RECONFIGURABLE MULTI-MICROPROCESSOR SYSTEMS

UDK 681.519.7

INFORMATICA 1/88

. Peter Kolbezen
Institut »Jozef Stefan«

A communication mechanism based on the exchange of the distri-
buted topolagy information is discussed. A particular reconfigur-
ation technique 1is treated to handle the exchange of topology
information and thus to maintain the necessary routing tables.
This mechanism handles thé reconfiguration dynamically. Inmos
Transputer concepts are introduced and applicated on the two-
dimensional square interconnection structure.

"Rekonfigurabilni® velprocesorski sistemi. Frispevek obravnava
komunikaci jgki mehanizem, ki ‘je zasnovan na spremembah topologije
komuni kaci jskih poti med mikroprocesorskimi enotami sistema.
Namenjen je posebni t.im. "rekonfigurabilni" tehniki, ki obravna-
va apremembo informacije o topologiji in na ta naéin vzdr?uje
potrebne razpredelnice povezav medprocesorskih komunikacij. V

predlagu so vpel jani koncepti

Inmosovega transputerja, kot voz-

litl¢nega procesorja v povezovalni dvodimenzionalni kvadratni

strukturi.

1. INTRODUCTION

Highly parallel computing structures promise to
be a major application area for the milion-
transistor chips that will be possible in Jjust
a few years. Such computing systems have struc-
tural properties that are suitable for VLSI
implamentation. The key attributes af VLSI
computing structures are

- simplicity and regularity
- concurrrency and communication
- computation intensive VLSI.

The cheoice of an appropriate architecture for
any electronic system is very clasely related
to the implemantation technology. This is es-
pecially true in VLSI. The supervisory aoverhead
incurred in general-purpose supercomputers
often makes them too slow and expensive for
real-time and signal and 1image processing.
Progreass in VLSI technology has lowered imple-
mentation costs for large array processors to
an acceptable level. Algorithmically special-~-
ized processors often use different intercon-
‘nection structures. The matching of the struc-
ture to the right algorithm has a fundamental
influance on performance and cost effective-
Ness. : :

An alternative to the design of a globally
synchraonous array is to achieve a salf-timed
system through the use of asynchronous handsha-—
king mechanisms established betwean neighbaring
processing elemants., These self-timed -implemen-
tations are commonly referred to as wavefront

arrays /8,12,21,23,25/. The wavefront array
caoambines the systolic plpelining principle with
the dataflow computing concept. A wavefront
array processor may be used either as an at-
tached processor interfacing with @ compatible
host machine or as a stand-alone processcor
aquipped with a glaobal control processor. Such
system consists of the processor arrayl(s),
interconnection network(s), a host computer and
interface unit. : ’

Exploitation of the dataflbw pr{nciple makes
the extractions of parallelism and programming
for wavefront arrays relatively simpler.

A family dynamically interconnected or recon-
figurable VLSl processor arrays allow an array
to support a large-class of algorithms. Such
structures usually involve significant hardware
overhead. Reconfigurability of array structures
based on switching lattices has been proven to
be uzeful for solving problems related to fault
tolerance., Fault tolerance is an important
concern in systolic and wavefront arrays be-
cause of the large number of processor elements
they may have.

The paper concludes with suggestions as to how
a recofigurable sistem may be designed with
constructing a wavefront array with the <family
of 1Inmos Transputerse /20/. Transputer chip is
an Occam-language-based design that provides
hardware support for both concurrent computa-
tion and communication, It adopts the now-
popular RISC architecture. Its features make it
a powerful building block for constructing
concurrent processing networks. Tha trans-
puter’'s linke are the hardware reprasentation

of the «channels for process communication.
There is an intimate relationship between
transputer channel links and the communications
protocol envisaged for wavefront arrays.

2. ADAPTIVE SYSTEMS

One of the major objectives of the adaptive
systems 1s to be rearrange the canfigurations
to match the needs of different applications. A
such flexible Reconfigurable Multi-micropro-
cessor Systems (RMmS) should include provisions
for insertions (extensions) and deletions (re-
ductions).

