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ABSTRACT

We present a stochastic model of an experiment monitoring the spiking activity of a place cell of hippocampus
of an experimental animal moving in an arena. Doubly stochastic spatio-temporal point process is used to
model and quantify overdispersion. Stochastic intensity is modelled by a Lévy based random field while the
animal path is simplified to a discrete random walk. In a simulation study first a method suggested previously
is used. Then it is shown that a solution of the filtering problem yields the desired inference to the random
intensity. Two approaches are suggested and the new one based on finite point process density is applied.
Using Markov chain Monte Carlo we obtain numerical results from the simulated model. The methodology is
discussed.
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INTRODUCTION

The spiking activity of the place cells of
hippocampus varies with the position of an
experimental rat in its arena (Fenton and Muller,
1998). In this process overdispersion takes place,
which means the variability is higher than that of
a Poisson process. In this case a doubly stochastic
Poisson process is a suitable model, see Lánský
and Vaillant (2000). In the present paper the aim
is to develop stochastic modelling and present new
computational methods for the estimation of the
spiking intensity characteristics. A simulation study
enables to demonstrate the suggested approaches.

The stochastic point process theory (Daley
and Vere-Jones, 1988) enables to model the
neurophysiological experiment in at least two ways.
A spatio-temporal point process of events in three-
dimensional space considers two dimensions for the
arena area and simultaneously the third dimension
for the time. A slightly different model is a temporal
marked point process with spatial marks. Here times
of spikes are marked by the instantenous location
of the rat. We will study the spatio-temporal point
processes here, see Schoenberget al. (2002) for more
references.Another approach based on the conditional
intensity modelling of a temporal point process was
developed in Edenet al. (2004).

The Poisson process in thed-dimensional
Euclidean spaceRd is such that in each bounded
measurable setB ⊂ Rd the number of events has
Poisson distribution with meanλm(B), where λm

is the intensity measure. Moreover the numbers of
events in disjoint sets are stochastically independent.
Overdispersion is modelled by the Cox processX in
Rd (Møller and Waagepetersen, 2003) with random
driving measureΛm such that conditionallyX |Λm = λ
is a Poisson process with intensity measureλ . For
the Cox process, denotingX(B) the random counting
measure (number of events inB), we have the
overdispersion formula,

varX(B)

EX(B)
= 1+

var[Λm(B)]

E[Λm(B)]
,

which is a quantity equal to 1 just for the Poisson
process (deterministicΛm) and bigger else.

Cox processes belong to a class of doubly
stochastic point processes. In our situation we need a
more complex model involving a random movement
of the experimental rat. We will develop such a
model, then the overdispersion will be first quantified
analogously to Lánský and Vaillant (2000). Further
we propose a new approach to the estimation of
intensity characteristics from the observed rat path
with time monitored spikes. It is based on nonlinear
filtering (Fishman and Snyder, 1976) using original
techniques based on Markov chain Monte Carlo for
point processes. Simulation study of a simple model
is added with quantification of overdispersion and
intensity characteristics.

47
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STOCHASTIC MODELS

INTENSITY AND OVERDISPERSION

Consider a bounded arenaA ⊂ R2 and a stochastic
processY = {Yt , t ≥ 0} in A which describes the
position y of a rat at timet. Realisation ofY is
almost surely a rectifiable curvey = {yt , t ≥ 0}.
Further consider a driving random intensity function
Λ(u,t), u ∈ A, t ≥ 0 where the driving measure is
Λm(D) =

∫
D Λ(u,t)du dt for a measurable setD ⊂

A×R+.

Then we define a doubly stochastic Poisson
processX with driving measureΛm and pathY so that
conditionally givenΛ = λ andYt = yt , the number of
spikes ony from time 0 toT is Poisson distributed with
mean

∫ T
0 λ (yt ,t)dt.

