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ABSTRACT

We present a stochastic model of an experiment monitoriagiking activity of a place cell of hippocampus

of an experimental animal moving in an arena. Doubly staihapatio-temporal point process is used to
model and quantify overdispersion. Stochastic intensitpodelled by a Lévy based random field while the
animal path is simplified to a discrete random walk. In a datian study first a method suggested previously
is used. Then it is shown that a solution of the filtering peoi yields the desired inference to the random
intensity. Two approaches are suggested and the new ond bad@ite point process density is applied.

Using Markov chain Monte Carlo we obtain numerical resultsf the simulated model. The methodology is
discussed.

Keywords: filtering, overdispersion, spatio-temporaiigrocess, spike train.

INTRODUCTION is the intensity measure. Moreover the numbers of
events in disjoint sets are stochastically independent.
~ The spiking activity of the place cells of Qverdispersion is modelled by the Cox proc¥sin
hippocampus  varies with the position of anpd (\gller and Waagepetersen, 2003) with random
experimental rat in its arena (Fenton and Mu”er’driving measuré\m such that conditionalli|[Am = A
1998). In this process overdispersion takes placc?S a Poisson process with intensity measareFor

which means the variability is higher than that of : .
a Poisson process. In this case a doubly stochastﬁge Cox process, denotir(B) the random counting

Poisson process is a suitable model, see Lanskf€asure (number of events iB), we have the
and Vaillant (2000). In the present paper the ainPverdispersionformula,

is to develop stochastic modelling and present new

computational methods for the estimation of the varX(B) 1 variAm(B)]

spiking intensity characteristics. A simulation study EX(B) E[Am(B)] ’

enables to demonstrate the suggested approaches.

The stochastic point process theory (Dale\which is a quantity equal to 1 just for the Poisson

and Vere-Jones, 1988) enables to model thgrocess (deterministiay,) and bigger else.
neurophysiological experiment in at least two ways.

Cox processes belong to a class of doubly

. . . &tochastic point processes. In our situation we need a
arena area and simultaneously the third dimension

for the time. A slightly different model is a temporal more comple>_< model involving a random movement
marked point process with spatial marks. Here timeS the experimental rat. We will develop such a
of spikes are marked by the instantenous locatiofnodel, then the overdispersion will be first quantified
of the rat. We will study the spatio-temporal pointanalogously to Lansky and Vaillant (2000). Further
processes here, see Schoenkstaj. (2002) for more We propose a new approach to the estimation of
references.Another approach based on the conditionaitensity characteristics from the observed rat path
intensity modelling of a temporal point process waswith time monitored spikes. It is based on nonlinear
developed in Edest al. (2004). filtering (Fishman and Snyder, 1976) using original

The Poisson process in thel-dimensional techniques based on Markov chain Monte Carlo for
Euclidean spacd is such that in each bounded point processes. Simulation study of a simple model
measurable seB c RI the number of events has is added with quantification of overdispersion and
Poisson distribution with mead(B), where Ay,  intensity characteristics.
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STOCHASTIC MODELS SPACE-TIME INTENSITY MODELS
A broad class of spatio-temporal models of the
INTENSITY AND OVERDISPERSION driving intensity functionA is that used for Lévy

Consider a bounded areAac R2 and a stochastic driven Cox processes (LCPYf. ProkeSovaet al.
processY = {¥, t > O} in A which describes the (2006).Here
position y of a rat at timet. Realisation ofY is
almost surely a rectifiable curvg = {y, t > 0}. A1) :/At(x) fix) (v:9)Z(d(y.9)) 3)
Further consider a driving random intensity function
A(ut), u€ A t > 0 where the driving measure is where measurabléy(x) ¢ R® is called an ambit
Am(D) = [pA(u,t)dudt for a measurable sdd C  set, it determines the part of domain @f which
AxR,. influences the behaviour of\ at the point (x,t).