In general, a node in a system becomes aware of
the entire configuration either by a central
network control (CNC) or as result of distribu-
ted exchange of the configuration (topology?
information. The CNC approach can be utilized
to implement a fixed routing mechanism. The
necessary routig tables, which are computed
using the system topology informatiaon, are
distributed to the participating nodes, once
and for all. For a RMmSystems which does not
have an CNC, it is necessary to compute routing
tables externally and to provide each node with
a copy of the full configuration information,

Given the network topology, the shortest dis-
tance algorithems, such as Dijkstra’s algo-
rithm, can be used to compute all the shortest
pathes between the local node and the rest of

the system /5,6/.

The provision aof a distributed reconfiguation

mechanism eliminates the need for a central
network control and & copy of the Ffull con-
figuration information at each node. Instead,
each node is responsible for maintaining par-—-
tial routing information su as to be able to
communicate to its neighbouring nodes.

The handling of configurational changes 79,7,

12/ in multi-computer/processor systems is a
necessary part of their design. It is required
for realiability, modularity, and extensibi-
lity. It is the dynamical reconfiguration which
is important. The routing mechanisms, such as

- random

-~ flooding

-~ ideal observer,
~ adaptive

and

can
fret
and

respond dynamically to the
two technigues can utilize any live
node. A node is not necessarily
the full system topology. The third
needs & central network control which ideally
is assumed to watch the entire system and is
responsible for incorporating traffic and topo-
logy changes. The last technique, i.e. adaptive
routing, is basically a flow control mechanism
which can also respond to the topology changes
in terms of some delay function.

changes. The
link
aware of
technique

In this paper, a communication mechanism "based
on the exchange of the distributed topology
information is discussed. A particular reconfi-
guration technique is proposed to handle the
exchange of topology information and thus to
maintain the necessary routing tables. A topo-
logy message is sent only if there is an indi-
cation of a change in the configuration. This
mechanism handles the reconfiguration dynami-
cally. The link, node, or link and node failu-
res or unexpected occupation and the reverse
changes, i.e. new or free !link, new or free
node, or new or free link and node cases, are
made known to every live node in the system in
‘a finite time,

18

The' treatmented reconfigurations technique in
firét part of the first work on this topic is
discussed in connections with uniform and dense
networks. It ig based on Baran’‘s hot-potata
routine /2/. A correctness proof of a similar
algorithm has also been presented by Tajibnapis
/17

i

3. %NITIALIZATIDN

!

The! discussed reconfiguration algorithm is
basically an adaptive algorithm. It is intend-
ed, 'lhowever, to be controlled by the configura-
tiodal changes rather thamn traffic changes, It
will initialize the system by setting the ini-
tial "configuration and then adapt the system,
dingmically, to further possible changes in
topology. The changes occur either as & reasult
of failures or unexpected occupation (link,
node link, and node) or as a result of new
links, nodes, or links and nodes joining the
system. The topology message format (s as
shoﬁns ass:

Givén a network of N nodes, it first undergoces
an jinitialization phase whereby each node de-
tect's the adjacent operable 1links and thus
ewch@nges this information with neighbouring
nodes. The information is passed in the form of
standard format units (topology messages). The
new neighbaur receives the full accaount of the
topeology information available at the detecting
node', in the form of one topology message per
acceﬁsible node., Note that the links are assum—
ed to be bi-directional, i.e. if a link (a,b)
is live gso is the link (b,a). In practice this
is npt always the case.

The topology message contains two fields rele-
vant to reconfiguration: identification of
destination node i and the shortest distance
between the sending node s and node i. A node
generates, and may modify, & shortest distance
table as shown in Fig. 1.

“Desti-
naFion (¢} 1 2 ... b

Diftance Do) dty d()y ... diky ... din-1)

n-1

F;g. ! Shortest distance table at node k

The entries are indexed by the node identifica-
tion and the entries themselves are the short-
est distance between the corresponing destina-
tion'node and the local node.

