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Abstract

In this work we study non-degenerate homomorphisms from the multiplicative
semigroup of all n-by-n matrices over a field to the semigroup of m-by-m

matrices over the same field.

A general introduction is given in the first chapter. In the second chapter we
first state our main question and give some examples. Further we characterize
all homomorphisms from the multiplicative semigroup of all n-by-n matrices
over an arbitrary field to the field and all non-degenerate homomorphisms from
the multiplicative semigroup of all n-by-n matrices over an arbitrary field to a

semigroup of m-by-m matrices over the same field, if m < n.

In the third chapter we characterize all non-degenerate homomorphisms
from the multiplicative semigroup of all 2-by-2 matrices over an arbitrary field
to the semigroup of 3-by-3 matrices over the same field. If the characteristic
of the field is not equal to 2 then we have two possibilities. FEither it is a
symmetric square, combined with a field homomorphism used entrywise and
a matrix conjugation, or a direct sum of the identity and the determinant,
combined with a field homomorphism, a homomorphism of the multiplicative
semigroup of the field and a matrix conjugation. In the characteristic 2 a
symmetric square gives rise to two different homomorphisms and we get three

possibilities. In the case of the field of real numbers every irreducible non-
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degenerate homomorphism is a matrix conjugation of the symmetric square.

In the fourth chapter we study non-degenerate irreducible homomorphisms
from the multiplicative semigroup of all 2-by-2 matrices over an algebraically
closed field of characteristic zero to the semigroup of m-by-m matrices over
the same field. If such a homomorphism maps a cyclic unipotent to a cyclic
unipotent, it is the composition of a symmetric power, a field homomorphism
used entrywise, and a matrix conjugation. In the case m = 4 we characterize
all non-degenerate irreducible homomorphisms.

In the fifth chapter we prove that every non-degenerate homomorphism
from the multiplicative semigroup of all n-by-n matrices over an algebraically
closed field of characteristic zero to the semigroup of (n+1)-by-(n-+1) matrices
over the same field when n > 3 is reducible and that every non-degenerate
homomorphism from the multiplicative semigroup of all 3-by-3 matrices over
an algebraically closed field of characteristic zero to the semigroup of 5-by-5

matrices over the same field is reducible.

Keywords: matrix semigroup, semigroup homomorphism, multiplicative
map, irreducibility.

Math. Subj. Class. (2000): 08A35, 15A30, 15A69, 20G05



Povzetek

V delu studiramo nedegenerirane homomorfizme iz multiplikativne polgrupe
vseh n X n matrik nad komutativnim obsegom v polgrupo m x m matrik nad
istim obsegom.

Naj bo F poljuben komutativen obseg in n naravno stevilo. Oznacimo z
M., (F) mnozico vseh n x n matrik z elementi v F. Mnozica M,,(FF) je polgrupa
za operacijo mnozenja matrik. Vprasanje, s katerim se ukvarjamo, se glasi:
Kaksni so homomorfizmi polgrup ¢ : M, (F) — M,,(F), torej preslikave, ki
zadoscajo enachi

p(AB) = p(A)p(B)

za vse matrike A, B € M,,(F) ?

Homomorfizem polgrup ¢ : M, (F) — M,,(F) je nerazcepen, ¢e je njegova
slika nerazcepna polgrupa, torej kot mnozica matrik nima skupnega invariant-
nega podprostora.

Primeri:

1. Matriéna konjugacija: Ce je S € M., (F) obrnljiva matrika, potem je

preslikava ¢ : M,,(F) — M,,(FF), ki je definirana s predpisom

p(A) = SAS™,

homomorfizem polgrupe.

11



12 POVZETEK

2. Konstanta: Ce je E € M,,(F) idempotentna matrika, torej ¢e zadoica
enachi E? = F, potem je preslikava ¢ : M,,(F) — M,,(F), ki je definirana s

predpisom

homomorfizem polgrup.
3. Homomorfizem komutativnega obsega, uporabljen po elementih: Naj
bo f : F — F homomorfizem komutativnega obsega. Za poljubno matriko

A = aij]} =, € My (F) definirajmo

p(A) = f(A) = [f(aiy)]} s

Preslikava ¢ : M, (F) — M,,(F) je homomorfizem polgrupe.

4. Degenerani homomorfizmi: Naj bo ¢’ : GL,(F) — GL,,(F) homomor-
fizem grup. Definirajmo ¢ : M,(F) — M, (F) takole: Ce je detA = 0,
vzamemo (A) = 0, sicer pa ¢(A) = ¢'(A). Ocitno je ¢ homomorfizem pol-
grup. Take homomorfizme imenujemo degenerirani. Ker so homomorfizmi
grup ¢’ : GL,(F) — GL,,(F) poznani, se omejimo na nedegenerane homomor-
fizme.

5. Direktna vsota: Za poljubna homomorfizma polgrup ¢' : M, (F) —
My (F) in ¢" @ M, (F) — M, (F) definirajmo preslikavo ¢ : M, (F) —
M i (F) s predpisom

p(A) = ¢'(A) @ ¢"(4)

za vsako matriko A € M,,(F). Preslikava ¢ je spet homomorfizem polgrup, ki
je vedno razcepen.
6. Zunanja potenca: Naj bo k < n naravno Stevilo. Vektorski prostor ()

je izomorfen zunanji potenci A*F" vseh antisimetri¢nih tenzorjev stopnje k.
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Ce je €& = {ei, ey, ..., e, } baza prostora F”, potem je
E={ei, Ney Ao Neyy, 1 <y <ig < ...<ip <n}
baza prostora AFF”. Ce matrika A € M, (F) predstavlja linearno preslikavo

prostora F", potem AFA € M( )(IF) predstavlja linearno preslikavo, ki deluje

n
k

na tenzorjih stopnje k takole:
(ANFA) (e, Aeiy Ao Neiy ) = Aeg, A Aegy A ... A Aey, .

Elementi matrike A¥A so k x k minorji matrike A. Preslikava ¢ : M, (F) —
M\ (IF), definirana s predpisom

(+)

k

p(A) = A4,

je homomorfizem polgrup. Ce je k enak n — 1, potem preslikava ¢ slika iz
M,,(F) v M,,(F). V tem primeru je p(A) = A" 1A = Cof(A) matrika kofak-

torjev matrike A.

7. Simetricna potenca: Naj bo k naravno Stevilo. Vektorski prostor

ntke1) : o : : _ :
F("E) je izomorfen simetriéni potenci Sym*F" vseh simetri¢nih tenzorjev

stopnje k. Ce je €& = {ey, es, ..., e} baza prostora F”, potem je

5/:{6“\/612\/\/ezk,lgllglggSlkgn}

baza prostora Sym*F”. Ce matrika A € M,,(F) predstavlja linearno preslikavo
prostora F”, potem Sym”A € M(n+k—l) (F) predstavlja linearno preslikavo, ki
k

deluje na tenzorjih stopnje k takole:
(Sym"A)(e;, Ve, V.. Ve, ) = Aey, V Aey, V...V Aey, .
Preslikava ¢ : M,(F) — M(n+k—1)(F), definirana s predpisom
k

p(A) = Sym"*A,
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je homomorfizem polgrup. Za n =2 in k = 2, dobimo

b a? ab b?
Sym® {a d} = | 2ac ad+bc 2bd
¢ c? cd d?

8. Tenzorski produkt: Vektorski prostor F™™" je izomorfen tenzorskemu
produktu F™ ® F™'. Za poljubna homomorfizma polgrup ¢’ : M,(F) —
My (F) in ¢" @ M, (F) — M, (F) definirajmo preslikavo ¢ : M, (F) —
M (F) s predpisom

p(A) = ¢'(A) ® p"(A)

za vsako matriko A € M, (F). Preslikava ¢ je spet homomorfizem polgrup.
Tenzorski produkt ¢(A) = A ® A lahko napisemo kot direktno vsoto zunanje

potence in simetri¢cne potence
A®A=ANA@Sym?A.

9. Kombinacije zgornjih primerov.
V delu najprej karakteriziramo vse homomorfizme iz matri¢ne polgrupe

M, (F) v obseg F kot multiplikativno polgrupo. To je dobro znan rezultat.

Trditev 1 Naj bo ¢ : M,(F) — F homomorfizem polgrup. Potem obstaja

homomorfizem multiplikativne polgrupe f : F — F, za katerega velja

p(A) = f(detA)
za vsako matriko A € M, (F).
Glavni rezultat drugega poglavja je karakterizacija vseh nedegeneriranih
homomorfizmov polgrup ¢ : M, (F) — M,,(F), kjer je m < n. lzrek je bil

dokazan ze leta 1966 v [17] za obseg kompleksnih $tevil in leta 1969 v [13] za

poljuben komutativen kolobar brez deliteljev nica.
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Izrek 2 Naj bo F poljuben komutativen obseg. Denimo, da za naravni stevili
n in m veljan > 2 inm < n. Naj bo ¢ : M, (F) — M, (F) nedegeneriran
homomorfizem polgrup, za katerega velja (0) = 0 in o(I) = I. Potem je

m =n in ¢ 1ma naslednjo obliko:

alt

p(A) = Sf(Cof(A))S7,

kjer je f : F — F homomorfizem obsega in S € M, (F) obrnljiva matrika.

V tretjem poglavju najprej pokazemo, da smemo brez Skode za splosnost

predpostaviti, da ¢ : M,,(F) — M,,(F) preslika 0 v 0 in identiteto v identiteto.

Lema 3 Naj bo F poljuben komutativen obseg in ¢ : M, (F) — M,,(F) ho-

momorfizem polgrup. Potem ima @ obliko
p(A) = S(po(4) & B)S7,
kjer je

e o : M,(F) — M(F) homomorfizem polgrup, za katerega velja ¢o(0) =
0 inpo(l)=1,

o £ e M,,_(F) je idempotent in
e S € M, (F) obrnljiva matrika.
Ce je k =0, potem ©wo(A) ne nastopa, ée pa je k =m, potem E ne nastopa.

Glavni rezultat tretjega poglavja je karakterizacija homomorfizmov iz pol-

grupe 2 x 2 matrik v polgrupo 3 x 3 matrik.
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Izrek 4 Naj bo F poljuben komutativen obseg in ¢ : Mo(F) — M3(F) nede-
generiran homomorfizem polgrup, za katerega velja p(0) = 0 in o(I) = I. Ce
je char F #£ 2, potem ima @ eno od nasledngih oblik:
(a)
o fl@) f®) 0 1
c(lea])-slro a0 s
0 0 g(ad —bc)
kjer je f : F — F homomorfizem obsega, g : F — F homomorfizem multip-
likativne polgrupe (F,-), za katerega velja g(0) = 0, g(1) = 1, in S € M3(IF)
obrnljiva matrika, ali
(b)
h(b?)

h(a?) h(ab)
a b
=5 | h(2ac) h(ad+be) h(2bd) | 571,
90([6 dD h(c?) h(cd) h(d?)

kjer je h : F — F homomorfizem obsega in S € M3(F) obrnljiva matrika.

Ce je char F = 2, potem ima o obliko (a), (b) ali

(c)

cp([z 2]):5 %E(Zc)i h(ad2+bc) }Zﬁ(g% S

kjer je h : F — F homomorfizem obsega in S € M3(F) obrnljiva matrika.

Ce je char F = 2, sta primera (b) in (c) bistveno razliéna: Matrike v sliki
¢ imajo v primeru (b) natanko en skupen netrivialen invarianten podprostor,
ki je dimenzije 2. Po drugi strani pa imajo v primeru (c) skupen invarianten
podprostor dimenzije 1.

