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Abstract
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1 Introduction
Throughout this paper, all graphs and groups are assumed to be finite. LetG be a connected
simple graph with vertex set V (G) and edge set E(G). The neighborhood of a vertex
v ∈ V (G), denoted by N(v), is the set of vertices adjacent to v. We use |X| for the
cardinality of a set X . The number β = |E(G)| − |V (G)| + 1 is equal to the number of
independent cycles in G and it is referred to as the Betti number of G.

Two graphs G and H are isomorphic if there exists a one-to-one correspondence be-
tween their vertex sets which preserves adjacency, and such a correspondence is called an
isomorphism between G and H. An automorphism of a graph G is an isomorphism of G
onto itself. Thus, an automorphism ofG is a permutation of the vertex set V (G) which pre-
serves adjacency. Obviously, the automorphisms of G form a permutation group, Aut(G),
under composition, which acts on the vertex set V (G).

A graph G̃ is called a covering of G with projection p : G̃ → G if there is a surjection
p : V (G̃)→ V (G) such that p|N(ṽ) : N(ṽ)→ N(v) is a bijection for any vertex v ∈ V (G)

and ṽ ∈ p−1(v). Also, we sometimes say that the projection p : G̃→ G is a covering, and
an n-fold covering if p is n-to-one. A covering p : G̃→ G is said to be regular (simply, A-
covering) if there is a subgroupA of the automorphism group Aut(G̃) of G̃ acting freely on
G̃ so that the graph G is isomorphic to the quotient graph G̃/A, say by h, and the quotient
map G̃→ G̃/A is the composition h ◦ p of p and h. The fiber of an edge or a vertex is its
preimage under p.

Two coverings pi : G̃i → G, i = 1, 2, are isomorphic if there exists a graph isomor-
phism Φ: G̃1 → G̃2 such that p2 ◦ Φ = p1, that is, the diagram

G̃1 G̃2

G

Φ

p1 p2

commutes. Such a Φ is called a covering isomorphism. A covering transformation is just a
covering automorphism.

Every edge of a graphG gives rise to a pair of oppositely directed edges. By e−1 = vu,
we mean the reverse edge to a directed edge e = uv. We denote the set of directed edges
of G by D(G). Let A be a finite group. An ordinary voltage assignment (or, A-voltage
assignment) of G is a function φ : D(G)→ A with the property that φ(e−1) = φ(e)−1 for
each e ∈ D(G). The values of φ are called voltages, andA is called the voltage group. The
ordinary derived graph G×φA derived from an ordinary voltage assignment φ : D(G)→
A has as its vertex set V (G) × A, and as its edge set E(G) × A, so that an edge (e, g)
of G ×φ A joins a vertex (u, g) to (v, φ(e)g) for e = uv ∈ D(G) and g ∈ A. In the
(ordinary) derived graph G ×φ A, a vertex (u, g) is denoted by ug and an edge (e, g) is
denoted by eg . The first coordinate projection pφ : G ×φ A → G commutes with the left
multiplication action of the φ(e) and the right multiplication action of A on the fibers,
which is free and transitive, so that pφ is a regular |A|-fold covering, called simply an A-
covering. Moreover, if the covering graphG×φA is connected, then the groupA becomes
the covering transformation group of the A-covering.

For a group A, let C1(G;A) denote the set of A-voltage assignments φ of G. Choose
a spanning tree T of G, and let

C1
T (G;A) = {φ ∈ C1(G;A) : φ(uv) is the identity for each uv ∈ D(T )}.
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Gross and Tucker [4] showed that everyA-covering G̃ of a graphG can be derived from an
A-voltage assignment φ in C1

T (G;A), say it T -reduced. From now on, let T denote a fixed
spanning tree of a graphG, and we consider only anA-voltage assignment φ in C1

T (G;A).
The enumeration problem of coverings became subject of investigation by many au-

thors starting from the classical paper by Hurwitz published more then 100 years ago. In
particular, enumeration of graph coverings became possible after the paper by Hall ([6])
published in 1949. In 1988, Hofmeister [8] counted double covers of graphs. Liskovets
enumerated connected non-isomorphic coverings of the graph with a given Betti number,
see [19, 20]. The number of connected and disconnected coverings were determined by
Kwak and Lee in [15]. Later, Kwak, Lee and A. D. Mednykh counted cyclic and dihedral
coverings over surfaces and graphs with prescribed topological characteristics, see [16, 17].

Following notations in [14], let IsoR(G;n) denote the number of the isomorphism
classes of regular (connected or disconnected) n-fold coverings of G, and use IsocR(G;n)
for their connected ones. Similarly, let Iso(G;A) denote the number of the isomorphism
classes of (connected or disconnected)A-coverings ofG, and use Isoc(G;A) for their con-
nected ones. By the properties of regularity of coverings, one can see that the number of the
isomorphism classes of (connected or disconnected) n-fold regular coverings of a graph G
is the sum of numbers of the isomorphism classes of connected d-fold regular coverings of
G, where d runs over all divisors of n:

IsoR(G;n) =
∑
d|n

IsocR(G; d).

Moreover, the number of the isomorphism classes of connected n-fold regular coverings of
G is the sum of the numbers of the isomorphism classes of connected A-coverings of G,
where A runs over all non-isomorphic groups of order n:

IsocR(G;n) =
∑
A

Isoc(G;A).

Consequently, it just needs to determine the numbers Isoc(G;A) for every finite group
A. Hong, Kwak and Lee [9] obtained an algebraic characterization of two isomorphic
graph regular coverings given as follows.

Lemma 1.1. Let φ ∈ C1
T (G;A) and ψ ∈ C1

T (G;B) be any two ordinary voltage assign-
ments in G. If their derived (regular) coverings pφ : G×φ A → G and pψ : G×ψ B → G
are connected, then they are isomorphic if and only if there exists a group isomorphism
σ : A → B such that ψ(uv) = σ(φ(uv)) for all uv ∈ D(G)−D(T ).

In particular, if two voltages φ and ψ in C1
T (G;A) derive connected coverings, then

the derived coverings are isomorphic if and only if there exists a group automorphism
σ ∈ Aut(A) such that

ψ(uv) = σ(φ(uv))

for all uv ∈ D(G)−D(T ).

With a linear ordering of the cotree edges of G, the set C1
T (G;A) of T -reduced A-

voltage assignments of G can be identified as

C1
T (G;A) = A× · · · × A (β times),
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that is, anA-voltage assignment φ ofG can be identified as a β-tuple (g1, . . . , gβ) of group
elements gi ∈ A. Moreover, such a β-tuple of g’s derives a connected covering if and
only if it is transitive. It means by definition that the subgroup 〈g1, . . . , gβ〉 generated by
them acts transitively on the group A (under the left translation on A), or equivalently
{g1, g2, . . . , gβ} generates the whole group A.

