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Abstract. The purpose of this paper is to present a 

possible approach towards artificial neural networks 

based short-term predictions of daily electrical energy 

consumption (EEC) in Slovenia and its practical 

application. Since power consumption depends on 

complex non-linear relationships between several 

influential variables, artificial neural networks are 

commonly used in creating EEC forecast models. A 

characteristic of power consumption is a superposition 

of multiple time-based patterns, which can be 

recognised, and through classification of past EEC data, 

data conforming to patterns can be grouped, and specific 

submodels can be designed. We show that the chosen 

constructed data subsets contain less noise, and that by 

using submodels built upon these subsets, we produce 

predictions that are more accurate than those made using 

a single dataset approach.  

 

1 Introduction 

Electrical energy consumption (EEC) is not constant. It 

changes gradually through years, differs between seasons 

of the year, fluctuates from day to day (workdays, 

weekends), and can steeply increase and decrease from 

hour to hour. Power system operators, electrical energy 

traders, as well as electrical energy producers all benefit 

from accurate future EEC prediction. 

 In this paper, we describe an artificial neural networks 

(ANN) based model for producing short-term (1-3 days) 

forecasts of daily electrical energy consumption in 

Slovenia. We use past data on electrical energy 

consumption, past seasonal data, and past meteorological 

data. A characteristic of the power demand through time 

is a superposition of multiple patterns that depend on 

classifications such as day of the week, day of the year, 

holiday etc. An overview of the existing literature on 

(ANN based) short-term EEC forecast considering these 

factors offers two basic approaches to the problem. 

Approach A (example: [4]) involves assigning values for 

each variable (for example 1-7 for days of the week), and 

creating a single ANN. Approach B (by Lee already in 

1992 [2]) employs classifying the data based on the 

aforementioned factors, and designing multiple ANN 

models, each assigned to produce forecasts for a specific 

type of day. It appears that in similar problems on short-

term EEC forecast, approach A prevails [1, 3, 4, 5]. In the 

paper, we employ approach B: we dissect the data into 

subsets, and show improvement in prediction accuracy 

over a model built with a single dataset. Using two 

resulting specific models (considering only January 

workday-days/weekend-days), we produce predictions of 

daily consumption for 18 days of January 2018, with 

results comparable to publically available predictions.  

 

2 The data 

Data on the energy flow from the transmission network 

in hourly intervals from Jan 1st 2016 onwards are 

available on the website of the Slovenian electricity 

transmission system operator (ELES) [7]. The company 

has, upon request, generously provided us the data for 

years 2010-2017 by e-mail [8] (69600 hourly EEC 

values). 

 The data represent the electrical energy flow from the 

transmission network into distribution networks and to 

directly connected clients; this includes losses in the 

transmission network [8]. We therefore forecast the 

electrical energy flow from the transmission network, 

and not the final electrical energy consumption. The two 

quantities are, however, closely related, and the term 

electrical energy consumption (EEC) will be used when 

describing correlations between variables for intuitive 

reasons.  

 Although the research primarily focused on the effect 

of date variables, we have considered the impact of 

meteorological variables in order to produce more 

accurate forecasts. We acquired meteorological data 

from the web servers of the Slovenian Environmental 

Agency [9]. These encompassed the average, minimal 

and maximal values of air pressure, temperature and 

relative humidity, average values of diffuse and total 

solar irradiation, and total precipitation, in hourly 

intervals. We acquired the data from the automatic 

station Ljubljana Bežigrad, because we estimated that 

due to its location (in the centre of the country) and a 

large population living in its vicinity would provide the 

most relevant meteorological data. 

 Empty data cells were filled using linear 

interpolation. 

