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Abstract

By using elementary linear algebra methods we exploit properties of the incidence map
of certain incidence structures with finite block sizes. We give new and simple proofs of
theorems of Kantor and Lehrer, and their infinitary version. Similar results are obtained
also for diagrams geometries.

By mean of an extension of Block’s Lemma on the number of orbits of an automor-
phism group of an incidence structure, we give informations on the number of orbits of:
a permutation group (of possible infinite degree) on subsets of finite size; a collineation
group of a projective and affine space (of possible infinite dimension) over a finite field on
subspaces of finite dimension; a group of isometries of a classical polar space (of possible
infinite rank) over a finite field on totally isotropic subspaces (or totally singular in case of
a orthogonal space) of finite dimension.

Furthermore, when the structure is finite and the associated incidence matrix has full
rank, we give an alternative proof of a result of Camina and Siemons. We then deduce that
certain families of incidence structures have no sharply transitive sets of automorphisms
acting on blocks.
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1 Introduction
An incidence structure is a triple I = (P,B, I) where P and B are disjoint sets and I is
a subset of P × B. The elements of P are called points, those of B blocks and I defines
the following incidence relation: the point P and the block B are incident if and only if
(P,B) ∈ I, and we will write P IB. The incidence structure I has finite block sizes if
{P ∈ P : P IB} has finite size for all B ∈ B; I is finite if P and B, and hence also I,
are finite sets. An automorphism of an incidence structure is a pair of permutations (π, β),
with π acting on P and β on B, such that P IB if and only if Pπ IBβ , for all P ∈ P and
B ∈ B. The group of all automorphisms is denoted by Aut I.

A finite incidence structure can be represented by a (0, 1)-matrix A with rows indexed
by points and columns indexed by blocks, and with the (P,B)-entry equal to 1 if and only
if P is incident with B. The incidence matrix A have been studied by many authors at least
since the 1960s, and most of their investigations were on the rank of A. Dembowski in [12,
p. 20] showed that the rank of the incidence matrix defined by the natural incidence relation
of points versus i-dimensional subspaces of a finite d-dimensional projective or affine space
is the number of points of the geometry. This result was generalized by Kantor in [14].
He showed that the incidence matrix defined by the incidence between the i-dimensional
subspaces and the j-dimensional subspaces of a finite d-dimensional projective or affine
space, with 0 ≤ i < j ≤ d − i − 1, has full rank. Analogous results for the incidence
matrices of all k-subsets versus all l-subsets of a m-set and for the incidence matrices
arising from finite polar spaces were proved by Lehrer [16].

A decomposition of an incidence structure I = (P,B, I) is a partition of P into point
classes together with a partition of B into block classes. A decomposition is said to be
block-tactical if the number of points in a point class which lie in a block depends only on
the class in which the block lies. When the incidence structure is finite then the fundamental
Block’s Lemma [2, Theorem 2.1] states that in a block-tactical decomposition the number
of point classes differs from the number of block classes by at most the nullity of the
incidence matrix of the structure. A principle example of block tactical decomposition is
obtained by taking as the point and the block classes the orbits of any automorphism group
of the structure. So, Block’s Lemma naturally leads to consideration of the rank of the
incidence matrix in order to study the number of orbits of an automorphism group of an
incidence structure.

When I = (P,B, I) is finite, and both permutation representations of any automor-
phism of I are regarded as linear representations of the automorphism group, then the in-
cidence matrix A of I is an intertwining operator between the linear representations of the
automorphism group on P and B. Using this fact, Camina and Siemons [11] showed that
when A has maximum rank then the permutation representation on points is a subrepresen-
tation of the permutation representation on blocks. This containment relation implies the
non-existence of sharply 1-transitive sets of automorphisms on blocks unless the number
of points divides the number of blocks [19].

The aim of this paper is to bring together all the previous questions by providing a
unified treatment. Our approach is different from those adopted by the authors referred to
above: the main idea is to exploit properties of the incidence map of incidence structures
by using elementary linear algebra methods. We find a new and simpler proof of Kantor’s
and Lehrer’s theorems, beside giving the infinitary version of these results. We also provide
some geometric version of the main result in [9] on the number of orbits of a permutation
group on unordered sets by mean of an extension of Block’s Lemma [2] on the number of
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orbits of an automorphism group of an incidence structure. Furthermore, when the structure
is finite and the associated incidence matrix has full rank, we give an alternative proof of
the result of Camina and Siemons [11].

