)); (iii) 1(2) is relatedto the scaling
exponentf of the spectraldensity S(k) = | f(k)[? ~
|k| =P with B = 4+ 1(2).

From the deepanalogythat links the multifractal
formalism to thermodynamicsthe D(h) singularity
spectrum can be determined from the Legendre
transform of 7(g): D(h) = ming(gh — 7(q)).
Homogenous (monofractal) self-afine functions
involve singularitiesof unique Holder exponenth =
0t1/0q, i.e. thet(q) spectrumis alinearfunctionof g.
Onthecontrary anonlinearr(g) curveis thesignature
of nonhomogenoulunctionsthat display multifractal
propertiesjn the sensethatthe Holder exponenth(r)
is a fluctuatingquantitythat dependsuponthe spatial
positionr.

From a practical point of view, one often
prefersto avoid Legendretransforming.insteadone
computesthe Boltzmannweights Wy[f](q,.Z,a) =

q o
[SURy oy 2 el T1 0620/ 2(0,2) , which yield
to thefollowing expectatiornvalues:

hga) = 5 In| sup .#[f](xa)
#€P@) |(xa)eLa<a
xWy[f](a,-Z,a), (3)
Daa) = > Wlf](a.2Za)
ZEP(a)

xIn(Wy[f](0,-2,8)), (4)

from which one extractsh(q) = lim__ . h(q,a)/Ina
and D(q) = lim__,. D(g,a)/Ina, and thereforethe
D(h) singularityspectrurmby eliminatingg.

TEST APPLICATIONS OF THE 2D
WTMM METHOD TO ISOTROPIC
FRACTIONAL BROWNIAN
SURFACES

In the eighties, the fractional Brownian motion
(fBm) has becomea very popular model in signal
andimageprocessingPeitgenet al., 1987).2D fBm
By, (r) indexed by H €]0,1] are Gaussianstochastic
processewith stationaryincrementghatcanbe used
to generaterandom self-afine surfaceswith known
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statistical properties: 7(q) = qH — 2. By Legendre
transforming 1(q), one gets the following D(h)
singularityspectrumD(h) = 2 if h=H, andD(h) =
—oo for any otherh. Indeedone canprove thatalmost

all realizationsof the fBm processare continuous,
everywhere non-differentiable, isotropically scale-
invariantandmonofractalscharacterizethy aunique
Holderexponenth(r) =H, Vr.
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Fig. 1. 2D wavelettransformanalysisof B

thecentral 512x512portion of the original image. In b) a=2a,,, andc) a:20'law, are shownthe maximachains;thelocal
maximaof .#, alongthesechainsare indicatedby dots(e); fromead dotoriginatesan arrow whoseengthis proportional

h=1/3(")-

to ./, andits direction(with respecto thex-axis)is givenby «/;. In b), thesmoothedmage 6, , * B

6 is an isotropic 2D-Gaussiarfunction. a) 32 grey-scalecoding of

3 (EQ.1)isshownasa

grey-scalecodedbadkgroundfromwhite (min) to black (maX. In d) is shownthecorrespondlngNaveIettransforrrBIeleton
definedby the setof maximalines obtainedafter linking the WTMMM acrossscales. g,,=13 (pixels)is the characteristic
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Fig. 2. Determinationof the 7(q) and D(h) specta of

2D fBm with the 2D WTMM method.a) log, Z°(q,a)

vslog, a; the solid lines correspondo the theoretical

spectrumr(q) = qH — 2 with H = 1/3. b) h(g,a) vs
log,a; the solid lines correspondto the theotetical

slopeH =1/3.¢) 1(q) vsqforH =1/3(e), 1/2(w) and
2/3(A); thesolidlinescorrespondo linear regression
fit estimate®f H. d) D(h) vsh asobtainedfromEqs.3

and4. Resultcorrespondo annealedaveraging over
32 (1024x1024) fBm images. a is expressedin oy,

units.
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In Figs. 1 and 2 are reportedthe results of a
test application of the 2D WTMM methodto 32
(1024x 1024)realizationsof a2D fBm with H = 1/3,
when using a first-orderanalyzingwavelet (Arneodo
et al., 2000).In Fig. 1 is illustratedthe computation

of the maxima chains and the WTMMM for an
individual image (Fig. 1a) at two different scales
(Figs. 1b and 1c). As seenin Fig. 1b, at a given
scale,the maximachainscorrespondo well defined
edge curves of the original image once smoothed
by the filter 8(r/a). In Fig. 1d is illustrated the
correspondingVT skeleton definedby the maxima
lines obtainedby connectingthe WTMMM across
scales.In Fig. 2 are summarizedthe results of the
computationof the 7(q) and D(h) spectrausing the
Egs 2 to 4. As showvn in Fig. 2a for 51/31 the