Following Lánský and Vaillant (2000), the mean
number of spikes during[0,T ] fired in B ⊂ A given
intensityΛ and pathY is

E(X(B) | Λ, Y ) =
∫ T

0
1B(yt)Λ(yt,t)dt ,

and considering further in this subsection all
quantities conditioned byY (omitting this symbol in
conditioning) it holds

var(X(B)) = E(var(X(B) | Λ))+var(E(X(B) | Λ))

= E(X(B))+var

(∫ T

0
1B(yt)Λ(yt,t)dt

)
.

The Fano factor, (Fano, 1947), is then

F = 1+
var

(∫ T
0 1B(yt)Λ(yt,t)dt

)

∫ T
0 1B(yt)EΛ(yt,t)dt

, (1)

which is the event number variance to mean ratio,
equal to 1 for homogeneous Poisson process.

In experimentsΛ is often homogeneous in time
and inhomogeneous in space,i.e., E(Λ(x,t)) = µx and
var(Λ(x,t)) = σ2

x , x ∈ A, do not depend ont. Assume
that A is divided in l boxes whereµx is piecewise
constant and denoteµi intensity mean ini-th box.
Consider experimental data in a form (Fenton and
Muller, 1998)(ti j,ni j), i = 1, . . . , l; j = 1, . . . ,ki, where
ti j is the duration ofj-th stay of the rat ini-th box and
ni j is the number of spikes during this stay. A natural
estimator of the expected intensityµi is then

µ̂i =
∑ j ni j

∑ j ti j
. (2)

SPACE-TIME INTENSITY MODELS

A broad class of spatio-temporal models of the
driving intensity functionΛ is that used for Lévy
driven Cox processes (LCP),cf. Prokešováet al.
(2006). Here

Λ(x,t) =
∫

At(x)
f(x,t)(y,s)Z(d(y,s)) , (3)

where measurableAt(x) ⊂ R3 is called an ambit
set, it determines the part of domain ofZ which
influences the behaviour ofΛ at the point (x,t).
Further f(x,t)(y,s) are deterministic functions andZ
is a Lévy basis, an independently scattered random
measure, infinitely divisible, see Barndorff-Nielsen
and Schmiegel (2004). It must be chosen so thatΛ is
almost surely nonnegative and locally integrable. The
class of LCP has useful properties, e.g. ifX is LCP
then XC is LCP whereXC(B) = X(B× [0,T ]) is the
cumulative spatial point process.

A special case of LCP is OUCP (Cox process
driven by Ornstein-Uhlenbeck type process), see
Lechnerováet al. (2008), with driving intensity

Λ(u,t) =
∫ t

−∞
es−t Z(Bs−t(u)×ds) . (4)

HereBs(u) = {x ∈ R2; χ(x,u)≤−s}, s ≤ 0, χ is a
metric,Z a Lévy basis. The class of OUCP is related to
shot noise Cox processes (Møller and Waagepetersen,
2003) and its generating functional is obtained in a
closed form.

Further we will consider the driving intensity
(Eq. 4) of Ornstein-Uhlenbeck type with Poisson basis
Z (Barndorff-Nielsen and Schmiegel, 2004). Poisson
basis is a Lévy basis such that for measurable bounded
setsB ⊂ R3 the random variableZ(B) has Poisson
distribution, the random measureZ has a density which
is a jump process.

A numerical evaluation of the model is thus
relatively simple which suggests to investigate it.

SIMULATION AND COMPUTATION

SIMULATION OF THE MODEL

To simulate the model we will evaluateΛ in a
bounded windowW = A× [0,T ]. To do it we need to
consider a larger region. The shape of this region is
derived from the form of setsBs in Eq. 4, where−∞ in
the integral limit is substituted by a finite time. This is
a good approximation because of the exponential term
in Eq. 4. Start with a discretization step△> 0 in space
and time.
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Typically W is a parallelepiped divided in cubes,
each(i, j,k)-th cube is represented by its central point.
We put in Eq. 4,

Bs(x1,x2) = [x1 + s, x1− s]× [x2 + s, x2− s], s ≤ 0 ,
(5)

to get an approximation

Λ̃(i, j,k) =
k+n

∑
r=k

e(k−r)△
i+r−k

∑
l=i−r+k

j+r−k

∑
q= j−r+k

Z̃(r, l,q) , (6)

where Z̃(r, l,q) are independent Poisson distributed
random variables with mean equal to a constant
multiple of the volume of a cube. If this constant is
a > 0 we have then-th term in Eq. 6 of mean value

(2n−1)2a△3e−n△ , (7)

which should be small relative to evaluatedΛ values.