Note that the automorphism group Aut(A) ofA can act on the set of transitive β-tuples
of group elements gi ∈ A coordinatewisely, and any two transitive β-tuples of elements in
A belong to the same orbit under the action if and only if they derive (connected) isomor-
phic A-coverings, by Lemma 1.1.

Clearly, the Aut(A)-action on the set of transitive β-tuples of group elements gi ∈ A
is free (having no fixed element), and hence Burnside’s counting Lemma gives a counting
formula for Isoc(G;A) as follows.

Theorem 1.2 ([14]). For any finite group A,

Isoc(G;A) =
|Ω(A;β)|
|Aut(A)|

,

where Ω(A;β) = {(g1, g2, . . . , gβ) ∈ Aβ | {g1, g2, . . . , gβ} generates A}.

Note that the set Ω(A;β) can be identified as the set of epimorphisms from the free
group generated by β elements onto the group A.

To determine the number Isoc(G;A), we need to estimate |Aut(A)| and |Ω(A;β)|.
The number |Aut(A)| can certainly be determined for a few groups A. For example, one
can refer to [14] for |Aut(A)| when A is abelian or dihedral groups. Also, one can see
recent two papers [1], [7] for abelian case.

The other number |Ω(A;β)| can be determined by a direct counting and it can also
be determined in terms of the Möbius function defined on the subgroups lattice of A, as
shown in [17]. The Möbius function assigns an integer µ(K) to each subgroup K of A by
the recursive formula ∑

H≥K

µ(H) =

{
1 if K = A,
0 if K < A.

Jones ([12, 13]) used the Möbius function to count the normal subgroups of a surface group
or a crystallographic group, and applied it to count certain covering surfaces. We see that

|A|β =
∑
K≤A

|Ω(K;β)|.

It follows from the Möbius inversion that

|Ω(A;β)| =
∑
K≤A

µ(K)|K|β .

The next theorem is deduced from Theorem 1.2.

Theorem 1.3. For any finite group A,

Isoc(G;A) =
1

|Aut(A)|
∑
K≤A

µ(K)|K|β .
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Now, we have two ways of computing |Ω(A;β)|, by a direct counting and by using the
Möbius function on the subgroups lattice of A. For example, when A is cyclic or dihedral,
Isoc(G;A) was determined by Kwak, Lee and Mednykh in [17] in terms of the Möbius
function. However, it is not easy to determine the Möbius function on the subgroups lattice
of any abelian group A. For an abelian group A, Isoc(G;A) was determined in [14] by a
direct counting method.

This paper is organized as follows. In a coming section, we review an extension of
a group, giving a classification of Z2-extensions of a cyclic p-group and a discussion on
Z2-extensions of a cyclic group. In Sections 3 and 4, we determine the number Isoc(G;A)
when A is a Z2-extension of a cyclic p-group, or Z2-extensions of any cyclic group, as
main results in this paper. In Section 5, we try to extend our discussion to a Z2-extension
of an abelian group, by considering two special cases of them.

2 Review on extensions of groups
We review briefly an extension of a group with some recent results to use it in this paper.

Let N and Q be two groups. A group A is an extension of N by Q (or a Q-extension
of N ) if N is a normal subgroup of A and the quotient group A/N ∼= Q. Or equivalently,
a sequence

1→ N ι−→ A π−→ Q → 1

is exact. The extension is split if N has a complement in A. By a complement of N in A,
we mean a subgroup H satisfying A = NH and N ∩H = 1. Otherwise, the extension is
nonsplit.

Let us assume that the given extension is split. For a complement H of N in A, one
hasH ∼= A/N . So we can viewQ as a subgroup of A. A trivial case is an (internal) direct
product of two groups N and Q: A = NQ with N ∩ Q = 1 and a trivial commutator
[N ,Q] = 1. For all nontrivial cases, it holdsA = NQwithN∩Q = 1, but the commutator
[N ,Q] is not trivial and the multiplication in N is twisted by an action of the elements of
Q, that is, for ni ∈ N and qj ∈ Q with i, j ∈ {1, 2},

(n1q1)(n2q2) = n1(q1n2q
−1
1 )q1q2 = n1n

α(q1)−1

2 q1q2,

where α : Q → Aut(N ) is a homomorphism defined by α(q)−1 = Inn(q−1). The semidi-
rect product A = N oα Q of N by Q with respect to α is defined on the set

A = {(n, q) | n ∈ N , q ∈ Q}

with a multiplication

(n1, q1)(n2, q2) = (n1n
α(q1)−1

2 , q1q2).

The semidirect product A = N oα Q is in fact a group with (n, q)−1 = (n−α(q), q−1).
If we identify Q and N with {(1, q) | q ∈ Q} and {(n, 1) | n ∈ N}, respectively, then
A = NQ = QN and N ∩ Q = 1. So a semidirect product A = N oα Q is a split
extension of N by Q. Consequently an extension of N by Q is split if and only if A is a
semidirect product of N by Q.

A (split or nonsplit) extension of a cyclic group by another cyclic group is called a
metacyclic group. The next two lemmas are famous in finite group theory, see [11] and
[10], respectively.



210 Ars Math. Contemp. 15 (2018) 205–223

Lemma 2.1 (Hölder). LetA be a metacyclic group which is an extension of a cyclic group
of order n by a cyclic group of order m. Then A has the following presentation

A = 〈a, b | an = 1, bm = at, b−1ab = ar〉, (2.1)

where n,m, t and r satisfy

rm ≡ 1 (mod n), t(r − 1) ≡ 0 (mod n). (2.2)

Conversely, for any parameters n,m, t, r satisfying Equation (2.2), the relations in
Equation (2.1) define a metacyclic group which is an extension of a cyclic group of order n
by a cyclic group of order m.

A subgroup N of A is a Hall subgroup if |N | is coprime to |A : N|.

Lemma 2.2 (Schur-Zassenhaus). Let N be a normal Hall subgroup of A. Then

(1) N has a complement in A.

(2) If H and K are two complements of N in A, then there is an element n ∈ N such
that n−1Hn = K.

By Lemmas 2.1 and 2.2, one can show that a Z2-extension of a cyclic p-group with odd
prime p is a cyclic or a dihedral group. Now, let p = 2.

The following theorems in this section come from an unpublished manuscript [18]
Chapter 3 by Kwak and Xu. Since the authors cannot find these theorems in any other
sources, we add their proofs in this paper.