We now give a summary of the present paper. In Section 2 we prove that the incidence
map of certain (possibly infinite) incidence structures is one-to-one. The keystone is a re-
sult (Lemma 2.6) about the kernel of the incidence map from i-dimensional subspaces to
(i+1)-dimensional subspaces of a finite d-dimensional projective space, where incidence is
the inclusion relation. By replacing the dimension with size of a set and the Gaussian coef-
ficients with binomial coefficients, we get the analogous result for the incidence map from
k-sets to (k + 1)-sets of an m-set, where incidence is the inclusion relation. This leads
to an alternative proof of both of Kantor’s theorems, on the incidence structures arising
from projective and affine spaces, and of Lehrer’s theorem [16] on the incidence structures
arising from subsets. These results are summarized in Theorem 2.7. In Section 3 we illus-
trate some applications of Theorem 2.7. Under the hypothesis that every block is incident
with a finite number of points we prove the infinitary version of the above results. From
Kantor’s theorem for projective spaces, and because of its infinitary version, we prove that
the Lehrer result about incidence structures in finite classical polar spaces [16] holds also
in case of polar spaces of infinite rank. Similar results are obtained for diagram geometries
associated to certain finite Chevalley groups. If ∆ denotes the diagram of the geometry,
then by using [7, Theorem 2] we show that the k-varieties give rise to full substructures
of the incidence structure of i-varieties versus j-varieties of the geometry, provided i and
k lie in distinct connected components of ∆ − {j}. This gives plenty of scope to apply
the main result (Lemma 3.1) of this section. It is conceivable that the weak conclusion that
there are as many j-varieties as i-varieties could be useful to diagram geometers. Section 4
is related with Block’s Lemma. In the function space and incidence map setting we prove a
slight extension of this fundamental result. We then apply it to obtain informations on the
number of orbits of: a permutation group (of possible infinite degree) on subsets of finite
size; a collineation group of a projective and affine space (of possible infinite dimension)
over a finite field on subspaces of finite dimension; a group of isometries of a classical polar
space (of possible infinite rank) over a finite field on totally isotropic subspaces (or totally
singular in case of a orthogonal space) of finite dimension. We point out that the result
on permutation groups was obtained by Cameron in [9], where the theorem of Livingstone
and Wagner [17] is proved to hold also for permutation groups of infinite degree. Section 5
is all in the finite setting. We provide an alternative proof of the result of Camina and
Siemons [11] which states that if the incidence map of a finite incidence structure is one-
to-one, then the permutation representation on points of any given automorphism group is
a subrepresentation of the representation on blocks with equal or greater multiplicity. We
then deduce that certain families of incidence structures have no sharply transitive sets of
automorphisms acting on blocks.

Although some of the results presented here have been obtained by other authors and
appear scattered over a large number of papers, in our opinion it is difficult to find a con-
venient reference for this knowledge with a presentation that doesn’t assume a lot of the
reader. This work can be considered as an attempt to providing such a reference.
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2 The rank of incidence maps
In order to treat our arguments by linear algebra methods, we introduce the incidence map
of a finite incidence structure. Let I = (P,B, I) be an incidence structure. The point space
of I is the vector space QP of all functions P → Q; the block space of I is the vector
space QB of all functions B → Q. When I has finite block sizes, we define the (linear)
incidence map α : QP → QB of I by the rule

(fα)(B) =
∑
P IB

f(P ),

for all B ∈ B and f ∈ QP .
For any subset Y of a given set X the characteristic function χY ∈ QX of Y is defined

as follows:

χY (x) =

{
1 for x ∈ Y ;

0 for x ∈ X \ Y.

With this notation, the set {χ{P} : P ∈ P} is a basis for QP and {χ{B} : B ∈ B} is a
basis for QB; we refer to each of these bases as the natural basis of the corresponding space.
If I is finite the matrix of the map α with respect to these bases is precisely the incidence
matrix of I, with multiplication being on the right (i.e., vectors regarded as rows).

We now exhibit some properties of the incidence maps of the incidence structures aris-
ing from subspaces of a finite dimensional projective space over a finite field.

Let PG(d, q) be the projective space of dimension d over the finite field with q elements.
For 0 ≤ i ≤ d − 1, let Fi denote the set of all i-dimensional subspaces (or i-subspaces,
for short) of PG(d, q). For i ̸= j we consider the incidence structure I = (P,B, I) where
P = Fi, B = Fj and the incidence relation I is given by set-theoretic inclusion.

The following notation will be adopted in the rest of the paper:

• Vi denotes the vector space QFi of functions from Fi to Q;

• αi,j denotes the incidence map from Vi to Vj , with i ̸= j;

• W−1 = V−1 = {∅};

• Wi denotes the kernel of αi,i−1, for i ≥ 0.

With the above notation, αi,i is the identity map on Vi. For any Si ∈ Fi, the coordinate
array of χ{Si}αi,j , whose entries are indexed by elements of Vj , is precisely the i-th row
of the incidence matrix A of αi,j . In other words, if i > j then the image under αi,j of
χ{Si} is the characteristic function of the set of j-subspaces contained in Si. Similarly,
if i < j then the image under αi,j of χ{Si} is the characteristic function of the pencil of
j-subspaces passing through Si.

In the following we need the q-analogs of binomial coefficients, which are defined by[
n

k

]
q

=

k−1∏
i=0

(qn−i − 1)/(qk−i − 1)

for non-negative integers n, k with n ≥ k. Note that
[
n
k

]
q

is the number of (k−1)-subspaces
of PG(n− 1, q).
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Lemma 2.1. Let −1 ≤ i ≤ j ≤ k ≤ d− 1. Then

αi,jαj,k =

[
k − i

j − i

]
q

αi,k.

Proof. By applying directly the definition of αi,j we see that

(fαi,jαj,k)(Sk) =
∑

Si⊆Sj⊆Sk

f(Si)

holds for all f ∈ Vi. The result now follows by recalling that the number of j-subspaces
in PG(d, q) through any given i-subspace which is in turn contained in a k-subspace is[
k−i
j−i

]
q
.

Lemma 2.2. For i = −1, . . . , d,

Vi =

i⊕
j=−1

Wjαj,i. (2.1)

(Note that some of the summands may be 0).

Proof. For i = −1 the result is trivial. For i = 0, . . . , d − 1, we note that Vi is a vector
space over a field of characteristic zero. Then the inner product defined by

⟨g, h⟩i =
∑

Si∈Fi

g(Si)h(Si), (2.2)

for all g, h ∈ Vi, is a non-degenerate bilinear form. Since, in the natural bases of Vi

and Vj , the matrix of αi−1,i is the transpose of the matrix of αi,i−1, then ⟨fαi−1,i, g⟩i =
⟨f, gαi,i−1⟩i−1, for all f ∈ Vi−1 and g ∈ Vi, i.e. the incidence map αi−1,i and the dual
map αi,i−1 are adjoint.

