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Experimental tests for the endurance evaluation of the machine parts that are exposed to thermo-
mechanical fatigue (TMF) require advanced and expensive testing machines. Numerical methods for 
the determination of stress-strain material behavior have become very frequent and known due to lower 
costs. There are several different approaches for the determination of stress-strain behavior. In the article 
three different numerical methods and their results are presented. The numerical results for different 
load conditions are compared with the experimental results and the accuracy of the methods can be 
compared. The Chaboche, Skelton and Prandtl operator approaches are presented, presuming a stabilized 
elastoplastic response and not including creep. The properties of the model, their weaknesses and possible 
improvements are also studied in the paper.
©2011 Journal of Mechanical Engineering. All rights reserved. 
Keywords: cyclic loading, elastoplasticity, kinematic hardening, stress-strain trajectory, thermo-
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0 INTRODUCTION

Many components such as internal 
combustion engines, turbines, nuclear reactors, 
etc., are subjected to thermo-mechanical fatigue 
(TMF) [1] and [2]. Fatigue life depends primarily 
on loads, material, geometry and environmental 
effects. Its evolution is generally based on tests of 
three forms [3] and [4]:
• isothermal strain-controlled low cycle fatigue 

(LCF) tests,
• TMF tests on specimens and components, and 
• thermal shock tests.

In view of their relative simplicity [5], LCF 
tests are often favored. The data from LCF tests 
conducted on servo-controlled uniaxial testing 
machines have been collected and tabulated for 
many years [3]. The key idea is, therefore, to 
predict fatigue life by avoiding expensive TMF 
and thermal shock tests. The present work is 
concerned with the cyclic stress-strain response 
for variable temperatures. Creep and transient 
effects, such as cyclic hardening and cyclic 
softening are not considered in this paper. Thus, 
hysteresis loops are supposed to be stabilized 
and constitutive equations for elastoplasticity are 
applicable for the stress-strain behavior modeling. 
To analyze the response of different calculating 
models, the material 9Cr2Mo alloy is used where 
the material parameters are presented in [5].

The paper presents the predicted TMF 
cycles based on the three different approaches. 
The Skelton, Chaboche and spring-slider model 
with the temperature dependant Prandtl densities 
[7] are verified with the experimental results. The 
strain and temperature are controlled. 

The paper is structured as follows. After 
the explanation of the material and TMF tests, 
the constitutive equations of the Chaboche model 
and the definition of the parameters are presented. 
The following section introduces the spring-slider 
model with the Prandtl densities. Then, the review 
of different model results and verification with 
several TMF tests follow. Finally, the final section 
lists the conclusions where the characteristics of 
the Prandtl and Chaboche models are introduced. 

1 MATERIAL AND TYPES OF TMF TESTS

1.1 Material

The material used to analyze the efficiency 
of the predicted stress-strain curves is advanced 
ferritic-martensitic steel EM 12 (9% Cr, 2% Mo). 
It is used as material in conventional thermal 
plants operating at temperatures up to 600 °C [5]. 
The material belongs to the cyclic softening class 
of alloys. Further details can be found in [5].
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1.2 TMF Cycles

The cycle time for each loop was five 
minutes, i.e. at the strain rate of 4 × 10-5 s-1 for 
0.6% strain range. Fig. 1 presents TMF cycles, 
where it is convenient to plot strain on the vertical 
axis and temperature on the horizontal axis. 
The strain range is 0.6% and temperature varies 
between 270 and 570 °C. Using the paths in Fig. 
1, nine TMF types of cycles were performed to 
compare the stress-strain hysteresis curves of 
numerical models. Path PXRM represents a 45° 
kite cycle formed in the anticlockwise direction, 
while the corresponding clockwise cycle is taken 
in the PMRX order. A similar scheme applies in 
the 135° kite cycle PKRZ. The parallelogram-
shaped PXRZ and PKRM mark the 45° zero strain 
and the 135° zero strain, respectively. Finally, 
complex cycle (dashed line) was considered, 
which shows a cycle of industrial gas turbine 
blades. A detailed explanation and the reasons for 
choosing these types of TMF loops are given in 
[5]. 