Theorem 2.3. Let A be a Z2-extension of a cyclic 2-group Z2n−1 with n ≥ 4. Then A is
isomorphic to one of following six groups.

(1) (the cyclic group)
Z2n = 〈b | a2n−1

= 1, b2 = a〉,
(2) (the non-cyclic abelian group)

Z2n−1 × Z2 = 〈a, b | a2n−1

= 1, b2 = 1, b−1ab = a〉,
(3) (the dihedral group)

D2n = 〈a, b | a2n−1

= 1, b2 = 1, b−1ab = a−1〉,
(4) (the generalized quaternion group)

Q2n = 〈a, b | a2n−1

= 1, b2 = a2n−2

, b−1ab = a−1〉,
(5) (the ordinary metacyclic group)

M2n = 〈a, b | a2n−1

= 1, b2 = 1, b−1ab = a1+2n−2〉,
(6) (the semidihedral group)

SD2n = 〈a, b | a2n−1

= 1, b2 = 1, b−1ab = a−1+2n−2〉.

All the six groups are not isomorphic one another.

Proof. Since (1) and (2) are trivial cases, we assume that A is not abelian. By Lemma 2.1,
A has the following presentation:

A = 〈a, b | a2n−1

= 1, b2 = at, b−1ab = ar〉,
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where t and r satisfy

r2 ≡ 1 (mod 2n−1), t(r − 1) ≡ 0 (mod 2n−1).

By A non-abelian, one has r ≡ −1 or ±1 + 2n−2 (mod 2n−1), the latter two cases can
happen only when n ≥ 4. If r ≡ −1 or−1+2n−2 (mod 2n−1), then 2n−1 | 2t and hence
2n−2 | t, it follows that t ≡ 0 or 2n−2 (mod 2n−1). Now we consider the three cases
separately.

(i) r ≡ −1 (mod 2n−1). In this case we get the dihedral group (3) and the generalized
quaternion group (4) depending on t ≡ 0 or 2n−2 (mod 2n−1), respectively. These
two groups are not isomorphic. Note that the following cases (ii) and (iii) happen
only when n ≥ 4. So, when n = 3 we have only the above two groups.

(ii) r ≡ −1 + 2n−2 (mod 2n−1). In this case t ≡ 0 (mod 2n−2). Thus b2 = 1 or
a2n−2

. If b2 = a2n−2

, letting b1 = ba, then

b21 = (ba)2 = b2(b−1ab)a = b2a−1+2n−2

a = a2n−2

a2n−2

= 1.

Thus we get the group (6).

(iii) r ≡ 1 + 2n−2 (mod 2n−1). In this case, one has t · 2n−2 ≡ 0 (mod 2n−1) which
implies that t is even. Let t = 2s. Since n ≥ 4, there is a j satisfying j(1 + 2n−3) +
s ≡ 0 (mod 2n−2). Let b1 = baj . Then

b21 = b2(b−1ajb)aj = b2aj(2+2n−2) = a2(j(1+2n−3)+s) = 1.

Now the generators a, b1 satisfy the relations in the group (5), with b instead of b1.

Finally, we shall show that the mentioned four non-abelian groups are not isomorphic,
and we assume that n ≥ 4. It is easy to see that in these four cases the derived group
A′ = 〈[a, b]〉. We calculate the commutator [a, b] and get

[a, b] = a−1b−1ab =


a−2 for the groups (3) and (4),
a2n−2

for the group (5),
a−2+2n−2

for the group (6).

So, one has |A′| = 2 for (5), and |A′| = 2n−2 for the others. It follows that the group (5)
is not isomorphic to any one of the rest. To prove the rest three groups are not isomorphic,
we calculate the square of the elements of the form bai outside 〈a〉. We have

(bai)2 = b2(b−1aib)ai =


1 for the group (3),
a2n−2

for the group (4),
ai2

n−2

for the group (6).

This shows that the subgroup of order 2n−1 in A is unique, and outside this subgroup 〈a〉,
all elements are of order 2 in the group (3), order 4 in the group (4), and some are of order
2 and the others are of order 4 in the group (6). Therefore, all the four groups are not
isomorphic to one another.
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Let A be a Z2-extension of a cyclic group Zn, where n = pα0
0 pα1

1 · · · pαss is the prime
decomposition with p0 = 2. First, we consider the case that n is odd, that is, α0 = 0.

Theorem 2.4. Let A be a Z2-extension of a cyclic group Zn ∼= Zpα1
1
× · · · × Zpαss with n

odd. Then, A has a presentation

A = 〈a1, . . . , as, b | a
p
αi
i
i = b2 = 1, [ai, aj ] = 1, b−1aib = arii for all i, j〉,

where r2
i ≡ 1 (mod pαii ) for all i. There are 2s non-isomorphic such extended groups.

Proof. By Lemma 2.2,A is split. SinceA is a metacyclic group, by Lemma 2.1,A has the
presentation

A = 〈a, b | an = b2 = 1, b−1ab = ar〉,

with r2 ≡ 1 (mod n). The action of b on each element of Zn by conjugacy is an auto-
morphism of Zn of order at most 2. Since Aut(Zn) ∼= Aut(Zpα1

1
)× · · · ×Aut(Zpαss ), the

b-conjugation on Zn corresponds to an s-tuple (r1, . . . , rs) with ri ≡ ±1 (mod pαii ) for
i ∈ {1, . . . , s}. Thus the s-tuple (r1, . . . , rs) has 2s choices and A is presented by

A = 〈a1, . . . , as, b | a
p
αi
i
i = b2 = 1, [ai, aj ] = 1, b−1aib = arii for all i, j〉.

To finish the proof, it suffices to show that different s-tuples (r1, . . . , rs) give non-isomor-
phic groups. It is easy to see that Zpαii is a subgroup of the center ofA if and only if ri = 1.
Hence the groups with different s-tuples (r1, . . . , rs) have different center ofA. Therefore,
there are 2s non-isomorphic Z2-extensions of Zn.

Next we consider the case of even n. Let A be a Z2-extension of a cyclic group Zn ∼=
Zpα0

0
×Zpα1

1
×· · ·×Zpαss with p0 = 2. We deal with three cases α0 = 1, 2 or α0 ≥ 3 in the

next theorem. First we determine the Sylow 2-subgroup S0 of A which is a Z2-extension
of Z2α0 = 〈a0〉. This has been done by Theorem 2.3. Namely,

S0 = 〈a0, b0 | a2α0

0 = 1, b20 = at00 , b
−1
0 a0b0 = ar00 〉,

where t0 = 0, 1 or 2α−1, r0 = ±1 or ±1 + 2α0−1 depending on the types of S0 in
Theorem 2.3. Next, take b = b0. Thus each Sylow 2-subgroup and each element of order
at most 2 in Aut(Zpα1

1
)× · · · ×Aut(Zpαss ) gives a unique Z2-extension of Zn.