4, HéNDLINB INSERTION OF A NEW NODE

Now, | suppose that node 1 of Fig. 2 detects a
new neighbour, say node 17 in the same figure,
and the rest of the system is uniform with the

configuration known and node 17 has no ties

with!any other node in the system, except node

1. This is a major change in the network. The
|

topology message gxchange propagates until the

has been detected at
system, A ‘treceiving node

canfigurational
every node

|
I
i

change
in the

needs to send topology messages to its neighbo-
uring nodes only if the topology message recei-
ved has changed the previous topology informa-
tion, i.e. the shortest distance table.

This proceés can best be visualized by a top-
down tree, as -shown in Fig. 3.

g7er
+;—~~~u—-«+ R ok e am e d o

! Fomrmrr— e f e e D S1Y. PPN

B e i 1mi e b e e eem e e 1 e L e . o S S8 S rm i s o o ot 1e i e
: H H] H t i H

' - Tt T T T Tpupity NPT, JUNN U - J -
' = ¢ e e e e e 41 12 e e s 0 i3 i 2 1 S S S & s e 20m ne e Sa sor wi m i

! B il SETEPUFSE RPN o EEPRPUETIRSS [LTI T EEeery [y, SRS S

H ! o oo HE H H {

H o e e et e e et e e i e i e e T e A e it P b R e R i e ot V1t o e e e
: | i i | | ; i

i e BN R K et 1= Inlatalntb il F- Tl b e Ll
' b o et e i e et i ot e 1k 1 b e)t i e et bt e e e

+ ot e e LT pa B Aeomn e

Fig. 2 Node insertion

The tree is extracted from the network shown in
Fig. 2. The messages on the topological changes
originated at node 1 stop at the terminal
when the configuration information, i.e. the
shortest distance tabele, has reached settle-
ment. Note that the branches represent the
communication links and the vertices represent

the nodes as numbered in Fig. 3.
A node is crossed if it has already been. tra-—-
versed once by an equivalent topology message.

Two topology messages are considered equivalent

if the destination fild, the distance +field,
and the sending node are the same. For this
example a node is traversed at least once for

the canfigurational change to be transparent to
the system since node 17 has no ties with the
rest of the network. However, the node may have

nodes -

19

distance and the routing tables alter every
time a topology change on a shorter path ar-
rives. Every change is then fanned through the
system,

Starting frum the ROOT. node 1, there are five
levels of transmission. The system, with the
exception of node 17, is expected to settle in
five main periods. For node 17, however, (n-1)
main periods are required to receive the comp-
lete topology information from the ROOT, where-
n is-the number of nodes in the origimal net-
work, This is because the ROOT needs to send
the shortest path vector to node 17, where sach
path {8 transmitted in the form of a topology
change message.

In practice, a new link deoes not always belong
to & first—-time node joining the gsystem. The
node might already have been taking part in the
system. On the other hand, more than one link
can become live at the same time. This occurs
if one or more nodes join the system all at
once, with all the adjacent links caoming up
simul taneously. :

S. HANDLING FAILED LINKS

Link failures or occupationes handled differ-
ently., Obviously a failed or occupated 1link
cannot take part in a transmission. Upon detec-
tion of a such link out of m+1 links, the pre-
pared. topology message anly needs to be broad-
cast over the remaining m links, From then on,
the procedure for handling a topology message
is the same as for the live 1link detection
‘case. Now, for clarity suppose that the

failure/occupation of a particular link dis-
connects the adjacent node from the rest of the
system, which is the reverse of the node inser-—
tion case discussed in the previous example.
The failure/occupation of the link (1,17)

es the system in Fig. 2 to settle in five main
periods. This is because the system requires
five levels of transmission (see Fig. 3.