 

3 Data analysis 

We avoided using too many meteorological variables, 

and only considered the most influential ones. In order to 

get a rough estimate of the importance of meteorological 

variables, we trained with Matlab R2016b a simple 

regression tree, which offers a straightforward insight 

into predictor importance. We trained regression trees 

first using hourly and then daily values of all 

meteorological variables as inputs, while the output of 

the regression tree was the value of EEC. 
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 The air temperature consistently proved itself as the 

variable with the most influence on EEC. With 

significantly lower importance, total radiation and 

relative humidity followed; however, both of these are 

already related to the air temperature themselves, and we 

therefore did not include them. Instead, we added a 

variable dT, the change in temperature from the previous 

hour/day, to observe the effect it has on the change in 

EEC relative to the previous hour/day, as in human 

perception, the change of temperature also plays a role. 

 We then analysed the whole EEC dataset visually 

over time periods of different magnitude. We discerned a 

superposition of multiple patterns that the power 

consumption follows through time. Plotted daily 

consumption values against the days of a year (DoY) 

offer an insight into the difference between seasons. 

Figure 1 shows the difference in consumption between 

seasons of the year.  

 

Figure 1. Daily EEC in 2017. 

We can observe greater consumption values in the winter 

months. The second, smaller peak is seen around DoY 

150-190 (the month of June and beginning of July). 

Noticeable deviations can be noted in the days around 

day 105 (Easter holidays), day 120 (May Day), and the 

substantial decrease in consumption around day 325 (a 

consequence of a weather induced power outage). These 

observations are referenced in Chapters 3.1 and 4. 

 The following Figure 2 represents the daily EEC 

through seven consecutive weeks in Oct and Nov 2017.  

 
Figure 2. Daily EEC through 7 weeks of 2017. 

We notice the periodic weekly pattern of EEC. Highs 

represent middle-of-the-week workdays (Tuesday - 

Thursday), while lows represent Sundays. A deviation 

between day 301 and 304 can be attributed to two bank 

holidays and school holidays in that period.  

 Another pattern can be observed in the recurring 

shape of the hourly EEC curve with two distinct peaks in 

the morning and evening hours. Figure 3 shows the 

hourly values of EEC on Thursday, Oct 12th  2017. 

 
Figure 3. Hourly EEC on Oct 12th 2017. 

3.1 Data classification 

Considering the recurring patterns recognised in the 

previous chapter, we deduced that date variables (such as 

DoY, day of the week (DoW), and bank holidays) would 

need to be taken into consideration when creating a 

prediction model. In the following paragraphs, we 

describe an analysis of the effect that the day of the week 

has on the EEC pattern. 

 We used the hourly EEC data from Jan 1st 2010 to 

Dec 11th 2017. To determine the (dis)similarity of the 

pattern of the hourly EEC on different DoW, we 

calculated the standard deviation of the EEC for every 

hour of the same DoW, for all days of the week. To get 

an insight into normalized dispersion of the hourly values 

of EEC in different DoW, we calculated the coefficient 

of variation (CV) of the hourly EEC. (CV = σ/μ;  

σ represents standard deviation and μ represents the mean 

value of the EEC in a specific hour.) 

 Figure 4 shows the CV of hourly values of EEC on all 

Thursdays in the dataset. 

 
Figure 4. CV through an average Thursday. 

 

A lower CV means a lower relative dispersion of hourly 

values, and demonstrates the degree of similarity of a 

day’s consumption pattern. The peaks of CV in the 
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morning and evening show that the relative variance in 

EEC is greatest between the hours of 6-9 and 16-19 – 

periods that coincide with peaks in the average hourly 

EEC.  

 To evaluate the similarity of the consumption pattern 

between different days of the week, four charts are shown 

together in the following Figure 5. The blue, triangle-

point curve represents the hourly coefficient of variation 

(CV) on Thursdays (same as Figure 4), the red, 

continuous curve represents the hourly CV on Saturdays, 

and the green, dashed curve represents the hourly CV of 

a combined set of Thursday and Saturday data (which 

gives one combined average around which data for both 

days are dispersed). Similarly, the black, 

continuous/dotted curve represents the hourly CV of a 

combined set of Thursday and Friday data. 