Theorem 2.5. LetA be a Z2-extension of a cyclic group Zn ∼= Zpα0
0
×Zpα1

1
× · · · ×Zpαss

with p0 = 2.

(1) If α0 = 1, then A has the following presentations

(i) A = 〈a0, a1, . . . , as, b | a
p
αi
i
i = b2 = 1, [ai, aj ] = 1, b−1aib = arii for all i, j〉,

(S0 = Z2 × Z2).

(ii) A = 〈a0, a1, . . . , as, b | a
p
αi
i
i = 1, b2 = a0, [ai, aj ] = 1, b−1aib = arii for all

i, j〉, (S0 = Z4).

There are 2s+1 non-isomorphic groups.

(2) If α0 = 2, then A has the following presentations
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(i) A = 〈a0, a1, . . . , as, b | a
p
αi
i
i = b2 = 1, [ai, aj ] = 1, b−1aib = arii for all i, j〉,

(S0 = Z4 × Z2 or D8).

(ii) A = 〈a0, a1, . . . , as, b | a
p
αi
i
i = 1, b2 = a0, [ai, aj ] = 1, b−1aib = arii for all

i, j〉, (S0 = Z8).

(iii) A = 〈a0, a1, . . . , as, b | a
p
αi
i
i = 1, b2 = a2

0, [ai, aj ] = 1, b−1aib = arii for all
i, j〉, (S0 = Q8).

There are 2s+1 non-isomorphic groups.

(3) If α0 ≥ 3, then A has the following presentations

(i) A = 〈a0, a1, . . . , as, b | a
p
αi
i
i = b2 = 1, [ai, aj ] = 1, b−1aib = arii for all i, j〉,

(S0 = Z2α0 × Z2, D2α0+1 , SD2α0+1 , or M2α0+1 ).

(ii) A = 〈a0, a1, . . . , as, b | a
p
αi
i
i = 1, b2 = a0, [ai, aj ] = 1, b−1aib = arii for all

i, j〉, (S0 = Z2α0+1 ).

(iii) A = 〈a0, a1, . . . , as, b | a
p
αi
i
i = 1, b2 = a2α0−1

0 , [ai, aj ] = 1, b−1aib = arii
for all i, j〉, (S0 = Q2α0+1 ).

There are 6 · 2s non-isomorphic groups.

For each extension groupA appeared so far, the number Isoc(G;A) shall be determined
in the next section.

3 In cases of Z2-extensions of a cyclic p-group
For each group A in the classification of Z2-extensions of a cyclic p-group listed in the
previous section, we aim to determine the number Isoc(G;A) in this section. However, for
an abelian or a dihedral group A, it has already been done in [14]. Hence, we need to do it
only for each group A listed in the last three cases of Theorem 2.3. For a Z2-extension A
of a finite groupH, we call an element x normal type if x ∈ H and quotient type otherwise.
Note thatH is normal inA, and a product of any two normal type elements is normal type.
For any two quotient type elements ab, a′b, their product is aba′b = ab2b−1a′b, and hence
a product of any two quotient type elements is normal type. A word in {x1, . . . , xs} is
any expression of the form yi11 · · · y

ik
k where y1, . . . , yk ∈ {x1, . . . , xs} and i1, . . . , ik ∈

{1,−1}, denoted by w(x1, . . . , xs). The number k is known as the length of the word.
When writing words, it is common to use exponential notation as an abbreviation.

Lemma 3.1. Let A be a Z2-extension of a finite group H. For a subset I of S =
{1, . . . , β}, let

ΩI(A;β) = {(x1, . . . , xβ) ∈ Ω(A;β) : xi is quotient type for exactly indices i ∈ I}.

Then |Ω(A;β)| = (2β − 1)|Ω{1}(A;β)|.

Proof. Recall that

Ω(A;β) = {(x1, . . . , xβ) ∈ Aβ : 〈x1, . . . , xβ〉 = A}.
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For each tuple (x1, . . . , xβ) ∈ Ω(A;β), at least one of entries xi should be quotient type
to generate the whole group A. Then,

Ω(A;β) =
⋃
∅6=I⊆S

ΩI(A;β), disjoint union,

and
|Ω(A;β)| =

∑
∅6=I⊆S

|ΩI(A;β)|.

For any non-empty subset I of S, choose an index j0 ∈ I and define a map
φ : ΩI(A;β) → Ω{j0}(A;β) by replacing all quotient type entries xi for i ∈ I by xj0xi
except xj0 . Then one can see that φ is well-defined and bijective. It follows |ΩI(A;β)| =
(2β − 1)|Ω{j0}(A;β)|. One can assume that j0 = 1 for convenience.

Lemma 3.2. Let A be a Z2-extension of a finite groupH. If each xi is normal type except
x1, then 〈x1, . . . , xβ〉 = A if and only if 〈x2

1, x2, . . . , xβ , x
−1
1 x2x1, . . . , x

−1
1 xβx1〉 = H.

Proof. Assume 〈x2
1, x2, . . . , xβ , x

−1
1 x2x1, . . . x

−1
1 xβx1〉 = H and each xi is normal type

except x1. Then 〈x1, . . . , xβ〉 = 〈x1, x
2
1, x2, . . . , xβ , x

−1
1 x2x1, . . . x

−1
1 xβx1〉 = 〈x1,H〉 =

A. Now assume that 〈x1, . . . , xβ〉 = A. For any g ∈ A, g can be expressed by a
word w(x1, . . . , xβ). For odd k, xixk1 = x1 · (x−1

1 xix1) · (x2
1)(k−1)/2 and for even k,

xix
k
1 = xi · (xk/21 ). Rewrite g, one has

g = w(x1, . . . , xβ) = x`1w(x2
1, x2, . . . , xβ , x

−1
1 x2x1, . . . , x

−1
1 xβx1), ` = 0, 1.

It follows that g is normal type if and only if ` = 0. Therefore, 〈x2
1, x2, . . . , xβ , x

−1
1 x2x1,

. . . , x−1
1 xβx1〉 = H.

Corollary 3.3. Let A be a Z2-extension of a cyclic group Zn. If each xi is a normal type
element except x1, then 〈x1, . . . , xβ〉 = A if and only if 〈x2

1, x2, . . . , xβ〉 = Zn.

We determine |Ω(A;β)| and |Aut(A)| for each groupA listed in the last three cases of
Theorem 2.3 in the following.