Fig. 1. TMF cycles

For the observed (experimental) values 
of stress-strain curves, the Ramberg-Osgood 
parameters were used. The parameters of cyclic 
hardening coefficient A and cyclic hardening 
exponent β are examined for isothermal loops 
for the temperature span of 270 to 570 °C [5]. 
Experimental curves were drawn for Eq. (1) 

where the corresponding total strain range, Δε, at 
any temperature is given by:

 ∆
∆ ∆

ε
σ σ β

= + 





E A

1

,  (1)

while Δσ stands for the stress range.

2 THE CHABOCHE MODEL

Most metals approach a cyclically stable 
state after a certain number of cycles. Cyclically 
stable or half-life material properties are usually 
used in fatigue analysis [7]. To describe the 
stable state of material, the Chaboche model 
of kinematic hardening can be used [8] and [9]. 
To the Chaboche model considerable attention 
has been paid due to its capacity of modeling a 
wide range of inelastic material behavior such 
as cycling hardening/softening, the Bauschinger 
effect, stress relaxation and creep for a range of 
materials [10].

Cyclic stress-strain curves are modeled 
with the uniaxial form of the Chaboche model. 
Stabilized cyclic curves are defined with kinematic 
hardening, which corresponds to the movement 
of the loading surface, where σ is stress at each 
moment and k is the yield stress. The hardening 
variable χ (back-stress) indicates the present 
position of the loading surface. Back stress χ also 
indicates the directional dependent effects, such 
as the Bauschinger effect. The criterion and the 
equation of flow and hardening can be expressed 
in the form [11]:

 f(σ, χ, k) = |σ – χ| – k = 0 . (2)

The evolution equation of the back-
stress for non-linear kinematic hardening used 
in the Chaboche material model was originally 
introduced by Armstrong and Frederick [12]:

   χ ε γ χi i p i iC p= − .  (3)

The Eq. presents the nonlinear kinematic 
hardening where 

p  is the accumulated plastic 
strain, i = 1, 2, χ = χ1+χ2. Ci and γi are temperature 
dependant material parameters. If γi = 0, Eq. 
(3) presents the model of the linear kinematic 
hardening (Prager’s kinematic hardening law) 
[11]. The essence of the model is in the velocity 
of plastic deformation ε p  and in the velocity of 
accumulated plastic deformation 

p :
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  p p= ε .  (4)

The model in Eq. (3) describes kinematic 
hardening within one load cycle as well as 
kinematic hardening of the accumulated plastic 
deformation developed over more cycles to the 
saturation condition. The integration of Eq. (3) 
gives:

 χ
γ

γ εi
i

i
i p

C
= − −( )( )1 exp ,  (5)

and for i = 1, 2, 

 χ
γ

γ ε= − −( )( )
=
∑Ci

i
i p

i
1

1

2

exp  and χ = χ1+χ2. (6)

The first part of kinematic hardening 
χ1 describes the transition area of inelastic 
deformation, while the second part χ2 describes 
the behavior at higher inelastic deformations 
after χ1 reaches saturation value C1/γ1. In tension-
compression, and more generally, in proportional 
loading, the evolution equation of hardening can 
be integrated analytically to give [11]:

 χ ν
γ

χ ν
γ

νγ ε εi
i

i

i

i
i p p

C C
= + −









 − −( )( )0 0exp ,  (7)

where ν = ±1 according to the direction of the 
flow, εp0 and χ0 denote the initial values, for 
example at the beginning of each plastic flow. It is 
not necessary to update variables εp0 and χ0 from 
the previous flow. At each moment the stress is 
given by:
 σ = χ + νk . (8)

2.1 Parameter Estimation 

To model the cyclic curves, kinematic 
hardening variable of transition area χ1 is used. 
With regard to the strain magnitude, the saturated 
value of χ1 is not reached, so parameters C1 and γ1  
have to be defined. The presented model, Eqs. (7) 
and (8), contains four material parameters. These 
are Young’s modulus E, kinematic hardening 
parameters C1 and γ1 and the initial size of yield 
surface k.