Then we define a doubly stochastic PoissonFurther fxt)(y,8) are deterministic functions and

. g IS a Lévy basis, an independently scattered random
processX with Qr|V|ng measuré\y and patty so that measure, infinitely divisible, see Barndorff-Nielsen
conditionally given\ = A andY; =y, the number of

. ) . . - -, and Schmiegel (2004). It must be chosen so tha
spikes gryfrom time 0 10T is Poisson distributed with almost surely nonnegative and locally integrable. The
mean/, A(y,t)dt.

class of LCP has useful properties, e.gXifis LCP
Following Lansky and Vaillant (2000), the meanthenX® is LCP whereX®(B) = X(B x [0,T]) is the
number of spikes during0, T] fired in B C A given ~cumulative spatial point process.

intensityA and patty is A special case of LCP is OUCP (Cox process
T driven by Ornstein-Uhlenbeck type process), see
E(X(B)|A,Y) :/ 1a(y ) Ay, t) dt Lechnerové&t al. (2008), with driving intensity
0
t
and considering further in this subsection all A(u,t) = Kmes 'Z(Bs—(u) x ds). (4)
guantities conditioned by (omitting this symbol in
conditioning) it holds HereBs(u) = {x € R?; x(x,u) < —s}, s<0, xisa

metric,Z a Lévy basis. The class of OUCP is related to

var(X(B)) = E(var(X(B) | A)) +varE(X(B) | A)) shot noise Cox processes (Mgller and Waagepetersen,
2003) and its generating functional is obtained in a

T
:E(X(B))Jrvar(/ 1B(yt)/\(yt,t)dt> : closed form.
° Further we will consider the driving intensity
(Eg. 4) of Ornstein-Uhlenbeck type with Poisson basis
Z (Barndorff-Nielsen and Schmiegel, 2004). Poisson
T basis is a Lévy basis such that for measurable bounded
Vaf(fo 1B(Yt)/\()’tat)dt) W setsB ¢ R® the random variabl&(B) has Poisson
T ) distribution, the random measwéas a density which
Jo 18(¥t)EA(, 1) dt is a jump process.

which is the event number variance to mean ratio, A numerical evaluation of the model is thus
equal to 1 for homogeneous Poisson process. relatively simple which suggests to investigate it.

In experimentsA is often homogeneous in time
and inhomogeneous in space,, E(A(x,t)) = ux and

var(A(x,t)) = a2, x € A, do not depend oh Assume SIMULATION AND COMPUTATION

that A is divided in| boxes whereuy is piecewise

The Fano factor, (Fano, 1947), is then

constant and denotg; intensity mean ini-th box. SIMULATION OF THE MODEL
Consider experimental data in a form (Fenton and - . -

; o To simulate the model we will evaluat® in a
Muller, 1998)(tij,nij), i=1,....1: j=1,....k, where o o q0 4 windowv — A x [0,T]. To do it we need to

tij is the duration of-th stay of the rat in-th boxand ey 5 larger region. The shape of this region is
nij is the number of spikes during this stay. A naturald(__,riw_,d from the form of se® in Eq. 4, where—oo in
estimator of the expected intensftyis then '

the integral limit is substituted by a finite time. This is
a good approximation because of the exponential term
(2) inEq.4. Start with a discretization stép> 0 in space

0 = 2. Mij
2 lij and time.
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Typically W is a parallelepiped divided in cubes,
each(i, j,k)-th cube is represented by its central point.
We putin Eq. 4,

Bs(X1,X2) = [X1+S, X1 — 5 X [X2+8,X2—9], s<O0,
OR e

to get an approximation

k+n i+r—k  j+r=k b

/N\(i,j,k)zzke(k—f)A S S Zrla), (6)

I=i—r+k g=]—-r+k 000 »

where Z(r,l,q) are independent Poisson distributede
random variables with mean equal to a constant”
multiple of the volume of a cube. If this constant is
a > 0 we have the-th term in Eq. 6 of mean value Fig. 1.3 x 3 grid of boxes, a) simulated random walk
5 3 nA with spikes, b) a simulated inhomogeneous intensity,
(2n—1)"an’e ", (7)  ¢) Fanofactors, d) histogram of the numbers of spikes,
which should be small relative to evaluat&edalues. €) h|stogr_am of't|me units spent in a box, f) estimated
expected intensity.
To simulate an inhomogeneous we may vary

the parameter of the Poisson distribution in cubes. .
A simple model of the rat patl is considered on The data and results (estimation of Fano factor and

a discrete square areda= {1,...,m}? putting ¥; a conditional intensity) are in Fig._ 1: The histograms.in

symmetric random walk o with reflecting walls. ) and €) are naturally of a similar shape resulting
The animal starts from the positiqm+1/2,m1/2), m from a). The Fano factors estlmated in c) are clear!y
odd, with constant speed in each time interval moves &P0ve 1. Using Eq. 2 the estimated expected intensity

step/ in a random direction on the square grid withi f) corresponds to the theoretica] i_ntensit_y in_b).
equal probabilityt/4. Y is here independent ¥, Unfortunately for further characteristics estimation,

) ) e.g., for the variance of the driving intensity, there are
For the evaluation of Fano factor in Eq. 1, we getyg simple estimators available. Therefore we proceed
an approximation using the filtering techniques.