Preslikava ¢ je popolnoma razcepna, ¢e ima vsak invarianten podprostor
slike ¢ invarianten komplement. Naslednje trditve so preproste posledice Izreka

4.
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Posledica 5 Naj bo F komutativen obseg s char F # 2. Vsak nedegeneriran
homomorfizem polgrup ¢ : Ms(F) — M3(F) je popolnoma razcepen.

Posledica 6 Naj bo ¢ : My(F) — M;3(F) nerazcepen nedegeneriran homo-
morfizem polgrup. Potem je char F # 2 in

({a bD S hh((zaz)) h(hcgab)b) hféﬁ) S
= ac aa + bc ,
“Ale d W) hled)  h(d®)

kjer je h : F — F homomorfizem obsega in S € M3(F) obrnljiva matrika.
V obsegu realnih stevil R je edini neni¢elni homomorfizem identiteta.

Posledica 7 Naj bo ¢ : Ms(R) — M3(R) nerazcepen nedegeneriran homo-

morfizem polgrup. Potem je
b a? ab b?
0 ([a dD =S |2ac ad+be 2bd| ST,
¢ c? cd d?
kjer je S € M3(R) obrnljiva matrika.

Edina zvezna homomorfizma obsega kompleksnih stevil C sta identiteta in

kompleksna konjugacija.

Posledica 8 Naj bo ¢ : M3(C) — M;3(C) zvezen nerazcepen nedegeneriran

homomorfizem polgrup. Potem je

({“ bD S hh((2a2)) h(héab)b) hli(zb;% g
= ac aa + bc
“\le M) hled)  h(d?)

kjer je h : C — C identiteta ali kompleksna konjugacija in S € Ms(C)

obrnljiva matrika.
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V cetrtem in petem poglavju se omejimo na primer, ko je komutativni obseg
F algebraicno zaprt in ima karakteristiko ni¢. Obravnavamo samo nerazcepne
homomorfizme. Pogosto uporabljamo naslednjo trditev, ki je posledica Burn-

sidovega izreka.

Trditev 9 Denimo, da je F algebraicno zaprt obseg s karakteristiko nic. Naj
bon > 2 in S polgrupa v My(F). Ce obstaja nenicelen linearen funkcional f

na M, (F), ki je enak ni¢ na S, potem je polgrupa S razcepna.

Na zacetku cetrtega poglavja pokazemo, da nerazcepen nedegeneriran ho-
momorfizem polgrup ¢ : Ms(F) — M, (F) preslika matrike ranga 1 v matrike
ranga 1.

Vsako n x n matriko razdelimo v 3 x 3 blo¢no strukturo, kjer je srednji

blok velikosti (n — 2) x (n —2). Torej je

fa b -+ ¢ d]
e x - x f a x d
: il =y T oz
g % - % h T w |
i o kL]

kjer je T' matrika velikosti (n — 2) x (n — 2).

Lema 10 Naj bon > 3 in ¢ : My(F) — M, (F) nerazcepen nedegeneriran
homomorfizem polgrup. Glede na zgornjo dekompozicijo ima ¢ naslednjo ob-

liko:

e cejea,b,c#0, potem je
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kjer smo s C' oznacili matriko

yz' + VEG(Z—Zz - 1)V,
e cCe je b+# 0, potem je
a b S fg@ G ngfc(;az);EEGcgb) E Gdfjégb g
RE 0 GHVAEGWE GWECHY |5
e sicer pa
f(a) 0 0
a 0]\ a -1
w([o d})—S 8 EG( )OEG(d) fé)d) S,

kjer sta f - F — TF in G : F — M,_o(F) homomorfizma polgrup, z,y € F"2
nenicelna vektorja, S € M, (F) obrnljiva matrika, E € M, _o(F) matrika z
lastnostjo E* = I in' V € M, _o(F) matrika s spektrom enakim {1}.

Zgornja tehni¢na lema nam pomaga pokazati naslednji izrek, ki je karakte-

rizacija homomorfizmov iz polgrupe 2 x 2 matrik v polgrupo 4 x 4 matrik.

Izrek 11 Naj bo ¢ : My(F) — My(F) nerazcepen nedegeneriran homomor-

fizem polgrup. Potem ima @ eno od naslednjih oblik:

(a)

a? a’b ab? b3
({a b ]) ar | 3dc a?d+2abc 2abd + Ve 3b*d g1 _
c dl|) 3ac®  2acd + bc®  ad? + 2bed  3bd? -

c? 2d cd? d3

= S§(Sym®A)S~,

kjer je g : T — F homomorfizem obsega in S € My(F) obrnljiva matrika, ali
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(b)
1o [f8 e e s
a _ o | 9(a)h(c) gla g(b)h(c) g -1
(’0([0 d])_s g(c)hla) g(h(b) g(dhla) g(dh®) |°
g()h(c) g(c)h(d)  g(d)h(c) g(d)h(d)

kjer sta g,h : F — F razlicna homomorfizma komutativnega obsega in S €

My(F) obrnljiva matrika.

Ce v primeru (b) velja g = h, potem je homomorfizem ¢ razcepen, ker je

AR A= (AV A) & (AN A); sicer je ¢ nerazcepen.

Posledica 12 Naj bo ¢ : M3(C) — My(C) zvezen nerazcepen nedegeneriran

homomorfizem polgrup. Potem je bodisi
p(A) = Sg(Sym*A)S~",

kjer je g : C — C identiteta ali kompleksna konjugacija in S € My(C)

obrnljiva matrika, bodisi

ad al_a_ ba bl_a_

cc cd dec dd
kjer je S € My(C) obrnljiva matrika.
Matrika A € M, (F) je unipotentna, ¢e je njen spekter enak {1}. Ma-

trika A € M, (F) je ciklicna, ¢e ima cikliéni vektor; to je tak vektor z € F”"

za katerega mnozica {x, Aw, A%z, ..., A"z} napenja ves prostor F". Vsaka
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ciklicna unipotentna matrika v .M, (F) je podobna matriki

11 0 -+ 0 07

1 . 0 0
o0 1 . 0 O
oo o0 "~ 1 1
Lo 0o 0 -~ 0 1

Izrek 13 Najbon > 3 in ¢ : My(F) — M, (F) nerazcepen nedegeneriran ho-

momorfizem polgrup, ki preslika ciklicni unipotent v ciklicni unipotent. Potem
je
p(A) = Sg(Sym" 1 A)S7H,

kjer je g : T — F homomorfizem obsega in S € M, (F) obrnljiva matrika.

V petem poglavju obravnavamo primer, ko je dimenzija matrik v polgrupi

iz katere slikamo vsaj 3.

Trditev 14 Naj bo ¢ : M,,(F) — M., (F) homomorfizem polgrup, ki preslika

0 v 0 in identiteto v identiteto. Naj bo

k = min{rangA; ¢(A) # 0}.

()=

Ce je rang A = rang B, potem je rang ¢(A) = rang ¢(B).

Potem je

Trditev 15 Denimo, da je n > 3 in'm < 2n. Naj bo ¢ : M,(F) — M,,(F)
nedegeneriran homomorfizem polgrup, ki preslika 0 v 0 in identiteto v iden-
titeto. Denimo, da ¢ slika matrike ranga 1 v matrike ranga 1. Potem ¢ slika

matrike ranga 2 v matrike ranga 2.
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Naslednja trditev je o¢itna za n = 3 in m < 6. Dokazemo jo Se za vecje

vrednosti n.

Trditev 16 Denimo, da jen >4 inm < 2n ali pan =4 in m < 5. Naj bo
¢ : My (F) — M, (F) nedegeneriran homomorfizem polgrup, ki preslika 0 v 0

in tdentiteto v identiteto. Potem imamo dve mozZnosti:

(a) ce je rang A =1, potem je rang ¢(A) = 1, in ce je rang A = 2, potem je
rang ©(A) =2, ali

(b) ce jerang A < n — 1, potem je ¢(A) =0, in ée je rang A =n — 1, potem
je rang p(A) = 1.

Naslednji dve trditvi obravnavata moznosti, ki nam jih da Trditev 16.

Trditev 17 Denimo, da je n > 2 in m > n. Naj bo ¢ : M,(F) — M,,(F)
nedegeneriran homomorfizem polgrup, ki preslika 0 v 0 in identiteto v iden-
titeto. Naj o slika matrike ranga 1 v matrike ranga 1 in matrike ranga 2 v

matrike ranga 2. Potem je
oy =s [ 1W 1l

kjer je f : F — F homomorfizem obsega in S € M,,(F) obrnljiva matrika.

Trditev 18 Denimo, da je n > 3 in m > n. Naj bo ¢ : M, (F) — M,,(F)
nedegeneriran homomorfizem polgrup, ki preslika 0 v 0 in identiteto v iden-
titeto. Naj ¢ slika matrike ranga manjsega kot n — 1 v 0 in matrike ranga

n — 1 v matrike ranga 1. Potem je

oty [FOAD T 5o

*
kjer je f : F — F homomorfizem multiplikativne polgrupe (F,-) in S € M,,(F)

obrnljiva matrika.
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Naslednja izreka sta osrednja rezultata petega poglavja.

Izrek 19 Naj bo n > 3. Vsak nedegeneriran homomorfizem polgrup ¢ :
M, (F) — M, 11(F) je razcepen.

Izrek 20 Najbom =4 alim = 5. Vsak nedegeneriran homomorfizem polgrup

o : M3(F) — M,,,(F) je razcepen.

Na koncu dodamo Se nekaj primerov:
Obstajata dva bistveno razlicna nedegenerirana nerazcepna homomorfizma

polgrup ¢ : M3(F) — Mg(F): simetricni kvadrat
@(A) = Sym*A
in simetri¢ni kvadrat zunanje potence
©0(A) = Sym?*(A A A).

Obstaja nedegeneriran nerazcepen homomorfizem polgrup ¢ : My (F) — Mg(F),

to je zunanja potenca

o(A) = AN A.

Kljuéne besede: matricna polgrupa, homomorfizem polgrup, multiplika-
tivna preslikava, nerazcepnost.

Math. Subj. Class. (2000): 08A35, 15A30, 15A69, 20G05






Chapter 1

Introduction

Let S be a set and o : S x S — S a binary operation on S. Then (5, 0) is
a semigroup, if the operation o is associative. Let (S7,0) and (S,0) be two
semigroups. A mapping ¢ : S; — Sy is a homomorphism of semigroups, if it

preserves the operation o,

p(aob) = p(a) o p(b)

for all a,b € S;. Let F be an arbitrary field and n be an integer. Denote
by M, (F) the set of all n-by-n matrices with entries in F. Then M, (F)
is a semigroup under the multiplication of matrices. In this work we study
homomorphisms of these semigroups and try to classify them.