Young’s modulus is presented in [5] as a 
function of temperature:
 E = a – bT , (9)

where a = 2.08 × 105 MPa and b = 97.5 for T in 
°C. 

Parameters C1 and γ1 can be estimated 
from the tension part of the cyclically stable rising 
hysteresis branch. They can also be estimated on 
the first cyclically stable stress-strain curve. The 
latter option is used in this paper. The estimation 
is made at a low level of plastic strain, where the 
transition kinematic hardening χ1 is more obvious. 
As σ > χ it follows:

 ε
σ χ

p

nR k
Z

=
− − −






 ,  (10)

where σ presents total stress, χ kinematic 
hardening, R isotropic hardening, Z and n viscous 
parameters and k yield surface. Viscosity stress is 
defined as:
 σν = σ – χ – R – k, (11)

As the stabilized cycle is observed where 
R = 0  by considering the constant k parameter 

and viscosity stress σν = 0, the derivate of Eq. (11) 
is presented as:

 ∂
∂

=
∂
∂

σ
ε

χ
εp p

.  (12)

Considering Eq. (3), the logarithm of Eq. 
(12) is expressed as:

 ln ln( ) .∂
∂









 = −

σ
ε

γ ε
p

pC1 1  (13)

Parameters C1 and γ1 are determined from 
the linear regression. Parameter –γ1 presents the 
line slope and parameter ln(C1) the intersection 
with the ordinate axis. σ and εp are evaluated 
with the Ramberg-Osgood equation with the 
parameters that are presented in the article [5]. 
The parameters are evaluated for the temperatures 
ranging from 270 to 570 °C with the interspaces of 
30 °C. To obtain the material parameters that were 
not measured, the linear parameter interpolation is 
used.

The estimated values are used as initial 
values in the optimization process, where the 
parameters were finally fitted on the stabilized 
cycle loop. The aim of the optimization is to find 
the minimum difference between the back-stress 
values of the first cycle and the back-stress of the 
stabilized cycle. The parameters are presented in 
Table 1.
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Table 1. Chaboche and Ramberg-Osgood 
parameters

Temperature 
[°C]

C1

[MPa]
γ1

E 
[MPa]

A 
[MPa] β

270 104541

192

181675 1611 0.135
300 101844 178750 1554 0.127
330 101344 175825 1534 0.123
360 113963 172900 1763 0.147
390 92139 169975 1423 0.115
420 97456 167050 1505 0.126
450 89232 164125 1395 0.121
480 71252 161200 1133 0.095
510 74475 158275 1165 0.108
540 59331 155350 964 0.091
570 63820 152425 990 0.108

2.2 Temperature Dependence in the Back-Stress 
Evolution Equation

The response and evolution of kinematic 
hardening is dependent on temperature. 
Temperature influence is considered in parameter 
dependence; besides, the changing of temperature 
vs. time is taken into account. If the temperature 
changing vs. time is fast, the influence is high. 
The influence is negligible for long periods. 
Fig. 2 presents the graph where the stress vs. 
strain is dependent on temperature and time. The 
temperature at ε = 0 was 270 °C and at maximum 
load ε = 0.006 it was 570 °C. Eq. (14) represents 
the back-stress dependence of temperature (only 
one back-stress is considered here). As compared 
to Eq. (3), temperature influence is introduced 
directly by the variation of parameter Ci:

   

χ ε γ χ χi i p i i
i

i
iC T p

C T
C
T

T= − +
∂
∂

( )
( )

.1
 (14)

The main advantage of the model is 
that the equation does not contain new material 
parameters. It uses the parameters in dependence 
on the temperature where the partial derivatives 
upon temperature can be estimated from. 

2.3 Relaxation of Mean Stress

If the load is not purely alternating, 
additional effects can occur. In a strain-controlled 
test, when the mean strain is not zero, the 
phenomena of the relaxation of the mean stress 
appear. The initial asymmetry of the stress 

disappears progressively in the first few cycles, 
Fig. 3.