To simulate an inhomogeneousΛ we may vary
the parameter of the Poisson distribution in cubes.
A simple model of the rat pathY is considered on
a discrete square arenaA = {1, . . . ,m}2 putting Yt a
symmetric random walk onA with reflecting walls.
The animal starts from the position(m+1/2,m+1/2), m
odd, with constant speed in each time interval moves a
step△ in a random direction on the square grid with
equal probability1/4. Y is here independent ofΛ.

For the evaluation of Fano factor in Eq. 1, we get
an approximation

∫ T

0
1B(yt)Λ(yt,t)dt ≈△

M

∑
q=1

1B(yq)Λ̃(yq,q) , (8)

whereyq is the location at timeq. Empirical mean,
variance is substituted in Eq. 1, obtained fromN
realisations ofΛ, respectively.

Finally we simulate the spatio-temporal doubly
stochastic Poisson point processX of spikes. GivenΛ,
the number of spikes during timeq,q +△ is Poisson
distributed with mean△Λ̃(yq,q).

NUMERICAL EXAMPLE

We present numerical results of the simulation for
the grid sizem = 9. The gridA is subdivided onto
boxesAi j, i, j = 1, . . . ,3, see the thick lines in Fig. 1a.
Further parameters areN = 20 (number of realisations
of Λ), M = 1000 (number of time steps),△ = 0.1,
n = 65 in Eq. 6. We thus obtain the term (Eq. 7) equal
to 0.025a. We choosea equal to 100 in the lower
left box A31 and equal to 1 elsewhere to obtain an
inhomogeneous̃Λ. Thus then-th term in Eq. 6 has
mean value 0.02636, which is small in comparison to
Λ̃ values in Fig. 1b.

Fig. 1.3 × 3 grid of boxes, a) simulated random walk
with spikes, b) a simulated inhomogeneous intensity,
c) Fano factors, d) histogram of the numbers of spikes,
e) histogram of time units spent in a box, f) estimated
expected intensity.

The data and results (estimation of Fano factor and
conditional intensity) are in Fig. 1. The histograms in
d) and e) are naturally of a similar shape resulting
from a). The Fano factors estimated in c) are clearly
above 1. Using Eq. 2 the estimated expected intensity
in f) corresponds to the theoretical intensity in b).
Unfortunately for further characteristics estimation,
e.g., for the variance of the driving intensity, there are
no simple estimators available. Therefore we proceed
using the filtering techniques.

FILTERING

BACKGROUND AND DISCRETIZATION

Another rigorous approach to the problem of
the inference of the driving intensityΛ and its
characteristics is the filtering (Fishman and Snyder,
1976; Lechnerováet al., 2008). Given a realisation
of a spatio-temporal point processX of spikes and
given a trajectory of the pathY, the solution of
the nonlinear filtering problem is the conditional
expectationE[Λ|X ,Y ] which is not explicitly available.
Here the Bayes formula for probability densities is
useful

f (λ |x,y) ∝ f (x|λ ,y) f (λ |y) ,

since from the definition of the doubly stochastic
Poisson processf (x|λ ,y) is a density of an
inhomogeneous Poisson process with intensity
functionλ . We will assume in the following thatΛ,Y
are stochastically independent. Then,

f (λ |x) ∝ f (x|λ ,y) f (λ ) , (9)
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and the aim is to simulate a sample from the density
f (λ |x) which enables to solve the filtering problem
and estimate empirically any characteristics ofΛ
including the overdispersion. Simulation is possible
using Markov chain Monte Carlo (MCMC) techniques
by means of one of the following approaches: the use
of a) discrete grid, b) point process densities w.r.t. unit
Poisson process.