T M .
/ Is(Y)AWt) dt ~ A S 18(Yg)A(Ye,0) ,  (8)
0 g=1 FILTERING

whereyy is the location at timeg. Empirical mean,
variance is substituted in Eq. 1, obtained frdwh BACKGROUND AND DISCRETIZATION

realisations o\, respectively. Another rigorous approach to the problem of

Finally we simulate the spatio-temporal doublythe inference of the driving intensity\ and its
stochastic Poisson point processf spikes. Givem\,  characteristics is the filtering (Fishman and Snyder,
the number of spikes d~ur|n9 timg g+ A is Poisson  1976; Lechnerovat al., 2008). Given a realisation

distributed with meam\A(yq,q). of a spatio-temporal point process of spikes and
given a trajectory of the patly, the solution of
NUMERICAL EXAMPLE the nonlinear filtering problem is the conditional

expectatiorE[A|X, Y] which is not explicitly available.

We present numerical results of the simulation forHere the Baves formula for probabilitv densities is
the grid sizem = 9. The gridA is subdivided onto useful y u P y

boxesAij, i, =1,...,3, see the thick lines in Fig. 1a.

Further Jparameters ahe= 20 (number of realisations F(APey) B F(XIA,9) T(Aly)

of A), M = 1000 (number of time steps)y = 0.1, since from the definition of the doubly stochastic
n=65in Eq. 6. We thus obtain the term (Eq. 7) equaPoisson processf(x|A,y) is a density of an

to 0.025a. We choosea equal to 100 in the lower inhomogeneous Poisson process with intensity
left box A1 and equal to 1 elsewhere to obtain anfunctionA. We will assume in the following tha,Y
inhomogeneoug\. Thus then-th term in Eq. 6 has are stochastically independent. Then,

mean value 0.02636, which is small in comparison to

A values in Fig. 1b. f(A]x) O f(x]A,y)f(A), 9)
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and the aim is to simulate a sample from the densityith intensity functionA. For the driving intensity
f(A|x) which enables to solve the filtering problem function we have from Eq. 4 a representation,

and estimate empirically any characteristics Af

including the overdispersion. Simulation is possible Avt) =5 &t 1g (&), (10)
using Markov chain Monte Carlo (MCMC) techniques =t i

by means of one of the following approaches: the use

of a) discrete grid, b) point process densities w.r.t. unit . . > , _ .
POISSON Process. where {j,tj}, & € R® locations,t; € R times, are

events of the auxiliary spatio-temporal Poisson point

Consider a parallelepipél  R®. In the approach process corresponding to the Poisson basis
a) we consider a spatio-temporal grid of cubes with

centroids {cijx} C W as above and denot&, = In comparison with Eq. 6 instead of simulating
A(cijk). Letnjjk be the counts of spikes in each cube Poisson counts here we shall simulate each individual
Then for the joint conditional densities it holds jump of Z. The regionWy where these points are

simulated is shown in Fig.2.
f({Aijc i)
O F it | {Aih) fF({Aijid)
%|_|f(nijk’)\ijk)Df({)\ijkai,j}‘{)\ij,k—bi’j})- Ny A

1jk

In the right hand side of the last formula there is E LW E
a product of marginal Poisson probabilitiégn;j | ! ‘ !
Aijk) (because of independence property of the Cox
process given intensity) and a second product of o L/
transition densities (from the Markov property in
time of a spatio-temporal OU process, see Barndorff-
Nielsen and Schmiegel, 2004). In this second product Wo
{Aijk.1, ]} is the set of allAjjx wherei, j vary along
the index set, but is fixed (while in {A;} all indexes
vary).

The use of MCMC requires a closed formula forFig_ 2. The enlarged window W of W, where A is

the transition densities, which may have atoms and aige arena and 0,T] the time interval. The points

hard to evaluate . The algorithm was demonstrated fo £;.1;} of the auxiliary process are simulated in Wp.
a different model of spatio-temporal log-Gaussian Coxyints outside this region should have no or very little
process in Brix and Diggle (2001). The approximation.gripution to the driving intensity (Eq. 10) using
works well if the intensity varies slowly w.r.t. the grid g iiar reasoning asin Eq. 7.

step size which is not the case for the jump mode?|

(EQ. 4). Therefore we look for another method. The unconditional density
POINT PROCESS APPROACH TO f(A)=f({&.4;}]1) Oa", nvariable,
FILTERING