 
Figure 5. Comparison of CV’s of different datasets. 

Comparing the curves, the difference between CV’s of 

the Thursday and the Thursday+Saturday datasets is the 

most obvious. While the CV of the Thursday dataset 

never exceeds 11 % (max 10.93 %, average 8.54 %), and 

the CV of the Saturday dataset peaks at 12.64 % 

(averages 9.39 %), the CV of the combined Thu+Sat is 

noticeably higher and peaks at 14.18 % (averages 11.04 

%). CV of the Thu+Fri dataset, (max 11.41 %, average 

9.13 %) presents a smaller increase from the Thu value.  

 The differences in CV of the datasets show that the 

consumption curve pattern is less predictable, when the 

datasets of two different days of the week are combined. 

Furthermore, the similarity between patterns of a 

workday and a weekend day (Thursday+Saturday) is 

substantially lower than the similarity of two workdays 

(Thursday+Friday). Since combining datasets of 

different days of the week into one dataset evidently 

produces a dataset with more noise, it follows that it may 

be meaningful to produce different prediction submodels, 

trained on certain subsets of similar data, at the cost of 

less data in a subset.  

 Figure 6 is a visualisation of the similarity between 

all weekday datasets. The area of the circle represents the 

RMS value (in MWh) of the difference between 

respective hourly EEC values of two different DoW, for 

all 414 weeks (RMSd). Dissimilarity is greatest between 

Thu and Sun (RMSd = 319.0 MWh), and smallest 

between Wed and Thu (RMSd = 69.9 MWh).  
 

 
Figure 6. Comparison of (dis)similarity between days of the 

week. 

Using a similar-days approach, Mandal [6] splits the days 

of the week into 4 classes (Monday, Saturday, Sunday, 

and weekdays comprising Tue-Fri). Regarding our 

dataset, we propose that if one were to account for Sat-

Sun distinction (RMSd Sat-Sun = 123.3 MWh), it would 

follow to also account for at least the distinction between 

Tue and Fri (RMSd = 140.2 MWh), if not to take each 

DoW as an individual dataset (RMSd Tue-Mon = 102.4 

MWh, RMSd Tue-Wed = 77.6 MWh, RMSd Tue-Thu = 

95.6 MWh). 

 

4 Devising a model for daily forecast 

Mandal [6] uses a similar-days approach to produce 1-6 

hours-ahead forecasts with a moving dataset, using data 

65 days before the forecast day, and 65 days before and 

after the forecast day in the previous year. In our 

approach, we pre-determined the similar days, and our 

dataset (considering the analysis in Chapter 3) included 

the variable day of the year to account for seasonal 

similarity. Furthermore, we looked for similarity in all 8 

years of data, and included bank holidays as an influential 

variable. 

 We first constructed a model using the entire dataset 

(daily EEC values from Jan 1st 2010 to Dec 11th 2017). 

Since the relation between the input variables and the 

output EEC value is non-linear, and the form of non-

linearity is unknown, we have devised a model using 

artificial neural networks (ANN), an artificial 

intelligence method. We separated the data into a 

‘learning set’ and a ‘test set’, and used the learning set to 

train in RapidMiner an ANN, which would produce the 

best dependency algorithm between the input (daily 

meteorological and date) variables and the output values 

of daily EEC. Input data of the ‘test set’ were then applied 

to the constructed ANN, and we evaluated the accuracy 

of the resulting predictions by comparing them to actual 

daily EEC values. Multiple combinations of the number 

of hidden layers and the number of neurons were tested, 

and minimization of the mean APE (absolute percentage 

error) was then used as the criterion in selecting the 

optimal values. The final ANN consisted of an input layer 

(6 neurons; one for each input variable), an output layer 

(one neuron for the output variable), and two hidden 

layers with 15 neurons each. Using the whole dataset, the 

mean absolute percentage error (APE) between 

predictions and actual daily EEC values was 3.6%. The 

maximum APE was 9.7 %. 
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4.1 Improvement of predictions using data subsets 

We then trained multiple ANN’s with different data 

subsets. We first trained an ANN using workday-day 

data only – we eliminated weekends and bank holidays. 