The question of classification of semigroup homomorphisms is quite old and
it may be difficult. Let us look first at a simple example. Let (R,+) be the
additive semigroup of real numbers. A semigroup homomorphism f: R — R

satisfies Cauchy’s functional equation

flx+y) = f(x)+ f(y)

for all =,y € R. This equation has some simple solutions
f(z) =cx forall z€R,

25
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where c is a real constant. All other solutions are quite wild. The graph of each
solution of Cauchy’s equation which is not of this form is everywhere dense in
the plane R?. The equation was solved by Hamel in [10] a hundred years ago.
He proved that there exists a subset H of R such that every real number x can

be expressed in a unique way in the form

n

Tr = Z T’khk,

k=1
where hy € H and ry are rational. The general solution of Cauchy’s equation

is given by choosing the values of f arbitrary on H and defining

flx)=f (Z Tkhk;) = rif ().

k=1 k=1
The set of real numbers is also a multiplicative semigroup. Its homomorphisms

f : R — R satisfy Cauchy’s power equation
9(xy) = g(x)g(y)
Every solution of this equation is of the form

g(x) =0 forall xeR

or
g(x) =1 forall x €R
or
9(0) =0 and g(z) = /Pl for all x £ 0,
or

g(0) =0 and ¢(z) = signxef(k’g('“')) for all x # 0,

where f is a solution of (additive) Cauchy’s equation.
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Let us now move on to matrices. The set of all matrices M,,(F) is an
algebra. It is well-known that every automorphism of this algebra is inner.
More precisely, every bijective linear map ¢ : M, (F) — M, (F) satisfying
©(AB) = ¢(A)p(B) for all A, B € M,,(F) has the form

p(A) = SAS™

where S € M,,(F) is an invertible matrix.

The above theorem is usually derived as a straightforward consequence of
the Noether-Skolem theorem (see [6], p. 93, theorem 3.14), an easy proof can
be find in [36]. It can also be improved. Every non-zero endomorphism of the
algebra M,,(F) is inner. Indeed, the kernel of an endomorphism is an ideal in
M, (F). The algebra M,,(F) is simple, i. e., there are no non-trivial two-sided
ideals in M, (F). So, if ¢ : M, (F) — M, (F) is a non-zero endomorphism, it
must be injective and thus, automatically bijective.

A more general approach is to consider M,,(F) only as aring. If f: F — F
is a field homomorphism, we can apply it entrywise on matrices, to obtain a

ring homomorphism ¢ : M,,(F) — M, (F),

p(A) = f(A) = [ (ay)]F =

Here we have the following result: every bijective additive map ¢ : M,,(F) —

M, (F) satistying p(AB) = p(A)p(B) for all A, B € M,,(F) has the form

where S € M,,(F) is an invertible matrix and f : F — F is a field homomor-
phism.

Recall that a map ¢ : M, (F) — M,,(F) is called an anti-automorphism of
the algebra M,,(F) if it is bijective, linear, and satisfies p(AB) = ¢(B)p(A)
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for all A,B € M,(F). The transposition map A — AT is an example of
such a map. It is a straightforward consequence of the theorem on algebra
automorphisms, that every anti-automorphism ¢ : M, (F) — M,,(F) has the

form

p(A) = SATST,

where S € M,,(F) is an invertible matrix.

A map ¢ : M,(F) — M,(F) is called a Jordan automorphism of the
algebra M,,(F) if it is bijective, linear, and satisfies p(A?) = ¢(A)? for every
A € M, (F). It follows from [12] and [37] that every Jordan automorphism of
M, (F), charF # 2 is either an automorphism or an anti-automorphism. Thus

every Jordan automorphism ¢ : M,,(F) — M, (F), charF # 2 has the form
o(A) = SAS™! for all A € M, (F),

or

0(A) = SATS™ for all A € M, (F),

where S € M,,(F) is an invertible matrix.

The next step from ring endomorphisms is to omit the additivity assump-
tion and consider multiplicative maps on matrix algebras, thus homomor-
phisms of matrix semigroups. One way to get a semigroup homomorphism
o My(F) — M,,(F) is to take a group homomorphism ¢’ : GL,(F) —
GL,,(F) and trivially extend it to all matrices taking ¢(A) = 0 for every A
with det A = 0. This trivial extensions are called degenerate. A group ho-
momorphism ¢ : GL,(F) — GL,,(F) can be viewed as a representation of a
full matrix group GL,(F) in GL,,(F). The theory of group representations is
well-developed but highly non-trivial. In the case of the field of complex num-
bers C the problem of representations of GL, (IF) was solved by Schur in 1901
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(see [33]), today the proof is based on the Weyl theory of representations of
semisimple Lie groups (see for example [39], page 115-136 or [8], page 231). In
the case of finite fields the problem is covered by the theory of representations
of finite groups (for example [34]). The theory for infinite fields of an arbitrary
characteristic can be found in [9]. Other literature on group representations
includes [2], [26], [29] and [41].

We will give here the description of differentiable representations of the full
complex matrix group GL,(C). Denote G = GL,(C),V = C" and choose a =
(a1, as, ..., an_1, a,) an n-tuple of integers satisfying a; > 0,a9 > 0,...;a,-1 >0

and a, arbitrary. Let
U, : G — Sym™V ® Sym®(A*V) ® ... ® Sym™ (A" V)
be defined by
VU,(A4) = Sym™ A ® Sym™ (A*A) @ ... @ Sym®* (A" A) - (detA)™

for every A € G. Representation ¥, is not irreducible, so let ®, be an irre-

ducible subrepresentation of ¥, generated by vector
v=(V7(e1)) @ (V2(e1 Ne2)) ®...® (V" (er Ao Aep_1))

where {e1, s, ..., €, } is a basis for V. Vector v is a highest weight vector of the
representations W, and ®,. Every (differentiable) irreducible complex repre-
sentation of G is isomorphic to ®, for a unique index a = (a1, as, ..., ap_1, ay)
with ay, ..., a,—1 > 0. For more details see [8].

The problem of homomorphisms ¢ : M,,(F) — M,,(F) is solved for m <n
in [13] (see Theorem 2.2). The problem for n = 1 of homomorphisms ¢ : C —
M., (C) in the field of complex numbers is solved in [28].
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Beside multiplicative maps on full matrix algebras we may be interested
also in maps that are multiplicative with respect to Jordan product or Lie
product. Namely, M, (F) can be equipped with other products like Lie product
[A,B] = AB — BA, or Jordan product Ao B = AB + BA. Maps that are
multiplicative with respect to Lie or Jordan product are maps satisfying the

following equations
p(AB — BA) = o(A)p(B) — ¢(B)p(A),

¢(AB + BA) = o(A)p(B) + p(B)p(A),

for all A,B € M, (F). A related problem is to characterize maps that are

multiplicative with respect to Jordan triple product, i. e. maps satisfying

p(ABA) = p(A)p(B)p(A),

for all A, B € M,,(F).

Next, instead of considering maps that are multiplicative with respect to
one of the above products on the full matrix algebra we can consider such
maps on any subset that is closed under this product. For example, we can
ask what is the general form of maps acting on upper triangular matrices that
are multiplicative with respect to one of the above products. The set of all
symmetric matrices and the set of all complex hermitian matrices are closed
under Jordan product and under Jordan triple product, while the set of skew
symmetric matrices and the set of skew hermitian matrices are closed under
Lie product. So, we can study Jordan multiplicative and Lie multiplicative
maps on these sets. Further, we can try to solve this kind of problems on
matrices over commutative rings or division algebras or on operator algebras

over a Banach space.
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There has been a lot of work done on these questions in recent years and
lots of them are still open. We will state here some results; others can be found
in [4], [11], [18], [20], [21], [23], [24], [25], [30], [38] and [40].

In [7] Dolinar proved that every bijective map ¢ : M,,(C) — M,,(C) that

is multiplicative under Lie product has one of the following forms
(A) = Sf(A)S™ + g(A) forall Ae M,(C),

or

(A) = —Sf(AT)S™' 4+ g(A)T for all A € M,(C),

where f: C — Cis a field homomorphism S € M,,(F) is an invertible matrix
and g : M,,(C) — C a function satisfying g(C') = 0 for every trace zero matrix
C.

Cheung in [3] studied the following problem: If G is a multiplicative semi-
group of M,,(C) and if f : G — C is a function, then ®(f) denotes the set of
all multiplicative maps ¢ : G — M, (C), for some k, such that the (1, 1)-entry
of p(A) is f(A), for every A € G. The set ®(f) is nonempty for a variety of
functions f, including linear functionals on M,,(C). Further, if f,g: G — C
and neither ®(f) nor ®(g) is empty, then one can describe all multiplicative
maps 7 : G — M,,(C) such that f(A) = g (7(A)), for every A € G.

Cao and Zhang in [5] dealt with the semigroup of upper triangular matrices
T, (R) over a ring R. They proved that if n > 2 and R is a semiprime ring or a
ring in which all idempotents are central, then ¢ : T,,(R) — T,,(R) is a multi-
plicative semigroup automorphism if and only if there exist a nonsingular ma-
trix S in T, (R) and a ring automorphism f of R such that p(A4) = Sf(A)S~
for all A € T,,(R).

Let X and Y be complex Banach spaces with dim X > 3, and let A C B(X)
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and B C B(Y) be standard operator algebras (that is, algebras of bounded
linear operators that contain all finite-rank operators). Semrl in [35] described
multiplicative bijective maps of A onto B, while Molnar in [22] dealt with
a problem of bijective maps multiplicative under Jordan triple product. It is
proved that such a map is necessarily linear or conjugate-linear in the case when
X is infinite-dimensional. Lu in [19] proved that if A is a standard operator
algebra on a Banach space X with dim X > 1, R any ring, and ¢ : A — R a
Jordan multiplicative bijective map, then ¢ is either a ring isomorphism or a

ring anti-isomorphism.



Chapter 2

State of the art

In this chapter we first state our main question and give some examples. We
characterize all homomorphisms from the multiplicative semigroup of all n-
by-n matrices over an arbitrary field to the field and all non-degenerate ho-
momorphisms from the multiplicative semigroup of all n-by-n matrices over
an arbitrary field to a semigroup of m-by-m matrices over the same field, if

m < n.

2.1 Question and examples

Let F be an arbitrary field and let n be an integer. Denote by M,,(F) the set
of all n-by-n matrices with entries in F. Then M, (F) is a semigroup under
the multiplication of matrices.

Question. What are semigroup homomorphisms ¢ : M,,(F) — M,,(F), i. e.

maps satisfying the equation

for all matrices A, B € M,,(F) ?

Sometimes we will be interested only in irreducible homomorphisms. A

33



34 2. STATE OF THE ART

semigroup homomorphism ¢ : M, (F) — M,,(F) is irreducible if the image
of ¢ is an irreducible semigroup i. e. it has no proper non-trivial invariant
subspace of ™™ when it is viewed as a set of matrices acting on vector space
Fm.

We first give some examples.
Examples:
1. Matrix conjugation: Let S € M, (F) be an invertible matrix. Then
p : My (F) — M, (F)

o(A) = SAS™!

is a semigroup homomorphism.

2. Constant: Assume F € M,,(F) is an idempotent, i. e. a matrix satisfying

equation E? = E. Then ¢ : M, (F) — M,,(F)
p(A)=E

is a semigroup homomorphism. We would like to avoid such trivial homomor-
phisms. Lemma 3.1 tells us the following: Let ¢ : M, (F) — M,,(F) be a

semigroup homomorphism. Then ¢ has the form
p(A) = S(po(A) ® E)S7,

where ¢g : M, (F) — My(F) is a semigroup homomorphism with ¢(0) = 0,
wo(l) = I, E € M,,_,(F) is idempotent and S € M,,(F) is an invertible
matrix. Here either k£ or m — k may be 0, i. e. either po(A) or E may be
absent. So we may assume that a semigroup homomorphism maps 0 to 0 and
identity to identity. If we assume that ¢ is irreducible, this is automatically

true.
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3. Field homomorphism used entrywise: Let f : F — F be a field

homomorphism. If A = [a;]}';_; € M, (F) is an arbitrary matrix, define

p(A) = f(A) = [f ()]}

Then ¢ : M, (F) — M, (F) is a semigroup homomorphism.