Lemma 3.4. Let A be a Z2-extension of a cyclic group Z2n−1 and let A be non-abelian.
Then |Ω(A;β)| = 2(n−2)β+1(2β − 1)(2β−1 − 1).

Proof. By Lemma 3.1, it just needs to determine Ω{1}(A;β). By Corollary 3.3,
〈x2

1, x2, . . . , xs〉 = Z2n−1 if and only if (x1, . . . , xs) ∈ Ω{1}(A;β). By the last three cases
of Theorem 2.5, one can assume b2 = at with t = 0 or 2n−2 for a generator a of Z2n−1 .
Note that x1 is quotient type, say x1 = bai. Then x2

1 = b2 · b−1aib · ai = b2ai(1+r) =
at+i(1+r) with r ∈ {−1,±1 + 2n−2}. Suppose x2

1 generates Z2n−1 . Then t+ i(1 + r) ≡ 1
(mod 2). But it is impossible by checking case by case. So 〈x2, . . . , xs〉 = Z2n−1 . By
|Ω(Z2n−1 ;β − 1)| = 2(n−2)(β−1)(2β−1 − 1), which was shown by Kwak et al. in [14], it
follows |Ω(A;β)| = (2β−1)2n−1|Ω(Z2n−1 ;β−1)| = 2(n−2)β+1(2β−1)(2β−1−1).

Lemma 3.5. For n ≥ 4,

(1) |Aut(Z2n)| = 2n−1,

(2) |Aut(Z2n−1 × Z2)| = 2n,
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(3) |Aut(D2n)| = 22n−3,

(4) |Aut(Q2n)| = 22n−3,

(5) |Aut(M2n)| = 2n,

(6) |Aut(SD2n)| = 22n−4.

Proof. Since the first three cases have been shown in [14], we only need to show the last
three cases. To do this separately, letA be a Z2-extension of a cyclic group Z2n−1 and let an
automorphism σ ∈ Aut(A) be of the form a 7→ aibk, b 7→ ajb` with 0 ≤ i, j ≤ 2n−1 − 1
and 0 ≤ k, ` ≤ 1.

(4) Since the identity (aib)2 = bb−1aibaib = b2 gives the orders o(aib) = 4 and o(a) =
2n−1 6= 4 for n ≥ 4, the image σ(ai) should be of the form ai with (i, 2n−1) = 1.
The surjectivity of σ implies that the choices of σ(b) are ajb with j = 0, . . . , 2n−1−
1. Moreover, all of such possible choices σ(a) and σ(b) satisfy the defining relations
of Q2n . Hence |Aut(Q2n)| = 22n−3 by counting the choices of σ(a) and σ(b), that
is, the choices of i, j, k, `.

(5) If k = 0, then σ(a) = ai for some i with (i, 2n−1) = 1. If k = 1, then σ(a) = aib
for some i with (i, 2n−1) = 1, because the order preserving condition says o(aib) =

o(a) = 2n−1, and (aib)m = bmai(1+···+rm−1) for all m ≥ 1, where r = 1 + 2n−2.
Next, we determine the possible values of σ(b). If ` = 0, then j should be 2n−2.
In this case, all possible values σ(a) and σ(b) do not satisfy the defining relations of
M2n . Thus it should be ` = 1. Now the order condition o(akb) = o(b) = 2 implies
j = 2n−2 or 0. Consequently, σ has four different forms.

(i) a 7→ ai, b 7→ b,
(ii) a 7→ ai, b 7→ a2n−2

b,
(iii) a 7→ aib, b 7→ b,
(iv) a 7→ aib, b 7→ a2n−2

b.

In these four cases, σ(a) and σ(b) satisfy the defining relations of M2n . Therefore,
the four different cases give |Aut(M2n)| = 2n.

(6) Since (aib)2 = ai·2
n−2

, one gets o(aib) = 2 for even i and o(aib) = 4 for odd i.
Hence σ should be of the form a 7→ ai, b 7→ ajb with (i, 2n−1) = 1 and j even.
Moreover, all such possible values σ(a) and σ(b) satisfy the defining relations of
SD2n . So |Aut(SD2n)| = 22n−4.

As a special case, |Aut(Q8)| = 24 which is not included in the above lemma. From
Theorem 1.2 and Lemmas 3.4 and 3.5, one can get the following theorem.

Theorem 3.6. For a Z2-extension of A a cyclic group Z2n−1 for n ≥ 2,

Isoc(G;A) =



2(β−1)(n−1)(2β − 1) if A is Z2n ,

2(β−2)(n−2)+(n−3)(2β − 1)(2β−1 − 1) if A is Z2n−1 × Z2,

2(β−2)(n−2)(2β − 1)(2β−1 − 1) if A is D2n for n ≥ 3,

2(β−2)(2β − 1)(2β−1 − 1)/3 if A is Q8,

2(β−2)(n−2)(2β − 1)(2β−1 − 1) if A is Q2n for n ≥ 4,

2(β−1)(n−2)−1(2β − 1)(2β−1 − 1) if A is M2n for n ≥ 4,

2(β−2)(n−2)+1(2β − 1)(2β−1 − 1) if A is SD2n for n ≥ 4,
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where the first three cases were shown in [14].

By using the Möbius function, Isoc(G;A) can also be determined. For example, for
a generalized quaternion group Q2n , a proper subgroup S of Q2n is isomorphic to Z2m

or Q(i)
2m , where Z2m = 〈a2n−m−1〉 and Q(i)

2m = 〈a2n−m
, aib〉 for m ∈ {1, . . . , n − 1} and

i ∈ {0, . . . , 2n−m − 1}. From the subgroups lattice of Q2n , see Figure 1, one has

µ(S) =


1 if S = Q2n ,

−1 if S = Z2n−1 ,Q(0)
2n−1 or Q(1)

2n−1 ,

2 if S = Z2n−2 ,

0 otherwise.

Q2n

Z2n−1 Q(0)
2n−1 Q(1)

2n−1

Z2n−2 Q(0)

2n−2 Q(1)

2n−2 Q(2)

2n−2 Q(3)

2n−2

Z4 Q(0)
4 Q(1)

4

Z2

1

Q(2)
4 Q(2n−2−1)

4Q(2n−2−2)
4

Figure 1: The subgroup lattice of Q2n .