We now show that Vi = Wi⊕Imαi−1,i. Let ⊥i denote the polarity defined by the inner
product ⟨−,−⟩i. Since Vi is finite dimensional, then Vi = Imαi−1,i⊕ (Imαi−1,i)

⊥i . Fur-
thermore, for all g ∈ Wi and f ∈ Vi−1, ⟨fαi−1,i, g⟩i = ⟨f, gαi,i−1⟩i−1 = 0 holds,
giving Imαi−1,i ⊆ W⊥i

i , or equivalently, Wi ⊆ (Imαi−1,i)
⊥i . Conversely, if g ∈

(Imαi−1,i)
⊥i , then 0 = ⟨fαi−1,i, g⟩i = ⟨f, gαi,i−1⟩i−1, for all f ∈ Vi−1. By the non-

degeneracy of ⟨−,−⟩i−1, we get gαi,i−1 = 0, and hence g ∈ Wi.
We now use induction on i. For i = −1 we have V−1 = W−1. Assume the statement

holds for Vi−1, that is Vi−1 =
⊕i−1

j=−1 Wjαj,i−1. As Vi = Imαi−1,i⊕Wiαi,i, to conclude
the proof we only need to prove that Imαi−1,i =

⊕i−1
j=−1 Wjαj,i. But this easily follows

from Lemma 2.1 since

Imαi−1,i = Vi−1αi−1,i =

i−1⊕
j=−1

Wjαj,i−1αi−1,i =

i−1⊕
j=−1

Wjαj,i.

Remark 2.3. We point out that the bilinear form defined by (2.2) is an appropriate one for
the permutation module Vi, in that permutations of the characteristic functions of single-
tons are isometries of the form. In the basis consisting of the characteristic functions of
singletons, this is just a way of saying that permutation matrices are orthogonal in the usual
sense of the term, that is PPT = I .
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Lemma 2.4. For i = 0, . . . , d− 1,

αi,i+1αi+1,i = αi,i−1αi−1,i +

([
d− i

1

]
q

−
[
i+ 1

1

]
q

)
αi,i.

Proof. Let Si, S
′
i ∈ Fi. For any given Si+1 ∈ Fi+1 we have

(χ{Si}αi,i+1)(Si+1) =

{
1 if Si ⊂ Si+1;

0 otherwise.

It easily follows that

(χ{Si}αi,i+1αi+1,i)(S
′
i) =

∑
Si+1⊃S′

i

(χ{Si}αi,i+1)(Si+1)

is the number of (i+ 1)-subspaces containing both Si and S′
i. This number equals

0 if dim (Si ∩ S′
i) < i− 1;

1 if dim (Si ∩ S′
i) = i− 1;[

d−i
1

]
q

if S′
i = Si.

Applying similar arguments we see that (χ{Si}αi,i−1αi−1,i)(S
′
i) is the number of (i− 1)-

subspaces contained in both Si and S′
i. This number is

0 if dim (Si ∩ S′
i) < i− 1;

1 if dim (Si ∩ S′
i) = i− 1;[

i+1
1

]
q

if S′
i = Si.

The result then follows.

Lemma 2.5. For j = −1, . . . , i,

(αi,i+1αi+1,i)|Wjαj,i =

i∑
k=j

([
d− k

1

]
q

−
[
k + 1

1

]
q

)
αi,i.

Proof. We use induction on i. For i = −1 we have W−1 = V−1 = {∅} by definition. We
also note that

[
d+1
1

]
q
= (qd+1 − 1)/(q− 1) is the number of points in PG(d, q), that is the

size of F0. Then,

(α−1,0α0,−1)|V−1
= (qd+1 − 1)/(q − 1)α−1,−1 =

[
d+ 1

1

]
q

α−1,−1.

Now let i ≥ 0. For j = i, the result follows immediately from Lemma 2.4.
Let j < i. By Lemma 2.4 we have

(αi,i+1αi+1,i)|Wjαj,i
= (αi,i−1αi−1,i)|Wjαj,i

+

([
d− i

1

]
q

−
[
i+ 1

1

]
q

)
αi,i|Wjαj,i

.
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To conclude the proof it is enough to show that

(αi,i−1αi−1,i)|Wjαj,i
=

i−1∑
k=j

([
d− k

1

]
q

−
[
k + 1

1

]
q

)
αi,i.

By the inductive hypothesis

(αi−1,iαi,i−1)|Wjαj,i−1 =

i−1∑
k=j

([
d− k

1

]
q

−
[
k + 1

1

]
q

)
αi−1,i−1,

and Lemma 2.1 gives αj,i−1αi−1,i =
[

i−j
i−j−1

]
q
αj,i =

[
i−j
1

]
q
αj,i. Hence, we may write

wjαj,iαi,i−1αi−1,i =

[
i− j

1

]−1

q

wjαj,i−1(αi−1,iαi,i−1)αi−1,i

=

i−1∑
k=j

([
d− k

1

]
q

−
[
k + 1

1

]
q

)[
i− j

1

]−1

q

wjαj,i−1αi−1,i

=

i−1∑
k=j

([
d− k

1

]
q

−
[
k + 1

1

]
q

)
wjαj,i,

for wj ∈ Wj . This implies

(αi,i−1αi−1,i)|Wjαj,i =

i−1∑
k=j

([
d− k

1

]
q

−
[
k + 1

1

]
q

)
αi,i,

which is the desired result.

Lemma 2.6. Let i = 0, . . . , d− 1. Then

kerαi,i+1 =

{
0 for i < d−1

2 ;

Wd−i−1αd−i−1,i for i ≥ d−1
2 .