4. Degenerate homomorphisms: If ¢’ : GL,(F) — GL,,(F) is a group
homomorphism, define ¢ : M, (F) — M,,(F): if detA = 0 take p(A) = 0
and if detA # 0 take p(A) = ¢'(A). It is obvious that ¢ is a semigroup
homomorphism. Such homomorphisms are called degenerate. Since group
homomorphisms ¢ : GL,(F) — GL,,(F) are known (see chapter 1) we will
restrict ourselves to non-degenerate homomorphisms.

5. Direct sum: If ¢’ : M, (F) — M, (F) and ¢" : M,,(F) — M,,»(F) are
two semigroup homomorphisms, define ¢ : M,,(F) — M 1 (F),

P(A) = ¢'(A) © ¢"(A)

for every matrix A € M, (F). Map ¢ is again a semigroup homomorphism,
which is always reducible.
6. Exterior power: Let & < n be an integer. The vector space F() is

isomorphic to the exterior power A*F" of all antisymmetric k-tensors. If
E=A{ei, e, ....,en}
is a basis of [F"*, then
E={ei, Neyw Ao Ney, 1 <y <ipg < ... <ip <n}

is a basis of AFF™. If a matrix A € M, (F) represents a linear mapping of

F", then AFA € M( )(IF) represents a linear mapping, acting on k-tensors as

n
k



36 2. STATE OF THE ART

follows:

(NFA)(eiy Neiy Ao Ney ) = Aegy A Aegy A ... A Ae, .

The entries of the matrix A*A are all k-by-k minors of the matrix A. It is a

direct calculation to prove that
(A*A)(A*B) = A*(AB)
So ¢ : M, (F) — M(@(F), defined as

o(A) = AFA

is a semigroup homomorphism. If k equals n — 1, then ¢ : M, (F) — M, (F).
In this case p(A) = A" 1A = Cof(A) is the so called cofactor matrix of all
(n — 1)-by-(n — 1) minors of matrix A.

7. Symmetric power: Let k£ be an integer. The vector space F(5 ) s

isomorphic to the symmetric power Sym*F” of all symmetric k-tensors. If
E=A{ei, e, ....,en}
is a basis of F", then
E'={e,Ve,V..Ve,;1<i; <ip<..<i,<n}

is a basis of Sym"F”. If a matrix A € M,,(F) represents a linear mapping of F”,
then Sym*A € M(n+k—1)(F) represents a linear mapping, acting on k-tensors
k

as follows:
(Sym"A)(e;, Ve, V... Ve, ) = Ae;, V Aey, V ...V Ae;, .
It is again a direct calculation to prove that

(Sym”A)(Sym*B) = Sym*(AB)
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So ¢ : M, (F) — M(n«kl]zfl)(F), defined as

©0(A) = Sym"* A
is a semigroup homomorphism. In a special case n = 2 we have

&= {6(1)7 EERE) e(k-l—l)}

where
6(1) = (\/kJrliiel) V (\/1;162).
So, if A = [a b}, then
c d
(Sym*A)ey = (VM1 (aer + cep)) V (VI (bey + dey)).
Thus

Lla b o
Sym [c d] =
k41

min{k+1—4,k+1—35} . .
_ Z (k +1-— Z) ( i—1 )askarljsckJrlisdiJerrst

s k+1—j—s
s=max{0,k+2—i—j} + J ij=1

If also k = 2, we have

2

2

JTa b a ab b
Sym al = 2ac  ad+be  2bd
¢ c? cd d?

8. Tensor product: The vector space F™™" is isomorphic to tensor product
F @ F™ . If ¢« Mu(F) — M (F) and ¢ 1 M, (F) — M, (F) are two
semigroup homomorphisms, define ¢ : M,,(F) — M, (F) by

p(A) = ¢'(A) ® ¢"(4)

for every matrix A € M, (F). Map ¢ is again a semigroup homomorphism.

The tensor product p(A) = A® A can be written as a direct sum of the exterior
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power and the symmetric power
A®A=ANA@Sym?A.

If the factors are not equal, the tensor product may be irreducible (see for
example case (b) of Theorem 4.3).
9. Compositions of the above

If o : M, (F) - M,,(F) is an non-degenerate irreducible homomorphism,
these examples show that ¢ can be a tensor product, an exterior power or
a symmetric power combined with field homomorphisms used entrywise and
matrix conjugation. In all these examples m is not arbitrary; it has a special
form, depending on n. We will show that under some additional assumptions

for small n and m this is all that we can get.

2.2 Casem=1

We will now characterize homomorphisms from the matrix semigroup M,,(IF)
to the field F as a multiplicative semigroup. It is a well known result. Our

proof is due to A. Jafarian and H. Radjavi.

Proposition 2.1 Let ¢ : M, (F) — F be a semigroup homomorphism. Then
there exists a homomorphism f : F — F of the multiplicative semigroup (F,-)

such that
o(4) = f(detA)
for every A € M, (F).

Proof. If p(A) =0 for all A € M, (F), take f =0, if p(A) = 1 for all A,

take f = 1. So assume otherwise. Then it is clear that invertible matrices
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have nonzero images and that ¢(A) = 0 whenever A is singular. Next define

f:F—TFhby

z 0 0 0
010 0
f@)=¢| |0 0 1 0
00 0 1

It follows that f is a semigroup homomorphism. Since the relation p(A) =
f(detA) trivially holds for singular A, we must only verify it for invertible

matrices A. Now every such A can be expressed as

[detA 0 0 -+ 0

0 1.0 - 0
A= 0 01 - 0]A4

0 00 - 1]

with detA; = 1. By [31] every matrix with determinant 1 is a product of simple
involutions, that is matrices E € M,,(F) with £ = I and rank(E —I) = 1.
So we have

A1 = ElEQEk

If charF" = 2, then every simple involution is similar to

1 10 --- 0
o1 0 --- 0
0O 01 --- 0
o 00 --- 1

Since ¢(F;) is also an involution in F, we have ¢(F;) = 1 for all ¢ and con-
sequently p(A;) = 1. If charF # 2, then every simple involution is similar
to

~1 0 0 .-~ 0
0 1.0 -0
0 01 -~ 0
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Since detE; = —1, the number of involutions & must be even. As before, p(E;)
is an involution in F, so we have p(FE;) = £1 for all . We observe that F;
is similar to Ej; for all 7 and j, and since similar matrices have equal images

under ¢, either p(FE;) =1 for all i or p(E;) = —1 for all 7. In either case

p(A1) = p(EV)p(E)..p(Ey) = (£1)F =1

Now
detA 0 O 0
0 1 0 0
p(A) = 0 01 0 [ p(A1) = f(detA)
0 0 0 1

as desired. O

2.3 Casem<n

The main result in this chapter is characterization of all non-degenerate semi-
group homomorphisms ¢ : M, (F) — M,,(F), where m < n. The result was
proved in [17] for the field of complex numbers and in [13] for an arbitrary

integral domain.

Theorem 2.2 Let F be a field. Assume that integers n,m satisfy n > 2 and
m < n. Let ¢ : M,(F) - M,,(F) be a semigroup homomorphism, which is
non-degenerate and has the properties ¢(0) = 0 and ¢(I) = I. Then m = n
and ¢ has one of the following forms:
(a)

o(4) = SF(A)S,

where [ : F — F is a field homomorphism, and S € M, (F) is an invertible

matrix, or
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(b)
p(A) = Sf(Cof(A))S7,

where [ : F — F is a field homomorphism, and S € M, (F) is an invertible

matriz.

We will later (especially in chapter 5) extend the proof of this theorem to

more general setting. We will give the proof in Section 5.2.






Chapter 3

Homomorphisms from
dimension two to three

In this chapter we characterize all non-degenerate homomorphisms from the
multiplicative semigroup of all 2-by-2 matrices over an arbitrary field to the
semigroup of 3-by-3 matrices over the same field. If the characteristic of the
field is not equal to 2 then we have two possibilities. Either it is a symmetric
square, combined with a field homomorphism used entrywise and a matrix
conjugation, or a direct sum of the identity and the determinant, combined
with a field homomorphism, a homomorphism of the multiplicative semigroup
of the field and a matrix conjugation. In the characteristic 2 a symmetric
square gives rise to two different homomorphisms and we get three possibili-
ties. In the case of the field of real numbers every irreducible non-degenerate

homomorphism is a matrix conjugation of the symmetric square.

3.1 Preliminaries

We will first show that there is no loss of generality if we assume that a

semigroup homomorphism ¢ : M,,(F) — M,,(F) maps 0 to 0 and the identity

43
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to the identity.

Lemma 3.1 Let F be a field and ¢ : M, (F) — M,,(F) a semigroup homo-

morphism. Then ¢ has the form
p(A) = S(po(4) @ B)S7,

where @y 1 My (F) — My (F) is a semigroup homomorphism with ¢(0) = 0,
wo(l) = I, E € M, (F) is idempotent and S € M.,,(F) is an invertible
matriz. Here either k or m — k may be 0, i. e. either ¢o(A) or E may be

absent.

Proof. Since 0 and [ are two commuting idempotents with 0/ = 0, ¢(0)
and o(I) are also two commuting idempotents with ¢(0)o (1) = ¢(0). So they

have the form

(,0(0) = S(Ok oL Om_l_k)S_l

and

(,D(I) = S(Ik @ ]1 @ Om_l_k)sil,

where O, I; € M(F) and S is an invertible matrix. For any matrix A €
M, (F) the matrix p(A) commutes with ¢(0) and ¢(I), so it has the form

(,D(A) = S(Al D A2 D Ag)s_l.

Since A0 = 0 and AI = A we have Ay, = I; and A30,,_;_, = As, so Ay = I,
and Az = 0,,_;_x. Writing po(A) := A; we obtain the asserted form, since g
is obviously a semigroup homomorphism. O

In the proof of our main result we need the following proposition which is

proved in [13].
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Proposition 3.2 Let F be a field and ¢ : Ms(F) — My(F) a semigroup
homomorphism, which is non-degenerate and has the properties ¢(0) = 0 and

o(I)=1. Then ¢ has the form

a b\ _ o[ fla) [0
o1 a) sl s
where [ : F — F is a field homomorphism and S € My(F) is an invertible

matriz.
The following proposition is a special case of Proposition 2.1 for n = 2.

Proposition 3.3 Let F be a field and ¢ : My(F) — F a semigroup homomor-
phism. Then ¢ has the form

” ([Z ZD = h(ad — be),

where h : F — F is a homomorphism of the multiplicative semigroup (F,-).

3.2 Main result

The main result of this chapter is the following:

Theorem 3.4 Let F be a field and ¢ : Mo(F) — M3(F) a semigroup ho-
momorphism, which is non-degenerate and has the properties ©(0) = 0 and

o(I) = 1. If char F # 2 then ¢ has one of the following forms:
(a)
o fla) fB) 0 1
([ o) =s]ra s o s
0 0 g(ad —be)
where f : F — F is a field homomorphism, g : F — F is a homomorphism of

the multiplicative semigroup (F,-) with g(0) =0, g(1) =1 and S € M3(F) is

an tnvertible matriz,



46 3. FROM DIMENSION TWO TO THREE

(b)
h(a®)  h(ab) h(b?)
a b
=S | h(2ac) h(ad+bc) h(2bd) | 571,
([5 i) = o st s

where h : F — F is a field homomorphism and S € Ms(F) is an invertible
matriz.

If char F = 2 then ¢ has one of the forms (a), (b) or
(c)
b h(a?) 0 h(b?)
© ({a D = S | h(ac) h(ad+bc) hbd) | 571,
¢ h(c?) 0 h(d?)
where h : T — T is a field homomorphism and S € Ms3(F) is an invertible

maltrix.