annealedveragepartitionfunction Z°(q,a) displaysa
remarkablescalingbehaior over morethan3 octaves
whenplottedversusa in alogarithmicrepresentation,
andthisfor aratherwide rangeof valuesof q € [—4, 6.
Whenproceedingo a linear regressiorfit of the data
over the first two octaves, one getsthe 7(q) spectra
showvn in Fig. 2c for the three values of the fBm
index H = 1/3 (anticorrelated),1/2 (uncorrelated)
and2/3 (positively correlatedincrements) Whaterer
H, the data systematicallyfall on a straight line,
the signatureof homogenougmonofractal) scaling
properties. These results are corroboratedby the
computationof h(g,a) in Fig. 2b accordingto Eq. 3.
In the limit of small a values,the slope of h(qg,a)
vslog,(a) is found not to dependon g: h(q) = H =
1/3,vq. In Fig. 2d are reportedthe corresponding
estimatesof D(h) using Egs.3 and 4. Independently
of thevalueof g € [-4,6], B, 5, B, , andB, , display
the samebehavior, namelyD(h = H) = 2.00+ 0.02.
Theresultsobtainedor boththe 7(q) andD(h) spectra
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arethusin remarkableagreementvith the theoretical
predictions.We refer the readerto Decosteret al.

(2000), for similar applicationsof the 2D WTMM

methodologyto syntheticrandommultifractal rough
surfaces.

APPLICATION OF THE 2D
WTMM METHOD TO DIGITIZED
MAMMOGRAMS

As we want to study scaling properties of
digitized mammogramswe choseto use full-breast
images from the Digital Databasefor Screening
Mammography(DDSM) project (Heathet al., 1998)
which providesonline morethan 2600 studies(http://
marathon.csee.usf.edu/Mammografidatabae html)
sortedinto three cateyories: normal, cancey benign.
Mammogramswvere digitized usinga 12 bits scanner
with both a good spatialresolutionof 43.5um. Full-
breasimagesenableusto selectabouttenoverlapping
1024x 1024pixelssquaresindeed,n orderto master
edgeeffects, only coresof the imageswere usedfor
the computationof the WT skeleton and partition
functions.

Mammographic tissue classification:
dense and fatty tissues

Many statisticalstudiesdevotedto mammography
analysisactuallyusefractaltechnique®r models.Our
aim hereis to analyzenormalmammaryparenchyma
with our multifractal 2D WTMM method.We have
selecteda set of 10 imagesin the DDSM database
accordingto ACR breastdensity rating with some
index ranking from 1 to 4, as assignedby an
experiencednammographer5 fatty (rated1 on ACR
density scale) and 5 dense (rated 4) breasts.The
main steps of the 2D WTMM computationsare
illustrated in Fig. 3 on two (1024 x 1024 pixels)
imagesselectedespectiely in adense-glandulaand
in a fatty breastsFigs. 3a and 3d shav the original
(1024x 1024)imagescut out of thesemammograms.
ThecorrespondingmoothedmagesandWT maxima
chains computed at the scale a = 39 pixels are
shovn in Figs. 3b and 3e, respectiely. Figs. 3d
and 3f representat a smaller scale,the location of
the WTMMM (o) from which originatesan arrow
which representghe WT vector T [f](b,a). In Fig.
4 are reported the results of the computation of
the partition functions Z(q,a),h(q,a) and D(q,a)
obtainedwhenaveragingover 12 overlapping(1024x
1024)imagescut out of the original denseand fatty
mammogramsAs shown in Figs. 4a and 4b, both
denseand fatty tissuesdisplay rather good scaling
propertiesover two and a half octaves. The scaling