It follows from Theorem 1.3

Isoc(G;Q2n) =

{
1
3 (23β−3 − 3 · 22β−3 + 2β−2) if n = 3,

1
22n−3 (2βn − 3 · 2β(n−1) + 2β(n−2)+1) if n > 3,

which coincides with the formula given in Theorem 3.6.
If A ∼= M2n , then every proper subgroup S of M2n is isomorphic to Zm or M(i)

2m

for m ∈ {2, . . . , n − 1} and i ∈ {0, 1}, where Z2m = 〈a2n−m−1〉, M(0)
2m = 〈a2n−m

, b〉
and M(1)

2m = 〈a2n−m
, a2n−m−1

b〉. If m = 1, then S is isomorphic to Z(0)
2 = 〈an−2〉

or Z(1)
2 = 〈an−2b〉. Now from the subgroups lattice of M2n illustrated in Figure 2 and

|Aut(M2n)| = 2n, one can have

Isoc(G;M2n) =
1

2n
(2nβ − 3 · 2(n−1)β + 2(n−2)β+1),
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M2n

M(0)
2n−1 M(1)

2n−1Z2n−1

Z2n−2 M(0)

2n−2 M(1)

2n−2

Z4 M(0)
4 M(1)

4

Z(0)
2 Z(1)

2

1

Figure 2: The subgroup lattice of M2n .

which coincides exactly with the result in Theorem 3.6.
Also, by using the Möbius function, one can show that

Isoc(G;SD2n) =
1

22n−4
(2nβ − 3 · 2(n−1)β + 2(n−2)β+1).

For some small β and n, the numbers Isoc(G;A) are tabulated in Table 1.

Table 1: The number Isoc for small β and n.

Isoc
(β, n) Z2n Z2n−1 × Z2 D2n Q2n M2n SD2n A
(2, 3) 12 3 3 1 0 0 22
(2, 4) 24 6 3 6 24 6 69
(2, 4) 48 12 3 6 48 6 123
(3, 3) 112 42 42 56 0 0 252
(3, 4) 448 168 84 168 672 168 1708
(3, 5) 1792 672 168 336 2688 336 5992
(4, 3) 960 420 420 560 0 0 2360
(4, 4) 7680 3360 1680 3360 13440 3360 32880
(4, 5) 61440 26880 6720 13440 107520 13440 229440
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4 In cases of Z2-extensions of any cyclic groups
In this section we determine Isoc(G;A) for a Z2-extension A of a cyclic group Zn (of any
order n, not necessarily to be a p-group). Again, let A be a Z2-extension of a cyclic group
Zn ∼= Zpα0

0
× Zpα1

1
× · · · × Zpαss and let n = pα0

0 pα1
1 · · · pαss be the prime decomposition

with p0 = 2. Let the b-conjugation on Zn correspond to an (s + 1)-tuple (r0, r1, . . . , rs),
where r0 ∈ {±1,±1 + 2α0−1} and ri = ±1 for i ∈ {1, . . . , s} with−1 in exactly t entries
`1, . . . , `t. Let n = 2α0n1n2 with n1 =

∏t
j=1 p

α`j
`j

. Then A is isomorphic to B × Zn2

where B is a Z2-extension of Zn1
since any element of Zn2

commutes with each element
of A. Since (|B|, |Zn1

|) = 1, one has Isoc(G;B × Zn1
) = Isoc(G;B) · Isoc(G;Zn1

),
as shown in [14]. Because Isoc(G;Zn1) has already been determined, we just need to
determine Isoc(G;B).

Lemma 4.1. Let B be a Z2-extension of a cyclic group Zn ∼= Zpα0
0
× · · · × Zpαss with

p0 = 2 and s ≥ 1, and let n = 2α0m. Let the b-conjugation on Zn correspond to an
(s + 1)-tuple (r0, r1, . . . , rs), where r0 ∈ {±1,±1 + 2α0−1} and all other ri’s are −1.
Then

|Ω(B;β)| =

{
(2β − 1)m2α0β |Ω(Zm;β − 1)| if 2α0+1 | o(b),
(2β − 1)m2α0 |Ω(Z2α0m;β − 1)| otherwise.

Proof. By Theorem 2.5, one can assume b2 = at0 with t ∈ {0, 1, 2α0−1}. By Lemma 3.1,
it just needs to determine |Ω{1}(B;β)|. Take (x1, . . . , xβ) ∈ Ω{1}(A;β). Note that x1 is a
quotient type element and other xi’s are all normal type. Since

Zn ∼= Zpα0
0
× Zpα1

1
× · · · × Zpαss ,

any element of Zn can be presented gihi with gi ∈ Zpα0
0

and hi ∈
∏β
i=1 Zpαii . So x1

can be presented by g1h1b and other xi’s can be presented by gihi. By Corollary 3.3,
〈x1, . . . , xβ〉 = B if and only if 〈x2

1, x2, . . . , xβ〉 = Zn. By x2
1 = (g1h1b)

2 = b2g1+r0
1 ,

one has 〈b2g1+r0
1 , g2h2, . . . , gβhβ〉 = Zn ∼= Zpα0

0
×· · ·×Zpαss . Recall that b2 = at0 ∈ Zpα0

0

with p0 = 2, then 〈b2g1+r0
1 , g2, . . . , gβ〉 = Zpα0

0
and 〈h2, . . . , hβ〉 = Zpα1

1
× · · · × Zpαss .

So (b2g1+r0
1 , g2, . . . , gβ) ∈ Ω(Z2α0 ;β), (h2, . . . , hβ) ∈ Ω(Zpα1

1
× · · · × Zpαss ;β − 1).

To count the choice of (x1, . . . , xβ), equivalently to count the number of (g1, . . . , gβ) and
(h1, . . . , hβ). When computing x2

1 = b2g1+r0
1 , h1 can be any element of

∏β
i=1 Zpαii , and

it follows h1 has m choices by m =
∏β
i=1 p

αi
i . The number of choices of (h2, . . . , hβ) is

equal to |Ω(Zm;β − 1)|. Hence number of choices of (h1, . . . , hβ) is m|Ω(Zm;β − 1)|.
Now we determine the number of choices of (g1, . . . , gβ) in the following.

Assume that 2α0+1 | o(b) and it follows t = 1. Then the Sylow 2-subgroup of B is
Z2α0+1 . By Theorem 2.5, 〈b2〉 = 〈a0〉 = Z2α0 and r0 = 1. Since g1 ∈ Z2α0 , one
has 〈b2g1+r0

1 〉 = 〈b2g2
1〉 = 〈b2〉 = Z2α0 . By 〈b2g1+r0

1 , g2, . . . , gβ〉 = 〈b2〉 = Z2α0 ,
(g1, . . . , gβ) has 2α0β choices. So |Ω{1}(B;β)| = 2α0βm|Ω(Zm;β − 1)|, and it follows
|Ω(B;β)| = (2β − 1)m2α0β |Ω(Zm;β − 1)|.