Remark. If char F = 2, the cases (b) and (c) are essentially different: The
image of ¢ in the case (b) has exactly one non-trivial invariant subspace in
common, which has dimension 2. On the other hand, in the case (c) the image
of ¢ has an invariant subspace of dimension 1 in common.

Proof. Let us denote by £;; the matrix which has 1 in the i-th row and the
J-th column, and 0 elsewhere. We will divide the proof into several steps.

Step 1. Without loss of generality we may assume that ¢(FE2) = Ej3 and
@(F21) = E31. Then ¢(E1;) = Fi1 and p(FEay) = Ess.

Proof: Matrix Ej5 is nilpotent of order 2, so ¢(FE12) must be nilpotent of
order at most 2. Let us suppose that ¢(E2) = 0. If A € My(F) is any non-
invertible matrix, it has rank at most 1 and we can write it as A = PE5Q.
So p(A) = p(P)e(E12)p(Q) = 0 and ¢ is degenerate. Thus ¢(E;2) must be
nonzero and we can write it as ¢(E}2) = zy’ where x, y are two column vectors

in F3 and yTx = 0. Similarly we obtain ¢(FEs;) = uv” where vTu = 0. Since
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E12E21E12 = Elg, we have
l‘yTU’UT.%'yT = l‘yT,

so yTu-vTx = 1. With no loss of generality we may assume that y’u = vTx =
1. Let us choose a vector z € F? orthogonal to v and v, i. e. vTz = yTz = 0.
Then {z,z,u} is a basis of F3. In this basis ¢(E2) has the matrix E;3 and
©(FE91) has the matrix Fs3;. So without loss of generality we may assume that

QD(E12) = E13 and SO(E21) = E31. Then
<,0(E11) = <P(E12E21) = Fi3Fk3 = By

and similarly ¢(Fa) = FEss.
Step 2. p(al) has the form f(a)(E1; + Es3) + g(a)Ea where f,g:F — F
are semigroup homomorphisms with f(0) = ¢g(0) =0 and f(1) = g(1) = 1.
Proof: Matrix al commutes with Ej5 and Es, so ¢(al) commutes with
FE3 and E3; and we obtain the asserted form.

Step 3. Homomorphism ¢ has the form

({ bD fla) = f(0)
A I e

Proof: 1f

is an arbitrary matrix, we have
Enp(A)En = o(EnAEn) = ¢(aBn) = p(al) By = f(a)En,

so the element in the first row and the first column of ¢(A) must be f(a). We

argue similarly for the other corners.
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Step 4. If A is upper-right (resp. upper-left, lower-right, lower-left) tri-
angular, then p(A) is upper-right (resp. upper-left, lower-right, lower-left)
triangular. If A is diagonal, then ¢(A) is diagonal. A similar result holds for

counter-diagonal A.

Proof: Let
a b
A { ‘ d} |
Then
o(A)En = 9(AEL) = p(aBn) = f(a)En
and

Es3p(A) = p(ExnA) = p(dEy) = f(d)Es3

so the first column of p(A) must be [f(a),0,0]7 and the last row must be
(0,0, f(d)]. Thus p(A) is upper-right triangular. Similarly we prove the other

cases.

Step 5. If f(a) # g(a) for some a € F, then

S [f@ 0
go({c d]): 0 h(ad—bc) 0 |,
f(e) 0 f(d)
where f : F — F is a field homomorphism, h : F — F is a semigroup homo-
morphism, so we are in the case (a) of the Theorem.

Proof: Matrix al commutes with every A € My(F), so p(al) = f(a)(E+
Es3) 4 g(a)Ey commutes with ¢(A). Since f(a) # g(a), ¢(A) has the form

Thus
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So homomorphism ¢ is a direct sum of two semigroup homomorphisms ¢; :

Mo (F) — Ma(F) and @y : Mo(F) — F where
A (e a) -1 fal

P2 ([z Z}) = s(a, b, c,d).

Now, f is a field homomorphism by Proposition 3.2 and s(a,b, ¢, d) has the

and

form h(ad — be) by Proposition 3.3.

From now on we will assume that f(a) = g(a) for every a € F. So p(al) =
far.

Step 6. If detA = 1, then detyp(A) = 1. Furthermore, f(—1) =1 and

©(Ey2 — E9) = Ey3 — Eys + Es.

Proof:  Let 1 : M3(F) — F be the semigroup homomorphism ¢;(A) =
dety(A). By Proposition 3.3 it has the form ¢, (A) = h(detA). So, if detA = 1,
then detp(A) = 1. Now, det(—I) = 1, so detp(—1I) = f(—1)> = 1, thus
f(=1) = 1. By step 4 ¢(E13 — Es1) has the form Ei3 + uFEq + F3;. By the
determinant condition we obtain u = —1.

From step 7 to step 14 we assume that char F # 2.

Step 7. Without loss of generality we may assume
o(En + Ei2) = By + By + B, ©(By + Eoy) = By + 2E5 + Esy,

©(E9 + Eg) = E31 + E3y + Esg, ©(E1g + Eg) = Ey3 4 2E93 + Ess.

Proof: Every matrix of rank one has the form A = PFE,Q with P,Q
invertible. So its image has the form ¢(A) = p(P)E30(Q). Thus every
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matrix of rank 1 is sent to a matrix of rank 1. So the matrix ¢(F; + Fi2) has

rank 1. Since it is upper triangular, we have
o(En + Eip) = Eu + 2 + Eis.

Similarly
©(En + Ey) = By + yEo + Es,

O(E91 + Eg) = E31 + 2E33 + Ess, ©(E12 + Eg) = Er3 + tEys + Ess.

Now,

B EE
1 2z 1
so x = z and y = t. Furthermore,
G (ER I | A
0 0 0
so xy = 2. Since char F # 2, both x and y are nonzero. If we take

0 1 0 0
0[p(4) [0 1/z O],
1 0 0 1

oK O

1
¢'(A) =10
0

we obtain

<,0/(E11 + E1) = Eyy + Eg + Eys.

Homomorphism ¢’ has all the properties we have proved for ¢. So without
loss of generality we may assume x = 1 and thus y = 2. (Actually we have
multiplied the vector z from step 1 by a scalar, so we have chosen its length

which was arbitrary in step 1.)
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Step 8. @(Ei1— Es) = Evi— Ey+ Esg and @(Ero+Eo ) = Ei3+ Ey+ Es;y.
Proof: 'We have

©(E1 — Ey) = By + vEy + Ess,

SO

Ey 4+ vEs + Ei3 = (B + Eig + Ei3)(En +vEy + Es3) =
= p((En + E12) (B — E)) = ¢((E11 + Er2)(Ea — Erg)) =
= (En + Evo + Ei3)(Ei13 — Ea + Es1) = Eyy — Eis + Eis.

Thus v = —1. Now,
©(E1a + Ea) = ¢((Ea1 — E19)(Ey — Eg)) = Ei3 + Ey + E3.

Step 9.
11 1 1 1 10 1
e\lo 1 =10 1 2 and el 1 = |2
0 0 1 1

Proof: We have

e
—_— O O

1
w
1

AS)
VR
| — |
O =
— =
| I
N~
Il
O O =

o

Since det [ 1

0 1} = 1, v must be 1. Furthermore,

22l ([1 82D
SRR

1
w,
1
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so w = 2. Similarly we prove u = 1 and the other equality.
Step 10. Mapping f : F — F has the form f(a) = (h(a))?, where h : F — F
is a semigroup homomorphism.

Proof: 'We have
@(aBy + Ey) = f(a)Ewn + h(a) By + Ess,
where h : F — F is a semigroup homomorphism. Now,
fla)I = p(al) = o((aBr1 + Ex)(Ew + Exn)(aBy + Ex)(Ewn + Exn)) =

= (f(a)Er1 + h(a)Eay + Es3) (B3 + Ex + Es)-
(f(a)E1 + h(a)Ea + Esg)(Eiz + Eo + Eg) =
= f(a>E11 + h(a)zEzg + f(a)Egg.

So f(a) = h(a)?* = h(a?).

Step 11. p(aE1y + bEs) = h(a?)Eyy + h(ab)Eyy + h(b?)Ess and p(aEs +
bFs1) = h(a?)E13 + h(ab)Ey + h(b?) E3;.

Proof: 1f b # 0, we have

a
w(aEy + bEy) = SO(M(EEH + E)) =
a

a
f(b)f(b)En + f(b)h(g)Em + f(b)Ess = h(a®)E1y + h(ab)Eyy + h(b?)Ess
and
QO(GE12+Z?E21) = (p((aE11+bE22)(E12+E21)) = h(a2>E13—|—h(ab)E22+h(bQ)E31.
Step 12. Mapping h : F — F is a field homomorphism.

Proof: 'We have to prove that h is additive.

0 0 0 0 0

h(a*) h(a(a+0b)) h((a+0b)?) "
o T (T L)) -
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So h(a(a+0b)) = h(a*)+ h(ab). If a # 0, it follows that h(a+b) = h(a) + h(b).
Step 13.

Similarly we prove the other equality.
Step 14.
0 b h(a?) h(ab) h(b%)
© (L d}) = | h(2ac) h(ad+bc) h(2bd) | ,
h(c?) h(cd) h(d?)
so we are in case (b) of the Theorem.
Proof: 1f a # 0, we have

([ o) =e([2 a2 5 5]) -
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h(a?) 0 0 L h(2) h(%
= |:h(2ac) (ad - bg) 0 ] |:O 1 h(2
h(c?)  hled—*) h((d—%)*)] [0 0 1
{ h(a?) — h(ab) h(bZ)}
h(2ac) h(ad 4+ bc) h(2bd) | .
h(c?)  hled)  h(d?)

If a =0 and d # 0, then

([ o) = (]l 2])-

d

0 0 h(b?)

0 h(bc) h(2bd) | .
h(c?) h(cd) h(d?)

The case a = d = 0 we have already proved in step 11.

Step 15. If char F = 2, then either
[ h(a?) h(ab) h(b?)

o(le )= |,0, Hatri o

or }

(o ) 12 o

or
0 b h(a?) 0 h(b?)
@([ d]) = 0 h(ad—bc) 0 |,
h(c?) 0 h(d?)
where h : F — F is a field homomorphism, so we are in the cases (b), (c) or
(a) of the Theorem.
Proof: We do the same as in step 7 and obtain xy =2 = 0. If x # 0, we

may assume with no loss of generality that x = 1 and then y = 0 = 2. Then
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everything is the same as in steps 8 - 14 and we obtain the first possibility. If
y # 0, then we may assume with no loss of generality that y = 1 and then
x = 0 = 2. In this case all the matrices in steps 8 - 14 are just transposed and

we obtain the second possibility. If both x and y are 0, we obtain

AR
(Rt

—_

as in step 9 and

- O O

0

1

0
by the determinant condition. The semigroup My (F) is generated by diagonal

matrices and the three matrices

11 0 1 q 0 1
0 1]7[1 0o]™ [0 o
as we saw in steps 13, 14. So we obtain
N [J@ 0w
cp([c d]): 0 h(ad—bc) O
f(c) 0 f(d)
=h

Now p(al) = f(a)I gives that f(a) (a?). Since f is additive by Proposition

3.2 and char F = 2, we have
(h(a+))* = h((a+b)*) = fla+b) = f(a) + f(b) =
= h(a)® + h(b)* = (h(a) + h(b))?,

so h is additive as well. O

3.3 Corollaries

A matrix semigroup homomorphism ¢ is reducible if the image of ¢ has a
nontrivial invariant subspace. We say that ¢ is completely reducible if every

invariant subspace of the image of ¢ has an invariant complement.
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Corollary 3.5 Let F be a field with char F # 2. FEvery non-degenerate semi-

group homomorphism ¢ : Mo(F) — M3(F) is completely reducible.