6. TRANSPUTER NODES

to be traversed more than once in cases where The transputer /13,15,20/ is & comporatively
the network is loaded with other traffic which new hardware concept. The transputer products
may cause delays an certain paths. The topology are aimed at highly parallel concurrent comput-
messages that then take longer paths can reach ing applications. The range of these products
a node before those taking sorter paths, The from Inmos offer system designers high band-
17
1 - Rogt
e e e
T ; ! |
2 4 S 13
| : - _— U D
! o Ty Ty S T R T A
3 é 14 I B 16 6 8 9 9 14 146
t]]] . I3
T ; VT T T T T T
4 7 15 S 7 10 10 13 15 5 7 12 12 13 15 10 12 13
Ty Ty T 7T
6 8 1114 14 186 9 11 14 2 11 13
10 13 .15

L7

Fig. 3

Topology message exchange tree.

caus— -

width interprocessor communications without a
shared memory bus. It is a programmable VLSI
device with communications links for point-to-
point connection to other trensputers. The
software - concept upon which transputer inter-
process communication is based was originally
propounded by C.A.R., Hoare /3/. All transputer
range products share same basic common logical
properties. These are:

- the ability of the processor chip to sopport
external memory, but with the recommendation
that processors should not share memory;

- the provision of high bandwidth serial
for interprocessor communication;

links

=~ hardware support for on-—chip simulated concu-

rrency, and for multi-processor parallel com-—
puting;

- low level software development in a high le-
vel structured notation.

A link between two transputers provides a pair

one in each direction. A
link between two transputers implemented by
connecting & link interface on one transputer
to a link interface on the other transputer by
two one-directional signal lines, Each signal
line carries data and control information.

of 'occam" channels,

Each message is transmitted as a
single byte communication, requiring only the
presence of a single byte buffer in the receiv-
ing transputer to ensure that no i1nformation is
lost. After transmitting a data byte, the
sender waits until an acknowledge is received.
The acknowledge signifies both that a process
was able to receive the acknowledge byte, and
that the receiving link is able to receive
another byte. The sending link reschedules the
sending process only after the acknowledge far
the final byte of the message has been re-
ceived.

sequence of

Data bytes and acknowledges
down each signal line.

are multiplexed
An acknowledge is trans-
mitted as soon as reception of a data byte
starts (f there is room to buffer another
one). Consequently transmission may be continu-
ous, with no delays between data bytes.

Transputer also support, program modularity with

the possibility of late decisions about which
part of the network particular software should
reside and a degree of run time choise about
which processor should be used for running
particular tasks. There is naothing in the
transputer architecture and organization which

contradicts the
of the network.

idea of dynmamic reconfiguration
But dynamic reconfiguration of
the transputer network is not supported at
present by . Inmos except that they provide a
cross—bar swich with some low-lewel software
support. The reconfiguration is needed in part
because the hardware for transputers supports
only a finite (and normaly very small) number
of links fraom each node.

For the configuration above on the Fig., 2 which
use all four links of every transputer in a
array node may be used the BOOI Inmos trans-
puter board. There is no provision for booting
the code which on the BOQI must be done via a
transputer link. The problem has been avoided
so far since it destroys the symmetry of the
network and makes the program unnecessarily
complicated for these examples. It is shows one

way that the problem may be solved for a 1&
node 4 % 4 two-dimensional array on the Fig. 2.
An extra transputer, which may be on a BOO1l or
BOO2 board, is used ag the boot node which can
connected via a UART to a host machine. This
processor is node 17 on the Fig. 2 and it may

20

]
i
!
|
|
|
|

be include in the loop of nodes 1,5,% and 3,
!
i

7. kHPLEHENTING THE RECONFIGURATION ALGORITHM
i

|
A network of needs to be reconfigurated if
of the following topological changes occurs:

one

1. é new link 1is introduced (or a failed /
accupated link is repaired or again free and
returned to the system);

2. a new node is joined to the system f{(or a
failed node is repaired or again free and
reinserted);

3. a link fails

4. a node fails.

It 'is important that topological change of a
permanent nature is made known tao the entire
network in a finite time /S/, This is where the
reconfiguration mechanism comes in., It controls
thef flow of topological information both dis-
tributedly and dynpamically. On the other hand,
temporary changes such as short time link,
nodé, or link and node failures need onot be
fanned through the system. Instead a temporary
blockage on the failed unit, or rerrouting at
the, adjacent nodes, can be more advantageous
until the +failure state is removed. This |is
because the global reconfiguration mechanisms
use up an important fraction of the available
communication capacity of the network which
would otherwise be utilized for the actual
information transmission. For permanent fail-
ured, however, the reconfiguration mechanism
pays off with higher reliability, adaptability,
and 'extensibility.