Consider a parallelepipedW ⊂ R3. In the approach
a) we consider a spatio-temporal grid of cubes with
centroids {ci jk} ⊂ W as above and denoteλi jk =
Λ(ci jk). Let ni jk be the counts of spikes in each cube.
Then for the joint conditional densities it holds

f ({λi jk}|{ni jk})

∝ f ({ni jk} | {λi jk}) f ({λi jk})

≈ ∏
i jk

f (ni jk | λi jk)∏
k

f ({λi jk, i, j} | {λi j,k−1, i, j}) .

In the right hand side of the last formula there is
a product of marginal Poisson probabilitiesf (ni jk |
λi jk) (because of independence property of the Cox
process given intensity) and a second product of
transition densities (from the Markov property in
time of a spatio-temporal OU process, see Barndorff-
Nielsen and Schmiegel, 2004). In this second product
{λi jk, i, j} is the set of allλi jk where i, j vary along
the index set, butk is fixed (while in{λi jk} all indexes
vary).

The use of MCMC requires a closed formula for
the transition densities, which may have atoms and are
hard to evaluate . The algorithm was demonstrated for
a different model of spatio-temporal log-Gaussian Cox
process in Brix and Diggle (2001). The approximation
works well if the intensity varies slowly w.r.t. the grid
step size which is not the case for the jump model
(Eq. 4). Therefore we look for another method.

POINT PROCESS APPROACH TO
FILTERING

Because of the jump character of the model (Eq. 4)
with Poisson basis, the second approach to filtering,
based on the point process of jumps ofZ is available.
Let W = A × [0,T ], denote the datax = {τ j} where
eachτ j reflects time and location of a spike ony. In
Eq. 9, we have now

f (x|λ ,y) ∝ exp

(
−

∫ T

0
λ (yt ,t)dt

)
∏
τi∈x

λ (τi) ,

with the proportionality constant independent of both
x andλ . It is a density (w.r.t. a unit Poisson process)
of an inhomogeneous spatio-temporal Poisson process

with intensity functionλ . For the driving intensity
function we have from Eq. 4 a representation,

Λ(v,t) = ∑
t j≤t

et j−t 1Bt j−t(v)(ξ j) , (10)

where {ξ j,t j}, ξ j ∈ R2 locations,t j ∈ R times, are
events of the auxiliary spatio-temporal Poisson point
process corresponding to the Poisson basisZ.

In comparison with Eq. 6 instead of simulating
Poisson counts here we shall simulate each individual
jump of Z. The regionW0 where these points are
simulated is shown in Fig.2.

A

W

0

T

W0

Fig. 2. The enlarged window W0 of W, where A is
the arena and [0,T ] the time interval. The points
{ξ j,t j} of the auxiliary process are simulated in W0.
Points outside this region should have no or very little
contribution to the driving intensity (Eq. 10) using
similar reasoning as in Eq. 7.

The unconditional density

f (λ ) = f
(
{ξ j,t j}

n
j=1

)
∝ αn , n variable,

in Eq. 9 is a density (w.r.t. unit Poisson process in
W ) of the auxiliary point process{ξ j,t j} of jumps
(considered homogeneous here) with intensityα > 0,
which representsΛ.

The Metropolis-Hastings birth-death algorithm
(Møller and Waagepetersen, 2003) can be used to
simulate the MCMC chain{ξ j,t j}

(l), l = 0, . . . ,J,
where l is the index of iteration andJ is the total
number of iterations. The distribution of the chain
tends to the desired conditional distribution (Eq. 9).
Using ergodicity properties of the chain we can
estimate statistical characteristics ofΛ.
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ESTIMATION OF CONDITIONAL
INTENSITY CHARACTERISTICS

Using the MCMC iterations of the auxiliary point
process we evaluate thel-th iteration Λ(l)(v,t) from
Eq. 10. Let 0< K < J be the burn-in of the chain,
k = J−K, and let a single realisation ofY,X be given.
Analogously to Eq. 1, we pay attention here to time
averaged characteristics, but any quantity derived from
Λ can be obtained. For the discrete random walk with
M time steps let