Proof. It is clear that kerαi,i+1 ≤ ker (αi,i+1αi+1,i). In addition,

dimker (αi,i+1αi+1,i) = dimkerαi,i+1 + dim (kerαi+1,i ∩ Imαi,i+1).

From the proof of Lemma 2.2, we get kerαi+1,i ∩ Imαi,i+1 = 0. Therefore kerαi,i+1 =
ker (αi,i+1αi+1,i).

From Lemmas 2.2 and 2.5, the eigenvalues of αi,i+1αi+1,i are the integers

i∑
k=j

([
d− k

1

]
q

−
[
k + 1

1

]
q

)
, (2.3)

for j = −1, . . . , i, with the j-th eigenvalue corresponding to the summand Wjαj,i in the
decomposition (2.1) of Vi. For i < (d− 1)/2 all these integers are non-zero, and therefore
kerαi,i+1 = 0.
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Let i ≥ (d − 1)/2. Two cases are treated separately according as d is odd or even.
Let d be odd and assume i = (d − 1)/2. It is easily seen that the only zero eigenvalue of
αi,i+1αi+1,i is for j = i = d− i− 1, as d− (d− 1)/2 = (d− 1)/2 + 1. Therefore,

kerα d−1
2 , d+1

2
= W d−1

2
α d−1

2 , d−1
2
.

Now let i = (d − 1)/2 + δ, for some integer δ > 0. We note that the summand with
k = (d− 1)/2 in the expression (2.3) is zero. A straightforward calculation shows that for
sufficiently small j, the summand with k = (d−1)/2− l in (2.3) erases with the summand
with k = (d − 1)/2 + l, for 1 ≤ l ≤ δ. This implies that the only zero eigenvalue of
αi,i+1αi+1,i is for j = (d − 1)/2 − δ = d − i − 1. Hence, the kernel of αi,i+1αi+1,i is
Wd−i−1αd−i−1,i.

For d even, the above approach still works up to some differences. For completeness,
we give all details.

If d is even, we write i = ⌈d−1
2 ⌉+ δ, for some integer δ ≥ 0. For sufficiently small j,

the summand with k = ⌈d−1
2 ⌉− l−1 in the expression (2.3) erases with the summand with

k = ⌈d−1
2 ⌉+ l, for 0 ≤ l ≤ δ. This implies that the only zero eigenvalue of αi,i+1αi+1,i is

for j = ⌈d−1
2 ⌉−δ−1 = d−i−1. Hence the kernel of αi,i+1αi+1,i is Wd−i−1αd−i−1,i.

The above Lemmata lead to the following fundamental theorem whose proof is new
and, in our opinion, more elementary than those provided in [14] and [16].

Theorem 2.7. The incidence map of the following incidence structures is one-to-one:

(i) i-sets versus j-sets of a d-set, with i < j and i+ j ≤ d < ∞.

(ii) i-spaces versus j-spaces of PG(d, q), with 0 ≤ i < j ≤ d− 1 and i+ j < d < ∞.

(iii) i-flats versus j-flats of the affine space AG(d, q) of dimension d over the finite field
with q elements, with 0 ≤ i < j ≤ d− 1 and i+ j < d < ∞.

Proof. We first give the proof of (ii). We need to prove that kerαi,j = 0, for 0 ≤ i < j ≤
d− 1 and i+ j < d. We use induction on j − i.

If j − i = 1 then kerαi,i+1 = 0, by Lemma 2.6 as i < (d − 1)/2. Now let j − i > 1
and assume kerαi′,j′ = 0 for any pair (i′, j′) with 0 ≤ i′ < j′ ≤ d − 1, i′ + j′ < d
and j′ − i′ < j − i. By Lemma 2.1, we have kerαi,j = kerαi,i+1αi+1,j . In addition
dimkerαi,i+1αi+1,j = dimkerαi,i+1 + dim (Imαi,i+1 ∩ kerαi+1,j).

Assume i + j < d − 1 so i < (d − 1)/2 and i + 1 + j < d. Then kerαi,i+1 = 0 by
Lemma 2.6, and kerαi+1,j = 0 by inductive hypothesis. Hence kerαi,j = 0 in this case.

Now assume i + j = d − 1. We will prove the result by calculating the dimension of
Imαi,d−i−1. By Lemma 2.1 and 2.2 we have

Imαi,d−i−1 = Viαi,d−i−1 =

i⊕
k=−1

Wkαk,d−i−1.

By the previous part, the map αk,d−i−1 is one-to-one for k = −1, . . . , i−1 as k+d−i−1 <
d − 1. Then dim Wkαk,d−i−1 = dim Wk, with Wk = kerαk,k−1. By the arguments in
the proof of Lemma 2.2 we get dim Wk = dim Vk − dim Imαk−1,k. By Lemma 2.6
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the map αk−1,k is one-to-one for k = −1, . . . , i − 1 as k − 1 < (d − 1)/2. Therefore
dim Imαk−1,k = dimVk−1. This implies

dim Wkαk,d−i−1 = dim Wk

= dim Vk − dimVk−1

=

[
d+ 1

k + 1

]
q

−
[
d+ 1

k

]
q

,

for k = −1, . . . , i− 1. Therefore

dim Imαi,d−i−1 = dimViαi,d−i−1

= 1 +

i−1∑
k=0

([
d+ 1

k + 1

]
q

−
[
d+ 1

k

]
q

)
+ dimWiαi,d−i−1

=

[
d+ 1

i

]
q

+ dimWiαi,d−i−1.