actually deteriorategprogressiely when considering
largescalesdueto finite sizeeffects.Whenproceeding
to a linear regressionfit of log,(2°(q,a)) vslog,(a)
over therangeof scalesextendingfrom a,,;, = 1.60,,
to amax = 40y, One obtainsthe 1(q) spectrareported
in Fig. 4c. From a simple visual inspection, one
realizesthat denseand fatty breasttissuesdisplay
quite differentscalingpropertiesThe latter presenta
17(q) spectrumwhichis remarkablylinearin therange
q € [—3,3] with a slopeH = 0.25+ 0.05, while the
former presentsa larger slopeH = 0.65+ 0.05 with
some possiblenon-linear departurewhich might be
the signatureof multifractality. This monofractalvs
multifractal discrimination betweenfatty and dense
breasttissuesis also evidencedby the computation
of the correspondindd(h) singularity spectrain Fig.
4d. However the multifractal diagnosisfor dense
tissuesrequiresfurther numericalanalysisto ensure
statisticalcorvergenceof the 7(q) exponentdor large
valuesof |g|. Neverthelesswhat seemsto be robust,
consideringthe whole set of processedmages,is
the fact that fatty tissuesdisplay monofractalscaling
behaior with a HurstexponentH takingvaluein the
range [0.20,0.45] as the signatureof anti-persistent
roughnessfluctuations while dense tissue display
(possiblymultifractal) scalingwith H € [0.55,0.75] as
the signatureof persistentong-rangecorrelations.
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Fig. 3. 2D wavelet transform analysis of 2
mammagrams: a) densebreast tissue and d) fatty
breasttissue 0 is an isotropic 2D-Gaussiarfunction.
In b) and e) is shownthe WT modulus at scale
a= 30,, with thesamegrey level codingasin Fig. 1b;
the maximachains are shownfor comparison.In c)
and f) only the maximachainsand the local maxima
of .# alongthesechainsare representede) at scale
a=2.50,.
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Fig. 4. Determinationof the t(q) and D(h) specta
of denseg(e) andfatty (o) breastswith the 2D WTMM
method.a) log, Z(qg,a) vslog,a. b) h(qg,a) vslog,a.
c) 7(g) vs q. d) D(h) vs h obtained from Egs. 3
and 4. Sameanalyzingwaveletas in Fig. 3. These
results correspondto annealedaveraging over 12
(1024x1024)squaescut out of full-breastimages.a
is expressedn o,y units.

Detecting microcalcifications through
WT skeleton segmentation

The presenceof clusteredMC is one of the most
important and sometimesthe only sign of cancer
in a mammogram.As a potential computeraided-
diagnosigool, let usshov how our WT methodology
canidentify MC which are small calciumdepositsin
tissue, appearingas clustersof bright spots.Fig. 5
shavs how onecanactuallydetectMC by inspecting
the WT maximachains.Indeed,at the smallestscale
resohed by our WT microscope(o,, = 13 pixels),
MC which can be consideredas strong singularities,
arecontourshapedy somemaximachains.Sincethe
averagesize of MC is about200 um (5 pixels), these

singularitiesareseerby our mathematicamicroscope
asDirac singularitiesthusthe correspondingnaxima
lines pointing to the MC arelikely to displayscaling
propertieswith a local Holder exponenth = —1

(#y[f] ~ at) down to scalesof the order of the
MC size where one should obsene a cross-wer to

the value h = 0 (.#[f] ~ c%) as the signatureof

the discontinuity inducedby the MC boundary The
behavior of the WT modulusalong several maxima
lines pointing to background points and to MC

is illustrated in Fig. 5b. One can thus perform a
classificationof theselines accordingto the behaior

of .# [ f] alongthesdines,andthenseparatéC (h ~

—1) from densebackgroundissue(h ~ 0.65+ 0.05).

Figs.5cand5d shov the maximachainsthatarefound
to correspondo MC at two differentscales.We see
thatthesemaximachainscanbeusednotonly to detect
MC at the smallestresolhed scale(Fig. 5¢), but also
to perform MC clusteringwhen investigatinglargest
scales(Fig. 5d). Work in this directionis in current
progress.

CONCLUSION

We have presented new space-scalmethodology
for studying,within the samealgorithmicframework,
background tissue properties and abnormal
singularities associatedwith breast cancer For its
ability to revealing and distinguishingpersistentand
anti-persitentong-rangecorrelationsthe 2D WTMM
method looks very promising in classifying tissues
by quantifying breast density in an very accurate
way. Furthermorewe plan to improve detectionand
segmentationof MC by mixing and combining the
2D WTMM methodwith neuralnetworkstechniques,
with the ultimate goal of discriminatingbenignang
from malignang.

s

Qb

=
\\‘\\\‘\\

10@2@“)

o

C T [ 1 F T ]
(c) f 1 [(d) : i
i . 10 S 1
i C e 10 1@ . 1
D 1r 3\\‘i\“§§g\ ]
i Tt 110 ’iﬂ ]
N A AT % «\f/fg\) 7
: YT | ik )

0 log,(a) 4

Fig. 5. Detectionandcharacterizationof microcalcifications.a) Original 726x 726image of densebreasttissuecontaining
MC. b) Scalingbehaviorof the WT modulus.#, alongsomemaximalines pointing towards densetissuebadground (o)
and microcalcificationg(m). Thedashedresp.solid) straight line correspondgo the slopeh=0.65 (resp.—1) characteristic
of badkgroundtissueroughnesdluctuations(resp. MC). (c) and (d) showthe maximachains obtainedafter eliminating
badgroundtissuemaximachainsat scalesa = g, ¢) and2.5q,, d), usingthe WT skeletonspace-scalénformation.
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