In & real life system,
configuration «hanges need to be distiguished
befdre taking any action., This can be handled
by employing a re-try and time-out mechanism.
Before declaring a failure as permanent the
detecting node waits for a finite duration af
time during which the failure is declared tem-
porary and the necessary precautions are taken
accordingly. This mechanism can also be used
for the new links or nodes joining the system.
However, a live link or a live node detection
mechanism can be incorporated with the type of
jeining, i.e. whether it is a permanent attach-
ment or a temporary one. Reconfiguration is
considered only for the practical case of per-
manént topological changes.
]

permanent and temporary

i
8. DATA BASE OF THE RECONFIGURATION ALGORITHM

}

The 'reconfigurations alghorithm operates basi-—
cally on two tables. The distance table (DT
which records the distance (path length) of
each node in the system from the host node via
each of the neighbouring nodes; the routing
tabﬂe (RT) which records the shHortest paths
only. For each destination a maximum of m paths

|

can : be identified, where m is the number of
neidhbours. The DT is an n by m table, where n
is metwork size.

Figure 4 shows the DT a node 1 of the 1é-node
network given in Fig. 2. In a regularly
connected homogenous network.all the distance

tables are of equal size. An entry dik,i,3J) is
the | distance of path (k,i) via the neighbour
X(3)y, where i=1,2,...,n and Jj=1,24...4ym. The
nodes that are not accessible from node k have
a co?respoding entry aof infinity in the table.
For ' example, node 1 appears inaccessible from
itself via any of its neighbours.

)

The size of routing table (RT) depends upon the

http://carri.es

Via neighbouring nodes

Destination

2 4 5 13
1 infinity infinity infinity infinity
___5_____“___m_I_m______;_____--_;n__m____; ______
YT T T T

Fig. 4 Distance table for node 1
of a lé~node network
specific routing mechanism being employd. In

fact, RT is arranged using the distance table.
An entry r(i,k) or RT indicates the neighbour
node, say X(j), via which the node i is at a

minimum distance from the host node k, i.ae.

dip(kyiyJ) = mi (d(kyiy3)).
1 m

,
[V

The entries of RT change only if the aminimum of
the corresponding DT row changes. It would save
processing time if a shortest distance (8D)
table were used alongside the distance table.
We have

SD(i) = dplkyiygd.

Figure 5
shortest

gives the routing table and the
distance table given in Fig, 4. Note

that ra1,1) = 0 and 5D(1) is idinfinity which
means that node 1 camnot send a message to
itself - by means of routing tables. For

applications where the communication protocols
maintain information flow between the processes
rather than the processors (nodes) independent
of where they are residing, we can have SD(k)
noninfinity, where rik,k) = 0.

The reconfiguration algorithm operates on those
entries which are related to the topofogical
ch&nges. For example, if a topological. change
concerns node 1, only the ith level of
6istance, routing, and shortest distance tables
need to’' be referred to after detection. An
exception is the detection of the change which
requires either the shortest distance table to
be sent to the new neighbour or the column of

the distance table corresponding to the failed

link to be updated.

Destination 1 2 3 SR 15 14

Next node O 2 2 [T 4 13
(a) Routing table (RT),

Shortest

distance infinity 1 2 PN 3 2

(b) Shortest distance table (SD)

Fig. & Routing and shdrteﬁt talrles at node 1

of a lé-node network

21

9. THE RECONFIGURATION ALGHORITHM

The reconfiguration structured
inte three basic subalgorithms, Algorithm 1
handles the 1link and/or node failures (or
occupation). A node failure or occupation are
interpreted as the the simultaneous failures
tor occupation) of the 1links. Algorithms 2
handles a new link and/or node coming up. A
node is declared new/free if all the links
connected to it become alive simultaneously.
Algorithm 3 handles the topology messages which
indicate the configurational changes. These
algorithms are given in detail down, A
reconfiguration protocol is complete only with
a specific routing mechanism, queue management
algorithms, and input-output bhandling routines
at the lawer lever of communication.