Because of the jump character of the model (Eq. 4 EQ- 9 is a density (w.r.t. unit Poisson process in
with Poisson basis, the second approach to filtering/V) of the auxiliary point proces$¢;,t;} of jumps
based on the point process of jumpsZois available. (Considered homogeneous here) with intenaity 0,
Let W = A x [0, T], denote the data = {r;} where Which represents.
eachrt; reflects time and location of a spike gnin

Eq. 9, we have now The Metropolis-Hastings birth-death algorithm

(Mgller and Waagepetersen, 200“?;) can be used to
T simulate the MCMC chair{&;,t;}\V, | = 0,...,J,
fxiA.y) Dexp(/o A(yt’t)dt> [12A(@) where| is the index of iter:{atilor:}and is the total
e number of iterations. The distribution of the chain
with the proportionality constant independent of bothtends to the desired conditional distribution (Eq. 9).
x andA. It is a density (w.r.t. a unit Poisson process)Using ergodicity properties of the chain we can
of an inhomogeneous spatio-temporal Poisson processtimate statistical characteristics/af
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ESTIMATION OF CONDITIONAL K
INTENSITY CHARACTERISTICS

Using the MCMC iterations of the auxiliary point . L
process we evaluate tHeth iteration Al (v,t) from 2
Eq. 10. Let O< K < J be the burn-in of the chain, N M
k=J—K, and let a single realisation &t X be given. RN
Analogously to Eg. 1, we pay attention here to time 5 W{

averaged characteristics, but any quantity derived from
N\ can be obtained. For the discrete random walk with

M time steps let g j : : ;
X l Mt 0 200 400 600 800
/\(I)(V) Y Z /\(I)(V> qA) )
M &o
q b) ©)
we get the conditional expectation of intensity o 2
estimated as, > s 7]
EAV) =1 5 AV, (1 = 5 [T
I=K+1 R e e L e
0.5 0.7 0.9 1.1 0 5 15 25

and the conditional variance of intensity estimated as
- 12 — )2 Fig. 3.85x10° iterations of MCMC chain in the first
Varn(v) =1 —7 > (A(I)(V) B EA(V)) - (12) ofg4 boxes, &) the conditional expectation of intensity
and its b) histogram, ¢) autocorrelation function. The
From N independent realisations ofY,X hor_izontgl axes in @) and c) corr_espond to_nu_mber
by evaluating corresponding’ MCMC chains of iterations times l_OO. The horizontal axis in b)
as above and averaging over realisations wand the vertical axis in a) correspond to conditional

can obtain estimates of unconditional quantitieXPectation of intensity values. The blue line level in
E[A(V,1)], vadA(v,t)]. a) is the time averaged realisation of Eq. 10 at the

corresponding grid point, used for the simulation of
data X. Thered lineis the resulting level E;1 = 0.746

in Eg. 13. The bounds in a) correspond to E1; + 20
(N:g)l\l\/IIEELIJ%TCL) I\ITSESU LTS AND where 011 = 0.097is the standard deviation ilnl Eq. 121

We simulated an experimentY,X  with In the paper we discussed the stochastic modelling
homogeneous intensitf and used the point process and simulation of an action consisting of random
approach to the filtering. A grid of 2 2 boxes was events which appear in time and space, with a
used with 20 time stepsn=2A =1a =1 and sjmilarity to a neurophysiological experiment. We
Bs(x1,%2) = [Xxa+ &, x1— 3] x X2+ 5. X2 — 3, <0, developed the filtering approach to the estimation of
where u = 5. The MCMC chain of time averaged congitional characteristics of the driving intensity of
conditional intensity is in Fig. 3 together with its e spatio-temporal Cox process model. From the two
characteristics. We can observe an approximately,srsaches to filtering the one based on discretization
Gau55|_ar_1 character in b) of the chal_n in a) _and 13 analytically and algorithmically demanding, since
slow mixing (decrease of autocorrelation function) iny. o transition distribution is hard to evaluate. On

c). DenoteE;jj the mean in Eq. 11 and,; the standard the other hand the :
e . presented point process approach
deviation (square root of Eq. 12). The results obtalneﬁiI only computationally demanding, which does not

on the grid are .
9 make serious problems.

I=K+1

Eij = ( 8;22 8;‘;’2 ) , (13) An ultimate goal is a real data evalution where the
' questions of parameter estimation and degree of fit of

o ( 0.097 0099) 14y @ suitable model will arise. However these problems
"7\ 0101 Q104 )" can be solved within the presented Bayesian MCMC

methodology, in principle.
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