Corollary 3.6 Let ¢ : My(F) — M;3(F) be an irreducible non-degenerate

semigroup homomorphism. Then char F # 2 and

({a bD S hh((2a2)) h(ha(lab)b ) hiz(Qlia)l) g1
= ac aa + bc -,
“\le d M) hled)  h(d®)

where h : F — F is a field homomorphism and S € Ms(F) is an invertible

matrix.

If F is the field of real numbers R, then the only nonzero field homomor-

phism of F is the identity (see [1], page 57). This implies

Corollary 3.7 Let ¢ : My(R) — M;3(R) be an irreducible non-degenerate

semaigroup homomorphism. Then
b a® ab b?
go({a d}) =S |2ac ad+bc 2bd| S,
¢ c? cd d?

where S € M3(R) is an invertible matriz.

If F is the field of complex numbers C we may be interested only in continu-
ous semigroup homomorphism ¢ : Ms(F) — M;3(F). Then semigroup or field
homomorphisms f,g,h: F — F in the Theorem 3.4 must be continuous. The
only continuous field homomorphisms of C are the identity and the complex

conjugation (see [1], page 53).

Corollary 3.8 Let ¢ : My(C) — M3(C) be a continuous irreducible non-

degenerate semigroup homomorphism. Then @ has the form
h(a?) h(ab) h(b?)

w({z SDIS h15(2§0>) h(ﬁ;l)bc) h,ff;f? 51
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where h : C — C is the identity or the complex conjugation and S € Mjz(C)

1s an tnvertible matriz.






Chapter 4

More on homomorphisms from
dimension two

In this chapter we study non-degenerate irreducible homomorphisms from the
multiplicative semigroup of all 2-by-2 matrices over an algebraically closed field
of characteristic zero to the semigroup of n-by-n matrices over the same field.
If such a homomorphism maps a cyclic unipotent to a cyclic unipotent, it is
the composition of a symmetric power, a field homomorphism used entrywise,
and a matrix conjugation. In the case n = 4 we characterize all non-degenerate
irreducible homomorphisms.

From now on we will assume that the field F has characteristic zero and
is algebraically closed. We have seen in chapter 3 that from dimension two
to three we get a different result in characteristic 2 from other characteristics.
The situation is similar when going from dimension two to higher dimensions:
the results will depend on whether the characteristic zero or finite and small.
We will also restrict ourselves to irreducible homomorphisms. We will often
use the following proposition which is a consequence of a theorem of Burnside.

It is proved in [32], page 27.

Proposition 4.1 Assume F is an algebraically closed field of characteristic

99
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zero. Let n > 2 and S be a semigroup in M, (F). If there exists a nonzero

linear functional f on M, (F) which vanishes on S, then S is reducible.

4.1 Preserving rank 1

We first show that every irreducible non-degenerate ¢ : My(F) — M, (F)

maps rank 1 matrices to rank 1 matrices.

Proposition 4.2 Let n > 2 and ¢ : My(F) — M, (F) be a semigroup ho-
momorphism, which is irreducible and non-degenerate. Then rank p(A) = 1

whenever rank A = 1.

Proof. Since ¢ is irreducible, it maps 0 to 0 and the identity to the identity.
(see Lemma 3.1). So it maps invertible matrices to invertible matrices. It also
maps scalar matrices to scalar matrices, because p(al) commutes with every
matrix in the image of ¢, which is irreducible. If the rank of a matrix A is
equal to the rank of B, then there exist invertible matrices P, such that
A = PBQ. So the rank of ¢(A) is equal to the rank of p(B). Thus it suffices

p=(1o o))

is 1. First of all, B is nonzero, since ¢ is non-degenerate. The matrix B is

to show that the rank of

square-zero, so we have block decomposition

01 0
B=S|0 0 oS!
00 0

Here the first two blocks are of the same size k and the third block may be

absent. Let us write
Ay A A

b _
@({Z d]) =5 An Ay Ay | S L
Asi Agy Asg
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Now
0 Ay O
Slo 0 o|St=
0 0 0

o

o

So the matrix Ay is scalar for every a,b,c,d € F. Thus if k > 1, ¢ is reducible

(Proposition 4.1). O

4.2 A technical lemma

Let us divide every n-by-n matrix into 3-by-3 block structure where the middle

block is (n — 2)-by-(n — 2). So

a b - ¢ d
e x - x f a x d
Do il =ly T =z
g % - % h i w1
i j o ko

where T is a (n — 2)-by-(n — 2) matrix.

Lemma 4.3 Let n > 3 and ¢ : My(F) — M, (F) be a semigroup homomor-
phism, which is irreducible and non-degenerate. Then it has the following form

with respect to the above decomposition:

e ifa,b,c# 0 and d is arbitrary then

(2]
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f(a) 2" G(a)EG(b) f(b)
— S| G(0)EG(a)y G()EG(a)CG(L) G(dEGDb)y | 57,
(o) a1 G(c)EG(d) f(d)
where
C =ya’ + VEG(% -1V,

e ifb#0 and a,d are arbitrary then

a b1 _g fga) GfTvC;cgazEEG(gb> E Gdftg?}b St
e([5 3])- 0 GEVGDEGWE GECHY | 5™

e otherwise

@({8 SDZS f(ga) EG(a)OEG(d) ; S,

where f : F — F and G : F — M, _o(F) are semigroup homomorphisms,
x,y € F"2 are nonzero vectors, E,V € M, _o(F) are matrices with E* = I

and the spectrum of V' equal to {1}, and S € M,,(F) is an invertible matriz.

Proof. Let us denote by £j; the matrix which has 1 in the i-th row and the
j-th column, and 0 elsewhere. We will divide the proof into several steps.

Step 1. Without loss of generality we may assume that p(E)3) = Ey, and
©(E2) = Ep. Then p(E1) = B and p(Ey) = Epy,.

Proof: The matrix Ej9 is nilpotent of rank 1, so ¢(E}2) must be nilpotent of
rank 1. So ¢(F)2) = uv? where u, v are two column vectors in F* and v?u = 0.
Similarly we obtain ¢(Fy;) = 2tT where t12 = 0. Since EyzEy Ep = Ei, we
have

T _ T

w2t Tuw UV,

so vTz-tTu = 1. With no loss of generality we may assume that v7z = tTu = 1.

Let us choose linearly independent vectors wy, ...w,,_o € F™ orthogonal to v and
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Tw; = tTw; = 0 for every i. Then {u,wy,...w,_», z} is a basis of F".

t,i. e. v
In this basis ¢(FE12) has the matrix Fj, and ¢(FEs) has the matrix E,;. So
without loss of generality we may assume that ¢(F12) = Ei, and @p(Es) = Epy.
Then

SO(EM) = 90(E12E21) = En, By = En

and similarly ¢(Fa) = Ey,.

Step 2. @ maps al to f(a)l where f : F — F is a semigroup homomorphism
with f(0) =0 and f(1) = 1.

Proof: The matrix al commutes with every matrix in Ms(F), so ¢(al)
commutes with every matrix in the image of ¢. But the image of ¢ is ir-
reducible, so p(al) is a scalar matrix of the form f(a)l. The mapping f is
obviously a semigroup homomorphism.

Step 3. The homomorphism ¢ has the form

) fla) = f(0)
(e )-[
o

E11<P(A)E11 = 90(E11AE11) = SO(GEH) = @(QI)EH = f(a)E117

Proof: 1f

is an arbitrary matrix, we have

so the element in the first row and the first column of ¢(A) must be f(a). We
argue similarly for the other corners.

Step 4. If Ais upper-right (resp. upper-left, lower-right, lower-left) trian-
gular, then p(A) is block upper-right (resp. upper-left, lower-right, lower-left)
triangular with respect to the defined decomposition. If A is diagonal, then

©(A) is block diagonal.



64 4. MORE ON HOMOMORPHISMS FROM DIMENSION TWO

Proof: Let
a b
a=[5 4,
Then
0(A) B = ¢(AEL) = ¢(aBn) = f(a)En
and

Ennp(A) = p(ExnA) = p(dEy) = f(d)E.,

so the first column of p(A) must be [f(a),0,...,0]" and the last row must be
0,0, ..., f(d)]. Thus ¢(A) is block upper-right triangular. Similarly we prove

the other cases.

Step 5.
SRR [1 27 1] 0 1] [0 0 1]
@(OO):OOO,w(Ol):OOy,
- - 10 0 0] - : 10 0 1)
0 0] 0 0 0 1 0] 1 0 0
elly 1 =10 0 0], e\l1 ol)= 1Y 0 0].
L - |1 T 1] - - |1 0 0
Proof: The matrix
1 1
Z\lo o
has rank 1. Since it is upper triangular, we have
1 =z 1
A(loa])-]o o
0 0 0
Similarly
0 17 0 0 1
- 0 0 1
0 0 O] 1 00
() R A B (P R
1 27 1 1 0 0




4.2. A technical lemma 65

Now

soxr =zandy==1.

Step 6.
1 z

a0 v

0 1

where the spectrum of V' is {1},
7 <{O 1}) -
1 0 1

SR

where G : F — M,,_»(F) is semigroup homomorphism.

e}

o o
olmo
o

where E? = I, and

Proof: 'The matrix

has the form

by step 4. Since

we have u = x and similarly v = y. Because the matrix (1) ﬂ is similar

to its square, also V' is similar to its square, and since it is also invertible, its
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spectrum is equal to {1}. ¢ ([(1] (ﬂ) and ¢ ([(1) 2}) have the asserted
11
1 O} = I it follows that E? = I and from

o o]lo o] =10 o)

follows the multiplicativity of G.

form by step 4. From [O

Step 7.
g 4 0 f(a) . 0 . 0
= EG(a)EG(c .
A(lo )= wewpae o
If b # 0 then
o [f@ TeEcw O
%) ({ }) =| 0 GHVGOEGE G(c)EG(b)y
vl o 0 fle) |
and

gp({z S‘DZ G(b)fE(CCL;(a)y G(b)EG(S)VEG(g) 8

Proof: From
a 0] [o 1][1 o]fo 1][1 O]
Oc__10__0a_10__00_

we obtain the first equality. Since
a bl 1 0]1 170 1
0 ¢ |0 £]10 110

Lo [f@ SGwEGW@E  fw)
(54|

Q O

1171 o]lfo 11]
1_

—_
r
O =

we have

0 G(;)VG)EG(a)E  f(b)G(3)y
0 0 7(0)

. 1 1] |11 0 1 T T .. B
Since {O 0}—[0 0} [1 O} we have ' F = x* and similarly Fy = y. So

rTG(D)EG(a)E = 2" EG(a)EG(b) = 7 G(a) EG(D)
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and

C

b

C

FOG .

)y = EG)EGH)G(S)y = EGH)EG(c)y = G(e)EG(b)y.

Similarly we obtain the third equality.

Step 8. 1f a,b,c # 0 then
a b -
P\le al) ™

f(a) 2! G(a) EG(b) f(b)
= | G(¢)EG(a)y G(c)EG(a)(yz" + VEG(% —1)V)G() G(d)EG(b)y
f(c) 2" G(c)EG(d) f(d)
Furthermore, vectors x,y # 0.
Proof: From

a b 1 Of|a b
0 0] |0 Of|c d
we obtain the first row. Similarly we obtain the last row and the first and the

last column. From the equality

@=L a2l 5]

we see that the middle block is equal to

G(c)EG(a)yxTG(g) + G(c)EG(a)VEG(g — S)G(%)VG(S) =
G(e)EG(a)(ya" + VEG(%Z - 1)V)G(§).

