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Abstract

In this note we show that there are no real configurations of d ≥ 4 lines in the projective
plane such that the associated Kummer covers of order 3d−1 are ball-quotients and there
are no configurations of d ≥ 4 lines such that the Kummer covers of order 4d−1 are ball-
quotients. Moreover, we show that there exists only one configuration of real lines such
that the associated Kummer cover of order 5d−1 is a ball-quotient. In the second part we
consider the so-called topological (nk)-configurations and we show, using Shnurnikov’s
inequality, that for n < 27 there do not exist (n5)-configurations and and for n < 41 there
do not exist (n6)-configurations.
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1 Preliminaries
In his pioneering paper Hirzebruch [5] constructed some new examples of algebraic sur-
faces which are ball-quotients, i.e., surfaces of general type satisfying equality in the
Bogomolov-Miyaoka-Yau inequality [8]

K2
X ≤ 3e(X),
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where KX denotes the canonical divisor and e(X) is the topological Euler characteristic.
The key idea of Hirzebruch, which enabled constructing these new ball-quotients, is that
one can consider abelian covers of the complex projective plane branched along line con-
figurations. Let us recall briefly how the celebrated construction of Hirzebruch works (for
more details please consult for instance [1]).

Let L = {l1, ..., ld} ⊂ P2 be a configuration of d ≥ 4 lines such that there is no point
p where all d-lines meet and pick n ∈ Z≥2. Now we can consider the Kummer extension
having degree nd−1 and Galois group (Z/nZ)d−1 defined as the function field

K := C (z1/z0, z2/z0)
(
(l2/l1)

1/n, ..., (ld/l1)
1/n
)
.

This Kummer extension is an abelian extension of the function field of the complex pro-
jective plane. It can be shown that K determines an algebraic surface Xn with normal
singularities which ramifies over the plane with the arrangement as the locus of the ram-
ification. Hirzebruch showed that Xn is singular exactly over a point p iff p is a point of
multiplicity ≥ 3 in L. After blowing up these singular points we obtain a smooth surface
Y Ln . It turns out that the Chern numbers of Y Ln can be read off directly from combinatorics
of line arrangements, i.e.,

c2(Y
L
n )

nd−3 = n2(3− 2d+ f1 − f0) + 2n(d− f1 + f0) + f1 − t2,

c21(Y
L
n )

nd−3 = n2(−5d+ 9 + 3f1 − 4f0) + 4n(d− f1 + f0) + f1 − f0 + d+ t2,

where tr denotes the number of r-fold points (i.e. points where exactly r lines meet),
f0 =

∑
r≥2 tr and f1 =

∑
r≥2 rtr. Moreover, it can be shown that Y Ln has non-negative

Kodaira dimension if td = td−1 = td−2 = 0 and n ≥ 2, or td = td−1 = 0 and n ≥ 3 (we
assume additionally that d ≥ 6), and in these cases we have K2

Y L
n
≤ 3e(Y Ln ). Now we can

define the following Hirzebruch polynomial (for more details, please consult the original
paper due to Hirzebruch [5, Section 3.1]):

PL(n) =
3e(Y Ln )−K2

Y L
n

nd−3 = n2(f0 − d) + 2n(d− f1 + f0) + 2f1 + f0 − d− 4t2 (1.1)

and by the construction PL(n) ≥ 0 provided that n ≥ 2. If there exists a configuration
of lines A such that there exists m ∈ Z≥2 with PA(m) = 0, then Y Am is a ball quotient.
There are some examples of line configurations which allow us to construct ball quotients
via Hirzebruch’s construction.

Example 1.1. ([5, p. 133]) Let us consider the following configuration, which is denoted
in the literature by A1(6).

Simple computations give

PA1(6)(n) = n2 − 10n+ 25,

which means that Y A1(6)
5 is a ball-quotient.

Example 1.2. ([5, p. 133]) Let us now consider the Hesse configurationH of lines (which
cannot be drawn over the real numbers) having the following combinatorics:

d = 12, t2 = 12, t4 = 9.
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Figure 1: A1(6) configuration.

Then
PH(n) = 9(n2 − 6n+ 9),

which means that Y H3 is a ball-quotient.

It is known that there are only a few examples of ball-quotients provided by line ar-
rangements and it seems to be extremely difficult to find other examples. In this note we
study a natural question about the existence of new ball quotients constructed via Hirze-
bruch’s method. Before we formulate our main results let us define the following object.

Definition 1.3. Let Y Ln be the minimal desingularization of Xn constructed as the Kummer
extension. Then Y Ln is called the Kummer cover of order nd−1.

Question 1.4. Does a real line configuration L ⊂ P2
C exist such that Y L3 is a ball quotient?

Remark 1.5. In this note by a real line configuration we mean a configuration of lines
which is realizable over the real numbers. For instance, the Hesse line configuration is not
realizable over the real numbers.

Our main results of this paper are the following strong classification results (our proofs
are purely combinatorial).

Theorem A. There does not exist any real line configuration L with d ≥ 4 lines and
td = td−1 = 0 such that Y L3 is a ball quotient.