algorithm is

Figure & showes a system flow diagram of the
reconfiguration mechanism excluding the flow
level communication protocol rouwtines. A more
detailed description of three algorithm has
been written by Bozyigit., Some simulation
results using the reconfiguration algorithms
are reported by Bozyigit and Faker /é&/. '

1 1] + 1
1 t]]
;) i New link H ! Topology |
P link failure ! Vocoming wup i change |
Y e) Y e e 1 | message |
] ; ! : i
£ v :
! ! ! !
! ! Send ;]
)) information |
! \ to new | 1
] } neighbour H H
! e i]
! ! |
e Y Voo
! |
H Modify distance and routing tables H
. 1
______ v-_- -
N / Has \ Y
_____ / shortest path \N_____
! \ changed / !
H N P / !
S Voo
! H / \
! Route topology ! H Terminate i
! i \ /

Organization of reconfiguration
algorithm

10. DESCRIBTION OF THE RECONFIGURATION ALGO-

RITHMS

A. Nomenclature faor the reconfiguration algo-
rithms.

a = source node

now= d&stindtion nade

¢ = node adjacent {(neighbour) to node a

dgj = distance between a and b via the Jjth

neighbour of a (the superscript a is
omitted wherever it is obvious)
r@ = the firget neighbour on shortest path
between a and b indicated by a neighbour
of a on that path

a .
™™, = topology message compiled at a to be , a . a ;
b cent to b R Vi # = minidy jl, J em
t
! a . = a & a
c <~ TMJ = send TMp to ¢ ! Fif T Xy where Vi = di g
: a _ ,a
Vg = shortest distance between a and ¢ : ™ £ = Vi,
i
w? = ith neighbour of a : (send topology message).
: ! Y, = 1M = x2
XT = ith neighbour of a ‘ TMl : = TM1 (where Y XJ) for
P] .
t = (a temporary variable) J 1,2y...,m, except for
a
Xi = Oy
B. Algorithms 1: Handles a new link coming ! py
up at node a ! 1y
N ' ood;
1. (a new link detected at the local node &) i
4. Exit

tink (a,c) becomes livej

2. (update distance and routing tables) c. Aiqorithem 3t Handles arrived topology
& !

dij @ = 1 where jth neighbour = c, ; message at node a
v@ L o= g 1. (detect topology message at local node a)
[~ 1 i
I TMB arrives at a;
Fe @ 0% ¢ |
I (preparate topoloagy message) 2. (Lpdate distance and routing tables)
(set distance topology field of topology (assign new distance for (a,b) path)

meassage’ :
a

a dP
dist (TMZ) ¢ = 1,
f

(find new min distance (a,b) path)

J':"TNE-*N:-;,

(set destination field of topology message) : . a .
a L? o= omin Idb‘jl, J e m
dest (TM2) ¢ = ¢y
(assign the shortest path)
4. (send topology message to neighbouring

nodes) if ty not = Vg then
. & . & i .a - a = a
X? e Tmé for j = 1,2,...,m and X? * oy L rp t = Xp where tp = dp
a
3. (send available topology information to new S Vp o o= by
neighbour) :
(form topology message) (prepare topology messages)
dist (TM}) : = v§, dist (TME) &+ = V§,
: . a
dest (TMD) ¢ = i for i = 1,2,...,n. dest (TMR) : = b%,
i
(send topology change messages to new (§end topology message to neighbours)
neighbour) o,a A
, X5 €~ TMg for all j e m
c a !
TMy @ = TMy.
fij;
6. Exit. i
3. Exit
B. Algorithm 23 Handles link failures at node a .
1. (a link failure or occupation detected at E. Algarithm 41 Round-rabin routing algorithm

node a) I
link (a,c) failed or occupated; i c
1. tinput a message at a) Ty arrives
2. (update the distance table) |
(save distance vector courrespoding to 2. (ﬁlnd the shortest path (c,b))
failed/occupated link)
(m—13) then
= ()

if
C

a
ti 2 =dy,j .