Now, if z = 0 then the first row of ¢(A) is equal to [f(a),0, ..., 0, f(b)] for every
A € My(F). So the image of ¢ is a matrix semigroup where every element has
0 on the second place in the first row. Thus it is reducible (Proposition 4.1).

So x # 0 and similarly y # 0. This completes the proof. O
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4.3 Case n=14

Theorem 4.4 Let ¢ : My(F) — My(F) be a semigroup homomorphism,

which s irreducible and non-degenerate. Then it has one of the following

forms:
(a)
a® a’b ab? b3
a b a- | 3a*c a*d+ 2abe 2abd + b*c  3b*d g1 _
P\le al) ™ 3ac®  2acd + bc?  ad? + 2bed  3bd? -
3 Ad cd? 43

= S§(Sym*A)S~,

where g : F — T is a field homomorphism and S € My(F) is an invertible

matrix,

(b)

where g, h : T — F are field homomorphisms with g # h and S € My(F) is an

invertible matrix.

Remark:  If in case (b) hold ¢ = h then ¢ is reducible, since A ® A =
(AVA)® (ANA). But if g(a) # h(a) for at least one a, then ¢ is irreducible,

because ¢ ( (1] 2 is similar to

o O O
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which has four distinct eigenvalues, so if ¢ were reducible, the possible invariant

subspace would be standard, i. e. S~y ([CCL Z

]) S would have a constant
zero block.
Proof. Suppose that ¢ has the form of Lemma 4.3. Since the spectrum of

the matrix V' is equal to {1} we have two possibilities: either V is similar to

0 1
that V = [1 2].

{1 2} or V =1 . In the first case we may assume without loss of generality

0 1

1 2
Case 1. V—{O 1}.

o 3] o el= 0o o] o o]

for the middle parts of their images under ¢ holds VG(2) = G(2)V?. So G(2)

Since

is of the form

G2) = lg Qﬁa]

where « is nonzero. But
a S| |1 Blal|la 0 1 fla !
0 20| |O 1 0 2ol 1|0 1

and {(1] b {a} commutes with V', so we may assume with no loss of generality

that
G2) = l(g 2(;} '

.20 . 1 0 L 1 0
The matrix {0 1] commutes with {0 2} and is similar to {0 2}, SO

EG(2)E, the middle part of its image under ¢, commutes with G(2) and is

20 0

. N a 0
similar to G(2), thus is either equal to [O 2@} or equal to [ 0 a}' The

first case is impossible since

EG(2)EG(2) = {0‘2 0 ]

0 4a?
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and that should be equal to f(2)I. Thus

EG(Q)E:{QS‘ g]
So F is of the form
|0 B
E‘{w 0]

and f(2) = 2a2. Let us look again at the equality

oo )=o)

Writing 27 = [z, 2o] and y* = [y1, y»] we have

1 axq 20633'2 20{2 1 233'1 233'1 + 2.1'2 2+ T1Y1 + T2Y2
0 o 4o 2%y _ |0 a 4oy 2ay1 + 20
0 0 200 202y, 0 0 200 4oy,

0 0 0 202 0 0 0 202

so a =2, 11 =z and y; = y2. (y2 = 0 is impossible since y is eigenvector of

E.) Without loss of generality we may assume x; = 1. Because
2+ mys +x2y2 = f(2) =8

we have y; = 3. The vector y is an eigenvector of F, so § = 1.

The matrix [(1) 2] commutes with {(1) g}, so G(a) is of the form

f(a)  h(a

)9
a b1\ | 0 0 0
‘p({o OD_ 0 0 0
0 0 0
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Sinceab L 1) _ja atb e have
0 0llo 1| |o o [PV

fla) h(a)g(b) g(a)h(b) fb)| {1 1 1 1
0 0 0 0o |l0o 1 2 3
0 0 0 0 |l0oo0 1 3
0 0 0 0 0001

fla) h(a)g(a+b) gla)hla+b) fla+b)]

oo 0 0 0
“ 1o 0 0 0
0 0 0 0

so f(a) + h(a)g(b) = h(a)(g(a) + g(b)) = h(a)g(a + b). If a # 0, we have

g(a)+ g(b) = g(a+ ), so g is additive. Furthermore,

f(a) +2h(a)g(b) + g(a)h(b) = g(a)h(a +b),

so h(a) +2h(a)g(b/a) + h(b) = h(a + b). If also b # 0, we can interchange the
role of a and b, and obtain h(b)+2h(b)g(a/b)+h(a) = h(a+b). Subtracting the
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second equality from the first, we see that h(a)/h(b) = g(a/b)?, so h(a) = g(a?)

and f(a) = g(a?).

Now, if a,b,c # 0, we have

G(c)EG(a)(yz™ + VEG(Z—? — 1)V)G(S) =

| g(a®*d+ 2abe)  g(2abd + b*c)
| g(2acd + bc?)  g(ad? + 2bcd)

so for all a,b,c,d

a® a’b ab?
a b . 3a’c  a’d + 2abe  2abd + b3c
PAle dl) 79 3a2 2acd+b®  ad?+2bed  3bd?

o c*d cd?
and we are in case (a) of the theorem.

Case 2. 'V =1.
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The mapping G : F — My(F) is a semigroup homomorphism, so we have
three possibilities:
(i) G(a) = g(a)I for every a € F where g : F — F is a semigroup homomor-

phism. In this case we may assume without loss of generality that 7 = [1,0].

([ )

is equal to [f(a), g(ab),0, f(b)], thus ¢ is reducible (Proposition 4.1), so this

But then the first row of

case is impossible.
(ii) G(a) is similar to

g9(a) [é h(la)}

for every a € F where g : F — F is a semigroup homomorphism and h: F — F
satisfies h(ab) = h(a) + h(b) with h(a) # 0 for at least one a € F. We may

assume without loss of generality that

6w =t [, "].

o 2

1
. : 0 : 1 0
Let us choose an a with h(a) # 0. The matrix 1 commutes with 0 a

and is similar to {1 0} , SO
0 a

Thus F is of the form

_4 | B
eesft 2]
If £ = [(1) —Bl] then y” = [y;,0] and the first column of ¢ ({z Z}) is
equal to [f(a),*,0, f(c)]; if E = {_01 _15} then 27 = [0, 5] and the first

row of ¢ ({Z Z}) is equal to [f(a),0, *, f(b)]; in both cases ¢ is reducible.
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(iii) G(a) is similar to [h(oa) g(oa)] for every a € F where g,h : F — F
are semigroup homomorphisms and h(a) # g(a) for at least one a € F. We

h(a) 0
0 g(a)}' Let us
choose an a with h(a) # g(a). If h(a) = —g(a), take /a instead of a, so that

may assume without loss of generality that G(a) = [

h(a) # £g(a). The same way as in case (a) we obtain that E is of the form

5=\ o]

: e o 0 1 :
This matrix is diagonally similar to 1 o S0 we may assume without loss
T = 2TE and Fy = y we may assume without

of generality that § = 1. Since z
loss of generality that 27 = [1,1] and y* = [y1, y1]. Now,

. f(oa) h(a)og(b) g(a)oh(b) fgb)
7 ({0 OD “| o 0 0 0
0 0 0 0
and
f(a) h(a)g(b) g(a)h(d) f(b)| |1 1 1 1
0 0 0 0 01 0 w| _
0 0 0 0 0 0 1 o |
0 0 0 0 0 0 0 1
fa) h(a)gla+0b) gla)h(a+b) fla+b)
0 0 0 0
0 0 0 0 ’
0 0 0 0

so h(a)(g(a) +g(b)) = h(a)g(a + b) and g(a)(h(a) + h(b)) = g(a)h(a + b) If
a # 0, we have g(a) + g(b) = g(a +b) and h(a) + h(b) = h(a+b), so g and h
are additive. From f(2) = ¢g(2)h(2) =4 = 2 + 2y, it follows y; = 1. Again, if
a,b,c # 0, we have

G(c)EG(a)(yz™ + VEG(Z—ZZ - 1)V)G(2) - Z((Cclizgg)) gg((z;ZEZ))
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so for all a, b, ¢, d

. [ e o
a | g(a)h(c) g(a g
’ ([ dD | 9(0ha) gle)h(d) o
g(e)h(c)  glc)h(d) g(
and we are in the case (b) of the theorem. O

The only continuous field homomorphisms of complex numbers are the

identity and the conjugation (see [1], page 53).

corollary.

So we have the following

Corollary 4.5 Let ¢ : M3y(C) — My(C) be a semigroup homomorphism,

which 1s irreducible, non-degenerate and continuous. Then

@(A) = Sg(Sym*A)S~,

where g : C — C is the identity or complex conjugation and S € My(C) is an

tmvertible matriz, or

aa ab

a b ac  ad
ol d))=sla
cc cd

where S € My(C) is an invertible matriz.

ba
be
da
de

0
b

&
dd

Sfl

Proof. If ¢ is continuous, then so are the field homomorphisms g and h. Case

(a) of the theorem gives us the first possibility. If we are in the case (b) of the

theorem, then g is the identity and h is complex conjugation or the other way

around. But the matrices

ai ab ba bb
ac ad bé bd
ca c¢b da db and
cc cd de dd

ab
ad
cb
cd

ba
be
da
de

bb
bd
db
dd

are simultaneously similar for all a,b, ¢, d, so we obtain the second possibil-

ity. U
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4.4 Preserving cyclic unipotent

A matrix A € M,,(F) is unipotent if its spectrum is equal to {1}. A matrix
A € M, (F) is cyclic if it has a cyclic vector, i. e. a vector x € F" for which
the set {x, Ax, A%z, ..., A" 'z} spans all F*. Every cyclic unipotent in M,,(FF)

is similar to the matrix

1 0 07

0 0
0 0 0
oo o0 - 1 1
.o 0 0 -~ 0 1

Theorem 4.6 Letn > 3 and ¢ : My(F) — M, (F) be a semigroup homomor-
phism, which is irreducible, non-degenerate and maps a cyclic unipotent to a

cyclic unipotent. Then
p(A) = Sg(Sym" 1 A)S7H,

where g : F — F is a field homomorphism and S € M, (F) is an invertible

matriz.

Proof. Without loss of generality we may assume that

11 0 - 0 07

1 . 0 0

11 00 1 0 0
f(loa)=2 0

00 0 11

L0 0 0 1]

Denoting
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and using the equality
2
1 1|1 0 1 0|1 1
o alloal=lo 2o ) (1

Tip1,j = Tij—2 + 20551

we obtain

for all 4,7 = 1,2,....,n, where x; = 0 if k£ or [ is less than 1 or grater than n.

It follows that ¢ ({(1] 8}) is upper-triangular and ;13 ;41 = 2z;. So

1 % %

10 0 2 x
o(lo o)) =efoo s
o0 o ... onl

We may now apply a simultaneous similarity with an upper-triangular matrix,

([0 2)

is diagonal. This will change ¢ ({(1) ”), but it will still remain upper-

so that

triangular. We again apply a simultaneous similarity with a diagonal matrix,

@ ({(1) ”) = [wij]} 2

the entries will satisfy w;;;1 = 7. This similarity will leave ¢ ([1 0])

so that for

0 2
diagonal. So without loss of generality we may assume that

1 1 w3z v Win-1 Win
0 1 2 Wan—-1  Wanp
11 _10 0 1 L W3p—1 Wap
o(loa])=|0 0 L e
0 0 0 1 n—1
[0 0 O 0 1 ]
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and

\)

(o 2]) =

Let us prove that w;; = (]Z:

(@]
- O

0 0

From the equality (4.1) it follows that

7
0o --- 0
0 0
4 0
o ... 9on1

i) by induction on j — ¢. This is true if j =i + 1.