Theorem B. There does not exist any line configuration L with d ≥ 4 lines and td =
td−1 = 0 such that Y L4 is a ball-quotient.

As a simple application of our methods we show the following results.

Theorem C. The configuration A1(6) is (up to projective equivalence) the only configu-
ration for d ≥ 4 real lines such that the Kummer cover of order 5d−1 is a ball quotient.

In our proof of Theorem A we use, in a very essential way, Shnurnikov’s inequality
(2.4) for pseudoline configurations. Using this inequality we can prove the following result
about topological (nk)-configurations.

Theorem D. For n < 27 there does not exist a topological (n5)-configuration and for
n < 41 there does not exist a topological (n6)-configuration.



412 Ars Math. Contemp. 13 (2017) 409–416

2 Real line configurations and ball-quotients
Firstly, we recall that the Hirzebruch polynomial, depending on n ∈ Z≥2, parameterizes
the whole family of Hirzebruch’s inequalities. Taking this into account, observe that if
n = 3, then we have the following inequality (we assume here that td = td−1 = 0):

t2 + t3 ≥ d+
∑
r≥5

(r − 4)tr. (2.1)

It is worth pointing out that in a subsequent paper on the topic [6] Hirzebruch has improved
his inequality (here we assume that td = td−1 = td−2 = 0):

t2 +
3

4
t3 ≥ d+

∑
r≥5

(2r − 9)tr, (2.2)

and we should notice that this improvement comes from the Hirzebruch polynomial for
n = 2 with some extra effort – please consult [6] for further details.

We will also need the following Melchior’s inequality [7], which is true for real line
configurations with d ≥ 3 lines and td = 0:

t2 ≥ 3 +
∑
r≥4

(r − 3)tr. (2.3)

Finally, let us recall the notion of (real) pseudoline configurations.

Definition 2.1. We say that C ⊂ P2
R is a configuration of pseudolines if it is a configuration

of n ≥ 3 smooth closed curves such that

• every pair of pseudolines meets exactly once at a single crossing (i.e., locally this
intersection looks like xy = 0),

• curves do not intersect simultaneously at a single point.

In particular, every real line configuration is a pseudoline configuration. Recently I. N.
Shnurnikov [9] has shown the following beautiful inequality.

Theorem 2.2. Let C be a configuration of n pseudolines such that tn = tn−1 = tn−2 =
tn−3 = 0. Then

t2 +
3

2
t3 ≥ 8 +

∑
r≥4

(2r − 7.5)tr. (2.4)

Now we are ready to prove Theorem A.

Proof. Our problem boils down to show that there does not exist a real line configuration
satisfying

t2 + t3 = d+
∑
r≥5

(r − 4)tr. (2.5)

We start with excluding the case of td−2 = 1 for which two possibilities remain (we assume
here that d ≥ 6)

• A1 : td−2 = 1, t2 = 2d− 3,
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• A2 : td−2 = 1, t3 = 1, t2 = 2d− 6,

but it is easy to see that A1 and A2 do not satisfy (2.5).
From this point on we consider only real line configurations with d lines where td =

td−1 = td−2 = 0. Assume there exists a real line configuration L such that Y L3 is a
ball-quotient. Using (2.2) and (2.5) we obtain

−1

4
t3 ≥

∑
r≥5

(r − 5)tr,

which means that if d ≥ 4 we have t2 ≥ 3, t3 = 0 and tr = 0 for r ≥ 6. Moreover, it
might happen that t4 or t5 are non-zero. This reduces (2.5) to

t2 = d+ t5.

On the other hand, we have the following combinatorial equality

d(d− 1) =
∑
r≥2

r(r − 1)tr = 2t2 + 12t4 + 20t5,

and combining this with t2 = d+ t5 we obtain

d(d− 3) = 12t4 + 22t5.

Using (2.3) we get
d− 3 ≥ t4 + t5

and finally
12t4 + 22t5 = d(d− 3) ≥ d(t4 + t5),

which leads to
d ≤ 12t4 + 22t5

t4 + t5
≤ 22.

Summing up, L satisfies the following conditions:

d ∈ {4, ..., 22}, t2 = d+ t5, d(d− 3) = 12t4 + 22t4, d− 3 ≥ t4 + t5.

It can be checked (for instance using a computer program) that the above constraints
result in the following combinatorics (using the following convention in our listing : L =
[d, t4, t5]):

L1 = [10, 4, 1], L2 = [11, 0, 4], L3 = [12, 9, 0], L4 = [13, 9, 1], L5 = [14, 0, 7],

L6 = [15, 4, 6], L7 = [17, 7, 7], L8 = [18, 6, 9], L9 = [22, 0, 19].

Now we need to check whether the above combinatorics can be realized over the real num-
bers. To this end, first observe that L1, ...,L9 satisfy the assumptions of Theorem 2.2.
Combining Shnurnikov‘s inequality with t2 = d+ t5 we obtain

d− 8 ≥ 1

2
t4 +

3

2
t5, (2.6)

and it is easy to check that none of Li satisfies (2.6). This contradiction finishes the proof.
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Next, we show Theorem B.