If 2α0+1 does not divide o(b), then, by Theorem 2.5, b2 = at0 with t ∈ {0, 2α0−1}. If
t = 0, then b2 = 1 and r0 ∈ {±1,±1 + 2α0−1}. It follows b2g1+r0

1 = 1, g2
1 , g

2α0−1

1 or
g2+2α0−1

1 . So g1+r0 can not be the generator of Z2α0 . If t = 2α0−1, then r0 = −1. Then
b2g1+r0

1 = a2α0−1

0 , again, b2g1+r0
1 can not generate Z2α0 . So 〈b2g1+r0

1 , g2, . . . , gβ〉 =
Z2α0 if and only if 〈g2, . . . , gβ〉 = Z2α0 . It follows (g2, . . . , gβ) ∈ Ω(Z2α0 ;β − 1) and g1
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is any element in Z2α0 . Then (g1, . . . , gβ) has 2α0 |Ω(Z2α0 ;β−1)| choices. So |Ω(B;β)| =
(2β − 1)m2α0 |Ω(Z2α0m;β − 1)|.

Lemma 4.2. Let B be a Z2-extension of a cyclic group Zn ∼= Zpα0
0
× Zpα1

1
× · · · × Zpαss

with p0 = 2 and s ≥ 1, and let n = 2α0m. Let the b-conjugation on Zn correspond to an
(s+ 1)-tuple (r0, r1, . . . , rs), where r0 ∈ {±1,±1 + 2α0−1} and all other ri’s are −1.

(1) If r0 = 1, then

|Aut(B)| =

{
2α0mϕ(n) if 2α0+1 | o(b),
2mϕ(n) otherwise.

(2) If r0 = −1, then |Aut(B)| = 2α0mϕ(n).

(3) If r0 = 1 + 2α0−1, then |Aut(B)| = 2mϕ(n).

(4) If r0 = −1 + 2α0−1, then |Aut(B)| = 2α0−1mϕ(n).

Proof. Again, one can assume that b2 = at0 with t ∈ {0, 1, 2α0−1}. For an automor-
phism σ of B, σ(ak) should be of the form aikk with (ik, p

αk
k ) = 1 for k ∈ {1, . . . , s}

since σ is order-preserving. Suppose that σ(a0) is quotient type, then b−1akb = ak since
σ(a0) commutes with σ(ak) for each k. So ri = 1 for each i ∈ {1, . . . , s}, which is
a contradiction. Then σ(a0) is normal type, say σ(a0) = ai00 with (i0, 2

α0) = 1. As-
sume σ(b) = au0

0 au1
1 · · · auss b. We need to count the number of choices of u0, . . . , uβ .

By computing, (au0
0 au1

1 · · · auss b)2 = b2a
u0(1+r0)
0 · · · auβ(1+rβ)

β = b2a
u0(1+r0)
0 . Note that

o(σ(b)) = o(b) and o(b) is even. By hypothesis, r1 = · · · = rβ = −1, and it follows
(σ(b))2 = b2a

u0(1+r0)
0 . Then ui can be any element of Zpαii for i ∈ {1, . . . , s}. Now it

needs to determine the number of choices of u0.

(1) If r0 = 1 and o(b) = 2α0+1, then (σ(b))2 = b2a2u0
0 . By Theorem 2.5, b2 = a0 in

this case. Then o(b2a2u0
0 ) = o(b2) = 2α0 , and it follows u0 has 2α0 choices. Hence

|Aut(B)| = 2α0mϕ(n). If r0 = 1 and o(b) = 2, then u0 can be 0 or 2α0−1. So
|Aut(B)| = 2mϕ(n).

(2) If r0 = −1, then (σ(b))2 = b2 and o(b) is 2 or 4, by Theorem 2.5. So u0 can be any
element of Z2α0 and has 2α0 choices. It follows |Aut(B)| = 2α0mϕ(n).

(3) If r0 = 1 + 2α0−1, then o(b) = 2. So (σ(b))2 = b2a
u0(2+2α0−1)
0 = a

u0(2+2α0−1)
0 =

1. If follows u0(2 + 2α0−1) ≡ 0 (mod 2α0). Then u0 has 2 choices: 0 or 2α0−1.
Hence |Aut(B)| = 2mϕ(n).

(4) If r0 = −1+2α0−1, then o(b) = 2. So (σ(b))2 = au02α0−1

0 = 1. Then u02α0−1 ≡ 0
(mod 2α0), and it follows u0 has 2αR0−1 choices. Hence |Aut(B)| = 2α0−1mϕ(n).

The next lemma follows from Theorem 1.2 and Lemmas 4.1 and 4.2.

Lemma 4.3. Let B be a Z2-extension of a cyclic group Zn ∼= Zpα0
0
× Zpα1

1
× · · · × Zpαss

and let n = pα0
0 pα1

1 · · · pαss be the prime decomposition with p0 = 2. Let the b-conjugation
on Zn correspond to an (s+ 1)-tuple (r0, r1, . . . , rs), where r0 ∈ {±1,±1 + 2α0−1} and
all other ri’s are −1.
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(1) If r0 = 1,

Isoc(G;B) =


1

ϕ(n) (2β − 1)2α0β−α0

s∏
i=1

p
(αi−1)(β−1)
i (pβ−1

i − 1) if 2α0+1 | o(b),

1
ϕ(n) (2β − 1)2α0−1

s∏
i=0

p
(αi−1)(β−1)
i (pβ−1

i − 1) otherwise.

(2) If r0 = −1, then

Isoc(G;B) =
1

ϕ(n)
(2β − 1)

s∏
i=0

p
(αi−1)(β−1)
i (pβ−1

i − 1).

(3) If r0 = 1 + 2α0−1, then

Isoc(G;B) =
1

ϕ(n)
2α0−1(2β − 1)

s∏
i=0

p
(αi−1)(β−1)
i (pβ−1

i − 1).

(4) If r0 = −1 + 2α0−1, then

Isoc(G;B) =
1

ϕ(n)
2(2β − 1)

s∏
i=0

p
(αi−1)(β−1)
i (pβ−1

i − 1).

Now one can get main theorem of this section.

Theorem 4.4. LetA be a Z2-extension of a cyclic group Zn ∼= Zpα0
0
×Zpα1

1
× · · · ×Zpαss

and let n = pα0
0 pα1

1 · · · pαss be the prime decomposition with p0 = 2. Let the b-conjugation
on Zn correspond to an (s+ 1)-tuple (r0, r1, . . . , rs), where r0 ∈ {±1,±1 + 2α0−1} and
ri = ±1 for i ∈ {1, . . . , s} with −1 in exactly t entries `1, . . . , `t. Let J = {`1, . . . , `t},
K = {1, . . . , s} − J and

N =
1

ϕ(n)
(2β − 1)

∏
i∈J

p
(αi−1)(β−1)
i (pβ−1

i − 1)
∏
i∈K

p
(αi−1)β
i (pβi − 1).