W

(set vector di ; to infinity) |
’ (next node)
{

. a
C = My

a e
di,j + = infinity where X? = c, and

i 1,2,3,...,0;
Jj = index of the failed or
occupated link

(message joins output queue)

i

Odc S TMS;
3. (update routing tables and prepare topology "
messages) . 4., Exit.

for i 1 = from 1 to n with step 1 do
3

if v§

n

t; then

11. CONCLUSION - - S

specialized processors ' often
interconnection structures of
reconfigurable wavefront array processors
416,25/, There are a number aof traditional
algorithms which set up data structures in the
first phase of processing, then applay for
instance matrix arithmetic techniques to pro-
cess the data, and in a file phase access the
data using a different data paths. A trivial
example is the hardware for a shift register
with parallel in/serial out or parallel and
serial in and out. The meah is used for dy-
namic programming and the heksagonally connect-

Algorithmically
use different

ad mesh for L-U decomposition /12 /. The tours
is used for transitive closure. The binary tree
is used for sorting and the double-rooted tree
is used for searching.

Each BQO3 board from the Inmos family has four

trangputers .connected in as ring. There are
therefore two links per transputer which can be
connected eaxterally. In this manner there are a
wide variety of networks that can be configured
using only BOOS boards:

- In the example of the shift register a ring
of n transputers can be implemented with n/4
BOO3 boards., The transputers are connected
serially as the process '"node" together with
four channels {(two input, two output).

- A two dimenzional array of
(8 x 8) can be implemented with
boards. Four arrays of n channels (for &
structure n x n BOO3 boards) are connected
(left to right, right to left, top to bottom
and bottom to top) so that each node can send
or receive data to or from any of its four
neighbours., Eight placed channels. for n=4
{(four input, Four output) are passed to the
process "nodae". .

&4 transputers

- A folded binary structure of size 4 x 16 can
be implemented with 16 BOO3 boards too. The
boards are connected externally. Four arrays
af channels of dimension n (where the network
ie of size 2 x 2°) are connected in such a
manner: adj.left, adj.right, diag.left and
diag.right and so on where "adj is a mnemonic

for adjacent conection and ‘“diag" for a
"diag" for a diagonal connection. And also in
this example eight placed channels (for in-
put, four output) are passed to the process

‘node".

- A cube connected cycle of size 4 x 16 can be
implemented with 146 BOO3 boards. Each row is
configured on a single BOO3 board. Three ar-
raya of cannels are defined of dimension n
{where the network is of size 2 x 2): clock-
wise.rote, anti.clockwise.rote and cross.rou-
te, where ‘'"clockwige" and "antl.clockwise'
represent channels connacted to nodes in the
same row, and ‘“cross" represents a channel
connected to a different row. This cube. con-
nected cycle is topographically equivalent to
a four-dimensianal hipercube with four nodes
at each "corner", Six placed channels (three
input, three autput) are passed to proces
"nodes". A mapping function is not necessary
for this configuration
has the same link address for its six chan-
nels, .

each

proces-

Ideally it would be desirable to allocate
process pjeF (where P is collection of
ses p;) to exactly one transputer and to allo-
cate each channel c ;,FRQUC (where C is the col-
lection of channels cji!) to one intertransputer
link between transputers t; and t, -~ given that
the matching pair of channels cj, and cy; may
be allocated to the one link 1. Idealfy if

sixtean BOO3

since each transputer .

23

there " are multiple channels between , processes:
each should be allocated to different links.
Howewer there are practical limits to the num-
ber of links avallable to each transputer and
there are possible electrical signal and wiring
problems with geographically remote links in a
large network. It some cases it is necesary to
forward messages passively through some trans-
puters at nodes in & network because there are
net enough links on each device to provide all
the . direct communication. -that is required.
There are some examples where such messages
farwarding is a heavy overhead and it may be
desirable to avoid it by dynamic hardware re-
configuration between the different phases of
the program execution. Then the performance of
the system may be improved at the expense " of
more camplex hardware.