Still by the proof of Lemma 2.2, we may write Vi = Imαi−1,i ⊕Wi, where αi−1,i is
one-to-one as i < (d− 1)/2. Hence,

dimWi = dimVi − dimVi−1 =

[
d+ 1

i+ 1

]
q

−
[
d+ 1

i

]
q

.

This implies

dimWiαi,d−i−1 =

[
d+ 1

i+ 1

]
q

−
[
d+ 1

i

]
q

− ε,

for some ε ≥ 0. Thus

dim Imαi,d−i−1 = dimViαi,d−i−1

=

[
d+ 1

i

]
q

+ dimWiαi,d−i−1

=

[
d+ 1

i

]
q

+

([
d+ 1

i+ 1

]
q

−
[
d+ 1

i

]
q

− ε

)

=

[
d+ 1

i+ 1

]
q

− ε.

As dimVi =
[
d+1
i+1

]
q
, then dimkerαi,d−i−1 = ε. At this point to finish the proof we

need to evaluate dimWiαi,d−i−1. We have Imαi,d−i−1 ≤ Vd−1−1, and dimVd−i−1 =
dimVi by duality. Note that Wiαi,d−i−1 is a component of Vd−i−1 by Lemma 2.1. Then

dimVd−i−1 − dimWiαi,d−i−1 = dimVi − dimWiαi,i =

[
d+ 1

i

]
q

.

Hence ε = 0 and this concludes the proof of (ii).
Similar arguments can be used to prove (i). We just need to replace the projective

dimension with size of set minus one and the q-binomial coefficients with binomial coeffi-
cients.
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We now prove (iii). Let αA
i,j denote the incidence map of the i-flats versus the j-flats

of AG(d, q). Embed AG(d, q) in PG(d, q) identifying every k-flat of AG(d, q) with the
k-dimensional spaces of PG(d, q) it spans. Let H denote the hyperplane at infinity of
AG(d, q). Let f ∈ kerαA

i,j and g be the extension of f on Vi defined as follows:

g(Si) =

{
f(Si) if Si ̸⊆ H;

0 if Si ⊆ H.

Then

(gαi,j)(Sj) =
∑

Si⊆Sj

g(Si) =

{
(fαA

i,j)(Sj) if Sj ̸⊆ H;

0 if Sj ⊆ H.

Since f ∈ kerαA
i,j , we get g ∈ kerαi,j . By (ii) g = 0 and hence f = 0.

Remark 2.8. For 2i + 1 ≤ d, the summands Wjαj,i in the decomposition of Vi given
in Lemma 2.2, are all the irreducible constituents of the permutation representation of
PGL(d, q) on Fi. To see this, set G = PGL(d, q). From the proof of Lemma 2.1 we
have Vi = Imαi−1,i ⊕ Wi. The map αi−1,i is one-to-one, so the number of irreducible
components in its image is precisely the number of the irreducible components of the per-
mutation QG-module Vi−1. This number is i + 1, being the dimension of the intersection
of two (i− 1)-subspaces a complete invariant. This shows that the modules in question are
pairwise non-isomorphic, and irreducible. This was proved by Steinberg [22] using deeper
representation theory.

An analogous result holds for the permutation QG-module defined by the symmetric
group Sym(n) acting on the m-sets, with 2m ≤ n. Here the size of set minus one replaces
the projective dimension, and binomial coefficients replace q-binomial coefficients.

Remark 2.9. For 2i+1 ≤ d, the summand Wjαj,i, for j = 0, . . . , i, in the decomposition
of Vi given in Lemma 2.2, is the restriction over the rationals of the (j + 1)-th eigenspace
of the Bose-Mesner algebra of the association scheme on Fi [13, Theorem 2.7]. For a
thorough treatment on association schemes we refer the reader to [1, 4].

3 Some applications of Theorem 2.7
The incidence structure J = (Q, C, J) is said to be a substructure of I = (P,B, I) if
Q ⊆ P , C ⊆ B and J = I ∩ (Q × C). The substructure J of I is said to be full if
{P ∈ P : P IC} ⊆ Q, for all C ∈ C.

Lemma 3.1. Let I = (P,B, I) be an incidence structure with finite block sizes. Suppose
that there is a set F of full substructures of I, all of whose incidence maps are one-to-one,
and such that, for any P ∈ P there exists J ∈ F such that P is a point of J . Then the
incidence map of I is one-to-one.

Proof. Let αI be the incidence map of I and f ∈ kerαI . For any given P ∈ P , let
J = (Q, C, J) ∈ F such that P ∈ Q. Let αJ be the incidence map of J . Set g = f |Q.
Since J is full we have

(gαJ )(C) =
∑
Q∈Q
Q JC

g(Q) =
∑
R∈P
R IC

f(R) = (fαI)(C),
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for all C ∈ C. Since f ∈ ker (αI) we have (gαJ )(C) = 0, for all C ∈ C, that is
g ∈ kerαJ . Thus g = 0, and therefore f(P ) = g(P ) = 0. Since P is arbitrary, it follows
that f = 0.

The above Lemma allows to get the infinitary version of Theorem 2.7; this means that
the incidence structures involved are over a set with infinite size (in case (i)), or a space
with infinite dimension (in case (ii) and (iii)).

Theorem 3.2. The incidence map of the following structures is one-to-one:

(i) i-sets versus j-sets of an infinite set, with i < j < ∞.

(ii) i-spaces versus j-spaces of a projective space of infinite dimension over a finite field,
with i < j < ∞.

(iii) i-flats versus j-flats of an affine space of infinite dimension over a finite field, with
i < j < ∞.