The temperature changing inside the load 
cycle defines the level of mean stress. Temperature 
load cycle defines the shape of the hysteresis 
curve, maximum and minimum stress. In Fig. 4, 
the position of a stabilize curve is shown for the 
changing the temperature between 270 and 570 
°C. The mean stress of the stabilized curve where 
the temperature is constant equals zero, Fig. 4.

Fig. 2. Stress-strain dependence on temperature 
and time

Fig. 3. Relaxation of mean stress



Strojniški vestnik - Journal of Mechanical Engineering 57(2011)6, 485-494

489Numerical Methods for TMF Cycle Modeling

3 PRANDTL OPERATOR APPROACH

It is standard practice in the isothermal 
strain-life approach to use cyclic material 
properties together with the Masing and Memory 
models to define the cyclic uniaxial response of 
the material, which determines the stress and 
strain range of the closed hysteresis loop and 
the mean stress associated with each loop. It has 
been shown in [13] that the Masing and Memory 
models are not valid if the temperature varies 
during the cycle. Masing based his finding on 
the rheological spring-slider model and assumed 
that the model parameters are time independent. 
As the spring-slider model supports the modeling 
of elastoplastic hardening, it has been adapted for 
variable temperatures [7]. The model is capable 
of modeling elastoplastic hardening solids and 
nonlinear kinematic hardening under strain control 
(see Fig. 5). The stress controlled model is given 
in [14]. 

From the equilibrium in a single spring-
slider segment, total strain ε is obtained ε = εqj + εαj 
where slider strain | εqj | can never exceed fictive 
yield strain qj that is also known as the half-width 
of the play operator. Spring strain εαj can now be 
expressed as the play operator with general initial 
values [7]:

 ε
ε

ε εα
α

j i

i j

i j j i

t
t q

t q t
( ) max

( ) ,

min ( ) , ( )
.=

−

+{ }










−1

 (15)

Fig. 5. Rheological spring-slider model [7]

for 0 ≤ t1 ≤ t2 ≤ ... ≤ ti ≤ ... . Thus, current strain 
state εαj(ti) depends on the previous εαj(ti–1) 
called the memory point. Presumably, there is no 
residual strain initially, so εαj(0) = 0 and σj(0) = 0. 
Determination of the parameter nq is thoroughly 
described in [26]. The stress in the spring-slider 
segment is then:

 σ ε α εα αj i j i j i j i j it E T t T t( ) ( ) ( ) ( ) ( )= = , (16)

where Ti = T(ti) and αj(Ti) is the Prandtl density. 
Adding the spring-slider stresses results in total 
stress in the form known as the operator of the 
Prandtl type [7]:

 σ α εα( ) ( ) ( ),t T ti j i j i
j

nq

=
=
∑
1

 (17)

with temperature-dependant Prandtl densities. The 
play operator given in Eq. (16) is independent of 
time and temperature. Therefore, it is modified [7] 
to assure equilibrium in the spring-slider:

 ε
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α
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.  (18)

When Eq. (18) is inserted into both Eqs. 
(17) and (19), temperature-dependant stress-strain 
behavior can be modeled because the temperature-
modified play operator guarantees equilibrium 
in the spring-slider segments at any time and 
temperature:

 σ α εj i j i it T t( ) ( ) ( ).− − −=1 1 1  (19)

Fig. 4. Stabilized curves and temperature 
variation
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The Prandtl densities can be calculated 
from the temperature-dependent Ramberg-Osgood 
curves. For a further explanation, interested 
readers should see papers [13] to [21]. In newer 
publications index j in Eq. 17 starts with 1 instead 
of 0 to simplify the notation. The Skelton approach 
is thoroughly discussed in [3], [5] and [23].