12, REFERENCES

A correctness proof of a topalogy infor-
mation maintenance protocol for distribu-
ted computer network. W.B.Tajibnapis,
Comm.,ACM, July 1977. .

On distributed communication networks.
P.Baran, IEEE Trans. an Communication
Syatems, Vol. Comm-12, 1967.
Communicating Sequential Processes.
C.Hoare, Comms ACM, vol.21, No.8,
August 1978.

Diastributed fault tolerant computer
system. D.A.Renels, IEEE Computer,

March 1980. . : L

Hardwired Resource Allocators for Recon-
figurable Arcitectures.

B.D.Rathi, A.R.Tripathi and B.J.Lipovski,
Froc.Int'l Conference on FParallel Procea-
sing, IEEE, August 1980.

A topology reconfiguratiaon mechanism for
distributed computer system.

M.Bozyigit and Y.Paker, The Computer
Journal ¢ 25, No.l, 1982.

Introduction to the Configurable,

Highly Parallel Computer.

L.Snyder, Computer, January 19B82.

"Why Systolic Architectures?. H.T.Kung,
Computer, Vol.15, No.l, January 1982.

On the design of algorithms for VLSI
systolic arrays. D.l.Moldova, Proceedings
of the IEEE 71, No.l1, January 1963.
Flexibile Architecture Microcamputer
Design. E.Zager and D.Tabak, Microproces-—
sing and Microcomputer Design (1, 1983.
Reconfigurable architecture for VLSI .
processing arrays. M,Sami and R,Stefanel-
li, National Computer Conference, 1983.
Computer Architectures and Parallel
processing. K.Hwang and F.Briggs,
McGraw-Hill , New York, 1984.

OCCAM ~ an overview. D.May and R.Taylor,
Microprocessors and microsystems, Vol.Z,
No.2, March 1984.

Cancurrent VYLSI Architectures.
IEEE Trana. on Computer,
December 1784.

The transputer implementation of occam.
D.May and Shepherd, Proceedings of the
international conference on fifth gene-
ration computer systems, ICOT, 1984.

On Supercamputing With Systolic/Wavefront
Array Processors., Kung S.Y., Proc. lEEE,
July 1984,

Fost-failure reconfiguration of CSP
pragrams. M.Shatz, IEEE Transaction an
Software Engineering, Vol.SE-11, No.10,
Qctober 19885.

An Engineerable and Reconfigurable
Cellular Array Frocessor. J.M.Cotton,-
Farallel Computing 85, 1986.
Hierarchical array processor

2%

’&/

’7/

78/

’9/
710/
/117
712/
/137

714/ C.L.Seits,

Vol.e~33, No.12,

/15/
/1&/

/177

718/

/197 (HAP)

122/

featuring high realibility and high
system performance. T.Ishikawa, S,Momoi,
S.8himada, Y.Ogawa, Proc. of the 1984
International Conference on Farallael
Frocessing, August 1986.

Product Information, The Transputer
Family. Inmos Corporation, Fart No.72,
1986.

Synthesizing non-uniform systolic
designs. C.Guerra and R.Melhem, Proc. of
the International Conference on Parallel
Frocessing, IEEE, August 1986.

Hardware reconfiguration of Transputer
networks for distributed objekt-oriented
programming. D.Q.M.Fay and F.K.Das,
Microprocessing and Microprogramming 21,
1987.

24

Systoliec Arrays—From Concept to Implemen-—
tation. J.A.F.Fortes and B.W.Wah,
Computer, Vol.20, No.7, July 1987,
Mapping Data Flow Programs on a VLSI Ar-
ray of Processors. Mendelson B. and
G.M.Silberman. Proc. 1987 Int'l Conf.
Computer Architecture, June 1987,
Wavefront Array Processors-Concept to
Implementation. S.Y.Kung, S.C.Lo,
S.N.Jean and J.N.Hwang, Computer,

Vol. 20,
No.7, July 1987.