Proof. We apply Lemma 3.1 and Theorem 2.7 to the above structures by taking the set F
of full substructures as follows: all subsets of size i + j for statement (i), all subspaces of
dimension i+j+1 for statement (ii), all flats of dimension i+j+1 for statement (iii).

Theorem 3.3. Let A be a classical polar space of (possible infinite) rank m over a finite
field. Then the incidence map of totally isotropic subspaces (or totally singular in case of
a orthogonal space) of A of algebraic dimension k versus singular subspaces of algebraic
dimension l is one-to-one, if k < l < ∞ and k + l ≤ m.

Proof. Let I = (P,B, I) be the incidence structure defined by the subspaces of algebraic
dimension k versus subspaces of algebraic dimension l of A. Let F be the family of
all the subspaces of A of algebraic dimension k + l. Since every element J of F is a
full substructure of I, we may apply Theorem 2.7 (ii), or Theorem 3.2 (ii) for the infinitary
version, with i = k−1, j = l−1 and d = k+l−1. Thus we get that the incidence map αJ
of J is one-to-one. The result then follows by applying Lemma 3.1 to the family F .

Remark 3.4. For the case of finite rank the above theorem is due to Lehrer [16, The-
orem 5.3]. Note that Lehrer mistakenly asserts that the incidence map of the incidence
structure of singular 1-spaces versus singular (n− 1)-spaces of the O+(2n, q) polar space
is not one-to-one. This error is caused by confusing the O+(2n, q) polar space with the
Dn(q) building.

In the following we apply Lemma 3.1 to the incidence structures known as diagram
geometries. For a thorough treatment on diagram geometries we refer the reader to [7, 8];
our notation is taken from [7].

Let Γ = (S, I,∆, τ) be a diagram geometry of finite rank with diagram ∆, and I =
(P,B, I) be the incidence structure where P is the set of all i-varieties and B the set of all
j-varieties of S; I is the restriction of I on P × B. Assume that blocks in I have finite size
and let k ∈ ∆ \ {j} such that i and k lie in distinct components of the diagram ∆ − {j}.
We now show that the set of k-varieties of S gives rise to a family F of full substructures
of I with the property that for any point (i-variety) P of I there exists J ∈ F such that P
is a point of J .
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For any given k-variety Λ of S, set JΛ = (PΛ,BΛ, IΛ) where PΛ and BΛ are the set of
all i-varieties and j-varieties of S incident to Λ in Γ, respectively; IΛ is the restriction of I
on PΛ × BΛ.

Let B be a j-variety in BΛ and let ΓB be the residue of B in Γ, that is the diagram
geometry (S′, I′,∆′, τ ′) where S′ is the set of all varieties of S of type m ∈ ∆\{j} which
are incident with B, the incidence relation I′ is the restriction of I to S′, ∆′ = τ(S′) and τ ′

is the restriction of τ to S′. It is known that the diagram of ΓB is ∆− {j} [7, Theorem 1].
Therefore the i-varieties of S′ are precisely all elements (i-varieties) of PΛ that are incident
with B in JΛ. In addition, as Λ is incident with B, it is a k-variety of S′. Since i and k
lie in distinct components of ∆ − {j}, by [7, Theorem 2] every i-variety of S′ is incident
with every k-variety, in particular every i-variety of S′ is incident with Λ. This implies that
{P ∈ P : P I B} is a subset of PΛ. From the arbitrariness of B in BΛ it follows that JΛ is
a full substructures of I.

Let F be the family of the substructures JΛ, for all k-varieties Λ of S. Since the type
map τ take all values of ∆ on every maximal flag of Γ then for every i-variety P of S
there exists a k-variety Λ such that P is a point of JΛ. These considerations together with
Lemma 3.1 led to the following result.

Theorem 3.5. Let Γ = (S, I,∆, τ) be the diagram geometry underlying the buildings of
types F4, E6, E7 and E8. Then the incidence map of i-varieties versus j-varieties of Γ is
one-to-one in the following cases:

(i) F4:
1 2 3 4

(i, j) = (1, 2), (4, 3).

(ii) E6:

1 2 3

4

5 6

(i, j) = (1, 2), (1, 3), (2, 3), (6, 5), (6, 3), (5, 3).

(iii) E7:

1 2 3

4

5 6 7

(i, j) = (1, 2), (1, 3), (2, 3), (7, 6), (7, 5), (7, 3), (6, 5), (6, 3), (5, 3).

(iv) E8:

1 2 3

4

5 6 7 8

(i, j) = (1, 2), (1, 3), (2, 3), (8, 7), (8, 6), (8, 5), (8, 3), (7, 6), (7, 5), (7, 3), (6, 5), (6, 3).

Proof. Consider the diagram Γ = (S, I,∆, τ) for F4, and take (i, j) = (1, 2), k = 3. Let
F be the family of full substructures arising from the 3-varieties of S constructed as above.
The points and blocks of any JΛ ∈ F are precisely the 1- and 2-varieties of S incident
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with Λ. By [7, Theorem 1], these are precisely the 1- and 2-varieties of the residue R(Λ)
of Λ in Γ, whose diagram is

1 2 4

Note that every 1- and 2-variety is incident with every 4-variety. This implies that the
set of the 1- and 2-varieties of S incident with Λ form a finite projective plane, whose
incidence map is injective by a result of Bruck and Ryser [5] and Bose [3]. Lemma 3.1
yields that the incidence map of 1-varieties versus 2-varieties of S is one-to-one in this
case. Very similar argument can used with (i, j) = (4, 3) and k = 2.