We also eliminated prediction-irrelevant datasets with 

atypically low EEC. The results showed an improvement 

in prediction accuracy compared to the general model – 

mean APE was 3.3 %, and maximum APE was 7.0 %. A 

model using only weekend data (without bank holidays) 

gave a mean APE of 3.7 %, maximum APE was 7.3 %.  

 Substantial improvements in prediction accuracy 

were reached when even stricter filters were applied, and 

forecasting models became more and more specific. A 

model using only workdays from March until May (days 

of the year 60 - 150) returned a mean APE of 2.5 %, 

maximum APE was 5.9 %. A model encompassing 

workdays from May to July (DoY 120 - 210) performed 

with mean APE of 1.9 %, maximum APE was 3.4 %.  

 

5 A practical application of the model 

We trained an ANN using only January workday-days, 

with no bank holidays and no prediction-irrelevant data. 

We produced a forecast (temperature predicted with [10]) 

of the EEC for the following day. Forecasts were made at 

midnight, with the previous day’s actual EEC known. An 

analogous model was made for January weekends. 

 Table 1 shows our daily prediction along with the 

actual daily EEC. The prediction on the website of the 

Slovenian electricity transmission system operator (TSO) 

serves as a reference. Absolute percentage error (APE) 

describes the accuracy of predictions; a green 

background marks the lower of the errors. For three of 

the days in the time span, predictions were not made. 

 

6 Conclusion 

Through the analysis of past EEC data and through 

practical examples, we showed that when using artificial 

neural networks, the creation of multiple submodels with 

appropriate data subsets results in an improvement of 

prediction accuracy.  We devised such a submodel for a 

specific timeframe (the month of January) and produced 

practical predictions of the daily EEC.  

 When predicting hourly EEC, the selection of subsets 

could be made similarly, and additional classification 

could be introduced by periods of the day (e.g. peaks of 

CV during hours of high demand), or by days with 

similar meteorological conditions. Further specializing 

the submodels reduces the quantity of learning data in the 

submodel’s dataset – an optimum has to be found 

between increasing the number of submodels and the 

resulting decrease in learning data per submodel. 
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Table 1: Real predictions in January 

Date 

(Jan) 

Actual 

EEC 

[MWh] 

Our 

forecast 

[MWh] 

APE of 

our 

forecast 

Forecast at the 

TSO's website 

[MWh] [7] 

APE of 

the TSO's 

forecast[7] 
8 37948 37695 0,67% 40434 6,55% 

9 39543 38513 2,60% 39754 0,53% 

10 39813 38725 2,73% 39646 0,42% 

11 39304 39415 0,28% 39568 0,67% 

12 39793 40226 1,09% 39889 0,24% 

13 35653 / / 35280 1,05% 

14 33732 / / 33663 0,20% 

15 40701 40151 1,35% 39680 2,51% 

16 41472 41359 0,27% 41106 0,88% 

17 41612 40597 2,44% 42071 1,10% 

18 41258 40931 0,79% 41257 0,00% 

19 41701 40307 3,34% 41694 0,02% 

20 37414 36960 1,21% 36358 2,82% 

21 33933 35108 3,46% 34179 0,72% 

22 40265 40432 0,41% 39819 1,11% 

23 40274 42368 5,20% 40941 1,66% 

24 40760 42491 4,25% 41635 2,15% 

25 41422 41786 0,88% 41271 0,36% 

26 40771 40355 1,02% 40792 0,05% 

27 36838 / / 36665 0,47% 

28 34123 33882 0,71% 33596 1,54% 
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