4 VERIFICATION OF MODELS

The Chaboche, Skelton and Prandtl 
operator approaches have been compared to 

Fig. 7. TMF cycle PZRKP

Fig. 6. Shift of the Chaboche hysteresis curve 
(load case PZRKP)

Fig. 8. TMF cycle PMRXP

several TMF tests conducted by Skelton [5] at the 
total strain range of 0.6 % on the 9Cr2Mo alloy. 
The paper is concerned with the paths given in 
Fig. 1. 

The observed hysteresis loops from the tests 
are plotted as crosses in Figs. 6 to 15. The circles 
and the dot line denote the stress-strain trajectories 
modeled by the Skelton and the Prandtl operator 
approach, respectively. The thin solid line denote 
the stabilized cycle of the Chaboche non-linear 
kinematic hardening model. The thick solid line 
presents the shifted Chaboche hysteresis curve 

Fig. 9. TMF cycle PXRMP
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(thin line) that is fitted to the observed results, Fig. 
6. The shift is required due to unwanted ratcheting 
effect built into the Chaboche model. 

The ratcheting effect is noticed at different 
load conditions. It happens due to a small amount 
of plastic strain in each cycle, which leads to 
unacceptable accumulated strain. This is true 
even for the material that does not intrinsically 
present a risk of ratcheting [24]. The ratcheting 
effect is dependent on the TMF load as well as 
the changing of the temperature vs. time. The 
presented Chaboche model does not consider 

the elimination of the ratcheting effect, so only 
the shape of the curve can be observed. To take 
into consideration the effect of ratcheting, several 
kinematic hardening parameters have to be defined 
requesting additional work and calculations. Figs. 
7 to 15 present the result agreement of different 
numerical models to the observed values. 

It can be seen from the figures that the 
results of the Prandtl operator approach fit the 
Chaboche model well. A better agreement of the 
Prandtl operator results is noticed with the Skelton 
model. The stress-strain behaviors of all models 

Fig. 10. TMF cycle PKRZP

Fig. 11. TMF cycle PXRZP

Fig. 12. TMF cycle PKRMP

Fig. 13. TMF cycle PZRXP
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are in good agreement with the observed values. 
The shapes of the stress-strain curves for the TMF 
loops are predicted well, as well as the minimum 
and maximum value of stress. 

The advantage of the Prandtl operator 
approach is the fact that it does not take into 
account the effect of ratcheting, which is a 
benefit as compared to the Chaboche model. For 
more precise results of the Chaboche model, the 
elimination of ratcheting should be included. 

A comparison of the results is also applied 
for the complex cycle, Fig. 15. The shapes of the 
curves deviate from the observed values. It should 
be noted that experimental testing cannot perform 
the changing of strain vs. temperature as linearly 
as it can in numerical calculation. 

5 CONCLUSIONS

The results of the three models are 
introduced and compared to the experimental 
TMF cycles. The Prandtl operator approach is 
compared to the Skelton and Chaboche models.

The non-linear kinematic hardening model 
is used in the framework of time-independent 
plasticity to model the stabilized curves. The 
influence of temperature is taken into account in 
all models. Temperature influence is introduced 
as parameter dependence as well as changing 
temperature vs. time. The results of the Chaboche 
model indicate the ratcheting effect, which is 

difficult to eliminate. Its effect depends on the 
TMF cycle. 

The classical Chaboche constitutive 
equations do not describe the ratcheting effect 
correctly, especially the ones observed when 
the mean-stress is significantly lower than the 
stress amplitude [24]. The non-linear kinematic 
model greatly over predicts ratcheting when its 
identification is performed for normal monotonic 
and reversed cyclic conditions. In [24] a set of 
modified kinematic rules for the elimination of 
ratcheting is introduced. The non-linear kinematic 
model with a threshold presents the best choice to 
describe both the normal cyclic condition and the 
ratcheting condition [24]. 

The comparison of the results of different 
numerical models shows good agreement with 
the observed values. The ratcheting effect can 
cause higher deviation from the predicted results 
and for this reason the Prandtl operator approach 
is preferred to the Chaboche model. For precise 
results of the Chaboche model the correction of 
the ratcheting effect should be considered.
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