Proof. Suppose that there exists a line configuration L such that Y L4 is a ball-quotient. This
implies that L satisfies the following equality:

9t2 + 7t3 + t4 = 9d+
∑
r≥5

(6r − 25)tr. (2.7)

Let us recall that Hirzebruch in [5, p. 140] pointed out that one can improve (2.1), namely

t2 +
3

4
t3 ≥ d+

∑
r≥5

(r − 4)tr. (2.8)

Now let us rewrite (2.8) as follows

9t2 +
27

4
t3 ≥ 9d+

∑
r≥5

(9r − 36)tr. (2.9)

On the other hand, we have

9t2 +
27

4
t3 = −t4 −

1

4
t3 + 9d+

∑
r≥5

(6r − 25)tr. (2.10)

Combining (2.9) with (2.10) we obtain

−t4 −
1

4
t3 + 9d+

∑
r≥5

(6r − 25)tr ≥ 9d+
∑
r≥5

(9r − 36)tr, (2.11)

which implies tr = 0 for r ≥ 3 and (2.7) has the following form

t2 = d.

However, using the combinatorial equality one gets

d(d− 1) = 2t2 = 2d,

which implies that either d = 3 or d = 0, a contradiction.

Remark 2.3. Using almost the same proof one can show that there does not exist any line
configuration L of d ≥ 4 lines with td = td−1 = 0 such that Y L7 is a ball-quotient.

Finally, we show Theorem C.

Proof. Again, our problem boils down to classifying all real line configurations that satisfy
the following equality:

4t2 + 3t3 + t4 = 4d+
∑
r≥5

(2r − 9)tr. (2.12)

It is easy to see that one can automatically exclude the case td−2 = 1, thus from now on
we assume that td = td−1 = td−2 = 0. Rewriting (2.12) in a slightly different way we get

t2 +
3

4
t3 = d− 1

4
t4 +

∑
r≥5

(
1

2
r − 9

4

)
tr.



J. Bokowski and P. Pokora: On line and pseudoline configurations and ball-quotients 415

Now combining this with (2.2), we obtain

d− 1

4
t4 +

∑
r≥5

(
1

2
r − 9

4

)
tr ≥ d+

∑
r≥5

(2r − 9)tr

and finally

−1

4
t4 ≥

∑
r≥5

(
3

2
r − 27

4

)
tr.

This implies tr = 0 for r ≥ 4 and it leads to

t2 +
3

4
t3 = d. (2.13)

Using the combinatorial equality with (2.13) one gets

2

9
d(d− 3) = t3. (2.14)

On the other hand, by Melchior’s inequality

t2 ≥ 3

and
d(d− 1) = 2t2 + 6t3 ≥ 6(1 + t3).

Now using (2.14) we obtain
d2 − 9d+ 18 ≤ 0,

which means d ∈ {4, 5, 6}. It is easy to verify now that all these constraints lead to
d = 6, t2 = 3 and t3 = 4, which completes the proof.

3 Topological (nk)-configurations
A topological (nk) point-line configuration, or simply a topological (nk)-configuration, is
a set of n points and n pseudolines in the real projective plane, such that each point is
incident with k pseudolines and each pseudoline is incident with k points. Much work has
been done [4] to study the existence of (nk)-configurations in which all pseudolines are
straight lines. In these cases it is useful to know whether there exists at least a topological
(nk)-configuration. For k = 4 the existence of topological (n4)-configurations is known
for all n ≥ 17, see [3].

Using the inequality of Shnurnikov (2.4), we obtain lower bounds for smallest topolog-
ical (nk)-configurations for k > 4. The corresponding bound for k = 4 is not sharp and
leads to n ≥ 16, however for k = 5 not much is known so far.

Now we prove Theorem D.

Proof. When we have a topological (nk)-configuration, we can change the configuration
locally (if neccessary) such that ts = 0 for 2 < s < k and for k < s. This implies that the
number of single crossings is

t2 =

(
n

2

)
− n ·

(
k

2

)
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and the inequality of Shnurnikov becomes

n · (n− 1)− n · k · (k − 1) > 16 + n · (4 · k − 15)

n · (n− 1− k · (k − 1)− 4 · k + 15) > 16

n · (n+ 14− k · (k + 3)) > 16

This implies especially that there are no topological (n5)-configurations for n < 27
and there are no topological (n6)-configurations for n < 41.

The smallest known topological (n5)-configuration with n = 36 is due to Leah Wrenn
Berman, constructed from two (184)-configurations, [2]. It will be published elsewhere.
An open problem remains to find topological (n5)-configurations for 27 ≤ n ≤ 35.
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and Giancarlo Urzúa for very useful conversations on the topic of this paper. Both au-
thors would like to thank Leah Wrenn Berman for her useful suggestions. The project
was conducted when the second author was a fellow of SFB 45 Periods, moduli spaces
and arithmetic of algebraic varieties, and he was partially supported by National Science
Centre Poland Grant 2014/15/N/ST1/02102.

References
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