Λ̂(l)(v) =
1
M

M−1

∑
q=0

Λ(l)(v,q△) ,

we get the conditional expectation of intensity
estimated as,

ÊΛ(v) =
1
k

J

∑
l=K+1

Λ̂(l)(v) , (11)

and the conditional variance of intensity estimated as

v̂arΛ(v) =
1

k−1

J

∑
l=K+1

(
Λ̂(l)(v)− ÊΛ(v)

)2
. (12)

From N independent realisations ofY,X
by evaluating correspondingN MCMC chains
as above and averaging over realisations we
can obtain estimates of unconditional quantities
E[Λ(v,t)], var[Λ(v,t)].

NUMERICAL RESULTS AND
CONCLUSIONS

We simulated an experimentY,X with
homogeneous intensityΛ and used the point process
approach to the filtering. A grid of 2× 2 boxes was
used with 20 time steps,m = 2,△ = 1,α = 1 and
Bs(x1,x2) = [x1 + s

u , x1−
s
u ]× [x2 + s

u , x2−
s
u ], s ≤ 0,

where u = 5. The MCMC chain of time averaged
conditional intensity is in Fig. 3 together with its
characteristics. We can observe an approximately
Gaussian character in b) of the chain in a) and its
slow mixing (decrease of autocorrelation function) in
c). DenoteEi j the mean in Eq. 11 andσii the standard
deviation (square root of Eq. 12). The results obtained
on the grid are

Ei j =

(
0.746 0.758
0.768 0.714

)
, (13)

σi j =

(
0.097 0.099
0.101 0.104

)
. (14)
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Fig. 3. 85×103 iterations of MCMC chain in the first
of 4 boxes, a) the conditional expectation of intensity
and its b) histogram, c) autocorrelation function. The
horizontal axes in a) and c) correspond to number
of iterations times 100. The horizontal axis in b)
and the vertical axis in a) correspond to conditional
expectation of intensity values. The blue line level in
a) is the time averaged realisation of Eq. 10 at the
corresponding grid point, used for the simulation of
data X. The red line is the resulting level E11 = 0.746
in Eq. 13. The bounds in a) correspond to E11±2σ11
where σ11 = 0.097is the standard deviation in Eq. 14.

In the paper we discussed the stochastic modelling
and simulation of an action consisting of random
events which appear in time and space, with a
similarity to a neurophysiological experiment. We
developed the filtering approach to the estimation of
conditional characteristics of the driving intensity of
the spatio-temporal Cox process model. From the two
approaches to filtering the one based on discretization
is analytically and algorithmically demanding, since
the transition distribution is hard to evaluate. On
the other hand the presented point process approach
is only computationally demanding, which does not
make serious problems.

An ultimate goal is a real data evalution where the
questions of parameter estimation and degree of fit of
a suitable model will arise. However these problems
can be solved within the presented Bayesian MCMC
methodology, in principle.
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tempo-spatial modelling; with applications to
turbulence. Usp Mat Nauk 159:63–90.

Brix A, Diggle P (2001). Spatio-temporal prediction for log-
Gaussian Cox processes. J Royal Statist Soc B 63:823–
41.

Daley DJ, Vere-Jones D (1988). An introduction to the
theory of point processes. New York: Springer.

Eden UT, Frank LM, Barbieri R, Solo V, Brown EN (2004).
Dynamic analyses of information encoding by neural
ensembles. Neural Comput 19, 5:971–98.

Fano U (1947). Ionization yields radiations. II. The
fluctuations of the number of ions. Phys Rev 72:26–9.

Fenton AA, Muller RU (1998). Place cell discharge is
extremely variable during individual passes of the rat
through the firing field. Proc Nat Acad Sci USA
95:3182–7.

Fishman PM, Snyder D (1976). The statistical analysis
of space-time point processes. IEEE Trans Inf Theory
22:257–74.
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