Then Isoc(G;A) = TN, where

T =



2α0β−α0 if r0 = 1 and 2α0+1 | o(b),
2(α0−1)β(2β−1 − 1) if r0 = 1 and 2α0+1 - o(b),
2(α0−1)(β−1)(2β−1 − 1) if r0 = −1,

2(α0−1)β(2β−1 − 1) if r0 = 1 + 2α0−1,

2(α0−1)(β−1)−1(2β−1 − 1) if r0 = 1 + 2α0−1.

Example 4.5. Let A be a Z2-extension of a cyclic group Z1260
∼= Z4 × Z32 × Z5 × Z7 =

〈a0〉×〈a1〉×〈a2〉×〈a3〉. By Theorem 2.5, the b-conjugation on Zn corresponds to a 4-tuple
(r0, r1, r2, r3), where ri = ±1 for i ∈ {0, 1, 2, 3}. Take (r0, r1, r2, r3) = (1,−1,−1, 1)
and β = 3 as an example. One has Isoc(G;A) = Isoc(G;B) Isoc(G;Z7), where B is a Z2-
extension of Z180. By Lemmas 4.1 and 4.2, |Ω(B; 3)| = (23 − 1)|Ω1(B; 3)| = 34836480
and |Aut(B)| = 4320. It follows that Isoc(G;B) = 8064. By Isoc(G;Z7) = 57, one gets
Isoc(G;A) = 459648.
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5 In cases of Z2-extensions of an abelian group
Naturally, we are interested in extending the counting problem of the previous two sections
to the case of a Z2-extension of an abelian group. To do this, we need to classify Z2-
extensions of an arbitrary abelian group, but we can not give a complete answer so far, see
Section 6. So we just count two special cases, generalized dihedral groups or generalized
dicyclic groups.

5.1 With generalized dihedral groups

LetH be an abelian group. A generalized dihedral group Dih(H), as a Z2-extension ofH,
is defined with relations

b2 = 1, b−1ab = a−1, for all a ∈ H.

It is a semidirect product of H and Z2, with Z2 acting on H by inverting elements. When
H is cyclic, Dih(H) is just a dihedral group.

Lemma 5.1. H is a characteristic subgroup of Dih(H).

Proof. Take an automorphism σ ∈ Aut(Dih(H)). Note that the order of a quotient type
element is 2. For any element a of odd order in Dih(H), σ(a) should be normal type since
σ is order-preserving. For an element a0 of even order, suppose that σ(a0) is a quotient
type element. Since a0 commutes with a as an element of odd order, σ(a0) commutes
σ(a). Then b commutes a, which is a contradiction. Then σ(a) ∈ H for any a ∈ H. Hence
H is a characteristic subgroup of Dih(H).

Now, |Aut(Dih(H))| = |H| · |Aut(H)|. By Lemmas 3.1 and 3.2, one can show that
|Ω(Dih(H);β)| = (2β − 1)|Ω{1}(H;β − 1)| = (2β − 1)|H||Ω(H;β − 1)|. Each abelian
group can be decomposed into direct product of abelian p-group, namely,H ∼= Hp1×· · ·×
Hps with pi prime. Then |Ω(Dih(H);β)| = (2β−1)|H||Ω(Hp1 ;β−1)| · · · |Ω(Hps ;β−1)|.
It just needs to determine Isoc(G; Dih(Hp)) for a prime integer p. Since |Ω(Hp;β − 1)| is
determined in [14], one gets

Theorem 5.2. For a generalized dihedral group Dih(Hp) and Hp = m1Zps1 × · · · ×
m`Zps` with m1, . . . ,m` and s1, . . . , s` are positive integers satisfying s` < · · · < s1, one
can obtain

Isoc(G; Dih(Hp)) = (2β − 1)pf(β−1,mi,si)

∏m
i=1 p

β−i − 1∏`
j=1

∏mj
h=1 p

mj−h+1 − 1
,

where m = m1 + · · ·+m` and

f(β−1,mi, si) = (β − 1−m)

(∑̀
i=1

mi(si − 1)

)
+

`−1∑
i=1

mi

 ∑̀
j=i+1

mj(si − sj − 1)

 .

5.2 With generalized dicyclic groups

A generalized dicyclic group Dic(H), as another Z2-extension of an abelian group H, is
defined with relations

b2 = c, b−1ab = a−1,
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where c is an involution of H and a is an arbitrary element of H. Similarly, one can have
the coming lemma.

Lemma 5.3. H is a characteristic group of Dic(H). Hence

|Aut(Dic(H))| = |H| · |Aut(H)|.

Theorem 5.4. For a generalized dicyclic group Dic(Hp) andHp = m1Zps1×· · ·×m`Zps`
with m1, . . . ,m` and s1, . . . , s` are positive integers satisfying s` < · · · < s1, one can
obtain

Isoc(G; Dih(Hp)) = 2(2β − 1)pf(β−1,mi,si)

∏m
i=1 p

β−i − 1∏`
j=1

∏mj
h=1 p

mj−h+1 − 1
,

where m = m1 + · · ·+m` and

f(β−1,mi, si) = (β − 1−m)

(∑̀
i=1

mi(si − 1)

)
+

`−1∑
i=1

mi

 ∑̀
j=i+1

mj(si − sj − 1)

 .

6 Further remarks
In this paper, we enumerate the regular coverings of a graph whose covering transformation
groups are Z2-extensions of a cyclic group. However, we could not give a complete answer
of this problem if A is a Z2-extension of any abelian groupH.

However, we cannot answer the same enumeration problem when the cyclic group is
replaced by an abelian group, even by an elementary abelian p-group. In fact the difficulty
for authors is how to determine all involutions of Aut(H). The counting problem has
studied by many researchers, for example, in [21], it gave a generating function for the
number of involutions of GL(n, p) which is isomorphic to automorphism group of Zp ×
· · ·×Zp. For more results, see [2], [5], [3] and so on. But it is still hard for us to determine
the specific form of each involution of GL(n, p).

For further possible problems unsolved in this paper, we list in the following.

(1) Isoc(G;A) if A is a Z2-extension of any abelian group.

(2) Isoc(G;A) if A is a Zp-extension of any cyclic group.

(3) Isoc(G;A) if A is any metacyclic group.
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