Now consider the diagram Γ = (S, I,∆, τ) for E6, and take (i, j) = (1, 2), k = 4.
As above the points and blocks of any JΛ ∈ F are precisely the 1- and 2-varieties of S
incident with Λ, and these are precisely the 1- and 2-varieties of the residue R(Λ) of Λ in
Γ, whose diagram is

1 2 3 5 6

This implies that R(Λ) has the geometry of a PG(5, q). We now apply Theorem 2.7
to conclude that the incidence map of JΛ is incidence, and Lemma 3.1 yields that the
incidence map of 1-varieties versus 2-varieties of S is one-to-one in this case. Very similar
arguments apply for the remaining cases, and for the buildings E7, E8.

4 An extension of Block’s Lemma
An automorphism of the incidence structure I = (P,B, I) is a mapping g of P ∪ B such
that g defines permutations on P and B such that P IB if and only if P gIBg . The group of
all automorphisms of I is denoted by Aut I.

A decomposition of an incidence structure I = (P,B, I) is a pair (X ,Y), with X a
partition of P and Y a partition of B. A decomposition (X ,Y) of an incidence structure
with finite block sizes is block-tactical if

|{P ∈ X : P IB1}| = |{P ∈ X : P IB2}|,

for all X ∈ X , Y ∈ Y , B1, B2 ∈ Y . An example of block tactical decomposition of an
incidence structure I is obtained by taking the orbits on points and blocks of a subgroup of
Aut I.

With a decomposition (X ,Y) of I = (P,B, I) we associate the following subspaces of
the point space QP and the block space QB of I: the point class space VX of all functions
on P constant on each X ∈ X , and the block class space VY of all functions on B constant
on each Y ∈ Y .

Lemma 4.1. A decomposition (X ,Y) of an incidence structure I = (P,B, I) with finite
block sizes and incidence map α is block-tactical if and only if VXα ⊆ VY .

Proof. Suppose (X ,Y) is block-tactical and f ∈ VX . For each X ∈ X , let PX be a fixed
chosen point in X . As f is constant on X , then f(P ) = f(PX) for all P ∈ X . Let Y ∈ Y
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and B1, B2 ∈ Y . Then |{Q ∈ X : QIB1}| = |{Q ∈ X : QIB2}| and therefore

(fα)(B1) =
∑

P IB1

f(P ) =
∑
X∈X

∑
P∈X
P IB1

f(P )

=
∑
X∈X

|{Q ∈ X : QIB1}|f(PX)

=
∑
X∈X

|{Q ∈ X : QIB2}|f(PX)

=
∑
X∈X

∑
P∈X
P IB2

f(P ) =
∑
P IB2

f(P ) = (fα)(B2).

Hence fα is constant on Y . So fα ∈ VY , giving VXα ⊆ VY .
Conversely, suppose that VXα ⊆ VY . Let X ∈ X and χX ∈ QP denote the charac-

teristic function of X . Then, χX can be naturally considered as an element of VX , thus
χXα ∈ VY by hypothesis. Therefore, we have

|{P ∈ X : P IB1}| = (χXα)(B1) = (χXα)(B2) = |{P ∈ X : P IB2}|,

for each Y ∈ Y and B1, B2 ∈ Y . Hence (X ,Y) is block-tactical.

The following result is a slight extension of a fundamental result of R. E. Block [2,
Theorem 2.1] often known as “Block’s Lemma”.

Lemma 4.2. Let I = (P,B, I) be an incidence structure with finite block sizes and (X ,Y)
a block-tactical decomposition of I. Let α denote the incidence map of I. Then

dimVX ≤ dimVY + dim (kerα).

Proof. By Lemma 4.1, we have VXα ⊆ VY , so dim (VXα) ≤ dimVY . Now dimVX =
dim (VXα) + dim (VX ∩ kerα) ≤ dimVY + dim (kerα).

Theorem 4.3. Let G be one of the following groups:

(i) a permutation group of finite degree d;

(ii) a group of collineations of PG(d, q), d < ∞;

(iii) a group of affine collineations of AG(d, q), d < ∞;

(iv) a group of semi-linear isometries of a classical polar space of finite rank d over a
finite field.

For any given non-negative integer i < d, let ni denote the number of orbits on i-sets for
(i), on subspaces of dimension i for (ii), on flats of dimension i for (iii), on totally isotropic
subspaces (or totally singular in case of a orthogonal space) of dimension i for (iv). Then
ni ≤ nj , for i < j and i+ j < d.
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Proof. Let Xi be the set of the orbits of G on the corresponding family of objects indexed
by i. For any i < j < d, put (X ,Y) = (Xi,Xj). The set of all characteristic functions χX ,
X ∈ X , is a basis for VX . Hence, dimVX = |X | = ni. Similarly, dimVY = |Y| = nj ,
and Lemma 4.2 gives |X | ≤ |Y| + dim (kerα) since the point- and block-orbits of any
subgroup of the full automorphism group of an incidence structure form a block-tactical
decomposition. The result is obtained by applying Theorems 2.7 and 3.3.

The following is the infinite version of the previous result.

Theorem 4.4. Let G be one of the following groups:

(i) a permutation group of infinite degree;

(ii) a group of collineations of a projective space of infinite dimension over a finite field;

(iii) a group of affine collineations of an affine space of infinite dimension over a finite
field;

(iv) a group of semi-linear isometries of a classical polar space of infinite rank over a
finite field.

For any given non-negative integer i, let ni denote the number of orbits on i-sets for (i),
on subspaces of dimension i for (ii), on flats of dimension i for (iii), on totally isotropic
subspaces (or totally singular in case of a orthogonal space) of dimension i for (iv). Let l
be the least index such that nl is infinite. Then n0 ≤ n1 ≤ · · · ≤ nl−1 and nk is infinite for
all k ≥ l.

Proof. Let Xi be the set of the orbits of G on the corresponding family of objects indexed
by i.

Let i < j ≤ l − 1. We apply very similar arguments as in the proof of Theorem 4.3
to the block-tactical decomposition (X ,Y) = (Xi,Xj). Then Theorems 3.2 and 3.3 give
ni ≤ nj .

Let l ≤ i < j < ∞. Since the incidence map of the incidence structure associated with
(Xi,Xj) has trivial kernel by Theorems 3.2 and 3.3, we may apply Proposition 2.1 in [9]
(where ρ is the incidence relation).

Remark 4.5. Theorem 4.4 (i) is due to Cameron [9, Theorem 2.2].

Remark 4.6. By using the Generalized Continuum Hypothesis it is possible to give a slight
improvement of the previous result when ni and nj , i < j, are infinite.

From Lemma 4.2 we get dimVXi
≤ dimVXj

+ dim (kerα), and it is known that
dimV = |V | when V is an infinite dimensional vector space over an infinite field F such
that |V | > |F |.

Set ni = ℵβi
, βi ≥ 0. Thus, |VXi

| = |QXi | = ℵℵβi
0 = ℵβi+1 = 2ℵβi > ℵ0 = |Q|

by the Generalized Continuum Hypothesis. Therefore, dimVXi = 2ℵβi , and similarly,
dimVXj = 2ℵβj . Hence Lemma 4.2 yields

2ℵβi ≤ 2ℵβj + dim (kerα).

Theorems 3.2 and 3.3 yield 2ℵβi ≤ 2ℵβj , and the Generalized Continuum Hypothesis
implies ℵβi

≤ ℵβj
, that is ni ≤ nj .
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Remark 4.7. In the paper [18], examples of infinite Desarguesian projective planes with
collineation groups having three orbits on points and two on lines are provided, solving a
problem posed by Cameron [10] and attributed to Kantor.

5 Incidence structures and permutation representations
Block’s Lemma leads to consideration of kerα. It is particularly nice when kerα is trivial,
and the following lemma also emphasizes this case.

Lemma 5.1. Let I = (P,B, I) be a finite incidence structure whose incidence map is one-
to-one. For any given automorphism group G of I the permutation representation of G
on P is a subrepresentation of the permutation representation of G on B (considered as
linear representation over a field of characteristic zero).

Proof. The point space QP is the permutation Q-module for G on P , and the block space
QB is the permutation Q-module for G on B. Since G preserves the incidence, we have

(fgα)(B) =
∑
P IB

fg(P ) =
∑
P IB

f(P g−1

) =
∑

P IBg−1

f(P ) = (fα)(Bg−1

) = (fα)g(B),

for all f ∈ QP and g ∈ G. Therefore, α is a QG-homomorphism from QP to QB. As
α is one-to-one, the permutation representation of G on P is a subrepresentation of the
permutation representation of G on B (over Q). For other fields of characteristic zero, we
need only tensor up.

Lemma 5.2. Let G be a group acting as a transitive permutation group on a finite set X
of size n. Let S be a subset of G such that

∑
s∈S s is mapped to the 0-matrix under every

irreducible non-principal representation. Then |X| divides |S|.

Proof. Let {x1, . . . , xn} be the natural basis of the permutation QG-module on X . The
matrix representation with respect this basis of any element s ∈ G on the trivial module is
1/|X|J , where J is the all-one n × n matrix. This implies that the matrix representation
of the endomorphism

∑
s∈S s on the trivial module is |S|/|X|J .

On the other hand, the matrix representation of
∑

s∈S s in the basis {x1, . . . , xn} is
PS =

∑
s∈S P (s), where P (s) is the permutation matrix representing s ∈ G. Note that

the entries in PS are positive integers. Since
∑

s∈S s is mapped to the 0-matrix under
every irreducible non-principal representation, we have PS = |S|/|X|J . The result then
follows.

Theorem 5.3 ([19]). Let I = (P,B, I) be a finite incidence structure with incidence map
one-to-one. If the automorphism group of I contains a subset which is sharply transitive
on blocks, then |P| divides |B|.

Proof. Set G = Aut I and S ⊂ G be sharply transitive on blocks. Hence, |S| = |B|.
By [19, Lemma 1], the endomorphism

∑
s∈S s of the permutation QG-module QB on

blocks is mapped to the 0-matrix under every irreducible non-principal representation. By
Lemma 5.1, every irreducible submodule of QP is a submodule of QB with less or equal
multiplicity. Hence,

∑
s∈S s acting on QP is mapped to the 0-matrix under every irre-

ducible non-principal representation in QP . By Lemma 5.2, we have |P| divides |B|.
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Corollary 5.4. Let I = (P,B, I) be a finite incidence structure with incidence map one-
to-one and automorphism group G acting transitively on blocks. If |P| does not divide |B|,
then G does not contain a subset acting sharply transitive on blocks.

The above result can be restated as follows.

Corollary 5.5. Let I = (P,B, I) be a finite incidence structure with incidence incidence
map one-to-one and automorphism group Aut I acting transitively on blocks. Let H de-
note the one-block stabilizer in Aut I. If |P| does not divide |B|, then the permutation
representation of Aut I on the cosets of H contains no sharply transitive subset.

Remark 5.6. Corollary 5.4 applies to the following incidence structures as their incidence
map is one-to-one: combinatorial designs, linear spaces and circular spaces (see [6]); in-
cidence structures in projective and affine spaces (see [14] and Theorem 2.7); incidence
structures in classical polar spaces (see [16] and Theorem 3.3); incidence structures on
subsets ([9, 14, 15, 20] and Theorem 2.7); nonbipartite graphs (see [21]).
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