J
j—1 i—1 § :
2] wl-j = QZ wikwkj.

k=i

Thus we obtain using the inductive hypothesis that

. L k—1\/j—1
(2] ' wzy Wik Wkj = . =
k;;l k;—f—l (2_1)<k_1>
e (k=!G —1)! _
_kzi:l (=) (k—i) (k-1 —k)
(j—1)! J—Z J—= 1\ L
(1 —1)! j—l'z k:)!:(i—l)(2 -2

Now, E1; commutes with 0 2},

E11 it follows that (p(EH) = Ell-

so p(F41) is diagonal. Since {1

1

Similarly we prove ¢(Eq) = E,,. So the

conclusion of step 1 of Lemma 4.3 holds, and thus all the steps of Lemma 4.3

also hold. It means that o = 1 and f(2) = 2" L.

ol a2 fo 2] 1o 2] [y )

From

it follows that

0 0
0 0

gn3 0] =
0 1
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1 0 O 0

0 2 0 0 0 1
oo 4o e ((Y )

0O 0 O ... 9gn-l

so that ¢ ([(1] (1)]) is counter-diagonal. Since the last column of

(o1)

is an eigenvector of ¢ ([(1] (1)]) at eigenvalue 1, we have

0 0 0 1
1
G-l
1 - .
0 0 1 0 0
10 0 0

.11 0 . 1 0 10 -
The matrix {O a] commutes with {O 2}, SO ({O a}) is diagonal of

the form ) )
1 0 0 e 0
Lo 0 fl (a) 0 e
(Y e
| 0 0 0 oo fuoa(a)
where f1, ..., fu_1 : F — F are semigroup homomorphisms and f;(a) f,,—;i—1(a) =

fn-1(a) = f(a) for every ¢ = 0,...,n — 1 writing fo(a) = 1. So

(5 o)) -

fa-1(a)  fa—2(a)fi(b)  fa-s(a)fa(b) -+ fi(a)fu-2(b) fa-1(b)
0 0 0 0 0
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6 ollo ) =16 57

Z (;_ 1>fn k( )fkfl(b) = fnfi(a)fz;l(a + b)

k=1

Since

we have

for every i = 1,2, ...,n. Dividing by f,_;(a) and using

fn—i(a) = fn—l(a’)/fi—l(a’)7

it follows for a # 0 that

o+ b) = (1) @t/

for i = 0,1,...,n — 1. So f; is additive. Let us prove that fi(a) = fi(a’) by

induction on ¢. Interchanging a and b we have

i

a0 =32 ()0

for all a,b # 0. Summing to zero the first and the last term we obtain

i—1

>~ () st = ,; () h®star

Dividing by f;(b) and writing ¢ = a/b we have

ﬁ@)é (,i)fku/c) = file >Z ()f (1/e) = Z ( )

BECE f<>2 (1) 4000 = 10 ()f (1/¢)

so fi(c) = fi(c?) for all ¢ € F except possibly for those ¢ for which fi(1/c) is

i—1 i
=)
k=1

zero of the polynomial
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But the set of zeros of this polynomial is finite and f; is multiplicative, so
file) = fi(¢") for all c € F.
Writing f; = ¢g we have

1 0 0 0

0 a 0 0
Ao e

00 0 g(a"t) |

So we have

¢(A) = Sym" 1A

1 1 1 0 0 1 1 0
forA—lO 1],14—[0 0},14—[1 0],andA—lO a] where 0 # a €

F. But these matrices generate M,,(F) as a semigroup, so
@0(A) = Sym™'A

holds for every A € My(IF). O



Chapter 5

Homomorphisms from a
dimension to one dimension
higher

In this chapter we prove that every non-degenerate homomorphism from the
multiplicative semigroup of all n-by-n matrices over an algebraically closed
field of characteristic zero to the semigroup of (n + 1)-by-(n 4+ 1) matrices
over the same field when n > 3 is reducible and that every non-degenerate
homomorphism from the multiplicative semigroup of all 3-by-3 matrices over
an algebraically closed field of characteristic zero to the semigroup of 5-by-5

matrices over the same field is reducible.

5.1 Singular matrices
We first look where an non-degenerate irreducible homomorphism sends sin-
gular matrices.

Proposition 5.1 Let ¢ : M, (F) — M,,(F) a semigroup homomorphism,
which sends 0 to 0 and identity to identity. Let

k = min{rankA; p(A) # 0}.

81
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Then

Ifrank A = rank B then rank ¢(A) = rank ¢(B).

Proof. A semigroup homomorphism which sends I to I, maps invertible
matrices to invertible matrices. If rank A = rank B, then there exist such
invertible matrices P, ) that A = PBQ. So ¢(A) = ¢(P)¢(B)e(Q) and rank
w(A) = rank p(B).

Let Ey, Es, ..., E; be t = (Z) distinct diagonal idempotents of rank k. Then
rank ¢(E;) =rank ¢(Ey) = ... =rank p(£;) > 1. Since E;E; for i # j has rank
less than k, we have ¢(E;)p(E;) = 0, and ¢(E1), ¢(E2), ..., p(E;) are disjoint
idempotents. We conclude that ¢(rank ¢(E;)) < m, implying (}) < m. O

Proposition 5.2 Assume that n > 3 and m < 2n. Let ¢ : M, (F) — M,,(F)
be a semigroup homomorphism, which is non-degenerate and sends 0 to 0 and
identity to identity. Suppose that rank A = 1 implies rank p(A) = 1. Then
rank A = 2 implies rank p(A) = 2.

Proof. Denote by E;; the matrix which has 1 in the i-th row and the j-th
column, and 0 elsewhere. Matrices @(E1), p(Ea), ...p(Enn) € My (F) are

disjoint commuting idempotents of rank 1. Let
Py = Eyy + Egg, P3s = Eqy + Ess, .., Py = B+ B

Rank ¢(P,) cannot be 1. Suppose rank ¢(P) > 3. Then ¢(P), p(Ps), ...,
©(P,) are commuting idempotents of equal rank with products ¢(P;)p(F;) =

SO(Ell)- SO

rank (o(P) +¢(Ps3) + ...+ ¢(P,)) >2(n—1)+1>m.
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Now ¢(Fa + FEs3) has products of rank 1 with ¢(FP) and ¢(P;), and it is
disjoint from ¢(Py), ..., ¢(P,), so

rank (o(P2) + @(Ps) 4+ ... + ©(Py) + @(Ea + Es3)) =

=rank (¢(P) + @(P3) + ... + p(P,)) + 1,

which is a contradiction. So rank ¢(P) = 2 and, finally, rank A = 2 implies
rank o(A) = 2. O
The next proposition is trivially true for n = 3 and m < 6. We prove it

also for larger n.

Proposition 5.3 Assume that n > 4 and m < 2n or that n =4 and m < 5.
Let ¢ « M,(F) — M, (F) be a semigroup homomorphism, which is non-
degenerate and sends 0 to 0 and identity to identity. Then we have two possi-
bilities:

(a) if rank A =1 then rank p(A) = 1, and if rank A = 2 then rank p(A) = 2,

or

(b) if rank A < n — 1 then ¢(A) = 0, and if rank A = n — 1 then rank
p(A) =1.

Proof. Let
k = min{rankA; ¢(A) # 0}.

Since ¢ is non-degenerate, 1 < k < n—1. If n > 4, then m < 2n < (Z) If
n =4, then m <5 < (;1) So by Proposition 5.1 k=1or k=n — 1.

Case (a): k = 1. The matrices Eq, Fao, ....E,, € M, (F) are idempotents
of rank 1, so ¢(Eh1), p(Es), ...0(Enn) € M, (IF) are disjoint commuting idem-

potents of the same rank, say [. Since they are disjoint, nl < m, so [ = 1.
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Thus rank A = 1 implies rank ¢(A) = 1. Proposition 5.2 now gives us the
asserted result.

Case (b): k =n — 1. We have that rank A < n — 1 implies p(A) = 0. Let
P, Py, ....P, € M,(F) be distinct diagonal idempotents of rank n — 1. Then
o(P), p(Py),...p(P,) € M,,(F) are disjoint commuting idempotents with the
same rank, say [. Since they are disjoint, nl < m, so [ = 1. Thus rank

A =n — 1 implies rank ¢p(A) = 1. O

5.2 Two possibilities

We will now explore the two possibilities which appear in Proposition 5.3. The

first one is that only 0 maps to 0.

Proposition 5.4 Assume that n > 2 and m > n. Let ¢ : M,(F) — M,,(F)
be a semigroup homomorphism, which is non-degenerate and sends 0 to 0 and
identity to identity. Suppose that rank A = 1 implies rank p(A) = 1 and that
rank A = 2 implies rank p(A) = 2. Then

p(A) =S [f(A) ﬂ s

*

where f : F — T is a field homomorphism and S € M,,(F) is an invertible

matrix.

Proof. Denote by E;; the matrix which has 1 in the i-th row and the j-th
column, and 0 elsewhere.

Matrices Ei1, Eo, ..., B, € M, (F) are disjoint commuting idempotents of
rank 1, so (E11), o(FE22), ...0(En,) € My, (F) are disjoint commuting idempo-

tents of rank 1. It follows that they are simultaneously similar to

E117 E227 s Enn S Mm(F)
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Thus we may assume without loss of generality that

Let 6;; be the Kronecker symbol, d,; = 1 if i = j, and J;; = 0 otherwise. We

have
dki0ip(Eij) = ¢(0ridEij) = o(EwEijEn) = Ewp(Eiy)Eu,

SO
_ | tiiEy 0
p(Ey) = { 0 *] :

Since E;;E;; = E;;, we obtain t;; # 0, and since ¢(E;;) has rank 1, we have
x = (0. Thus
p(Eij) = ti; Eij.
We may now apply a simultaneous similarity with a diagonal matrix
dlag(l, t127 ceey tlna 1, ey 1)
to obtain p(Ey;) = E1;. Now
By = p(Eyj) = p(Buly) = Byt = tij By,
so t;; equals 1 for all ¢, 7 and therefore

p(Eij) = E;

j.
Let a be an element in F.
<P(CLE11) = SD(EHCLEHEH) = E11§0(GE11)E11,

so the only non-zero entry of p(aF1;) is at the (1,1) position. So there exists

such mapping f : F — [ that

v(aF) = f(a)Ey.
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Mapping f is obviously multiplicative. Furthermore

SO(GEZ‘J') = @(aEuEnElj) = EﬁSO(aEn)Elj = ilf(a)EllElj = f(a’>Ei'
Now let A = [a;]},_, be a matrix in M,,(F). We have

Eip(A)Ej; = o(EiAE);) = (ai;Eij) = f(ai;) Eij,

so the ij-th entry of ¢(A) is f(a;;) and

Further, the matrix

Eiy+ Ey %
©(E1 + Ey) = l 11 : 22 *}
has rank 2; thus we may assume
Fy+ E *
©(E1 + Ey) = { 11 . 22 0} .
Let A = [a;];;_, be a matrix in M,,(F), such that a;; = 0if ¢ > 3. Then
. . E11 + EQQ * f(A) * . f(A) x
(P(A) - @((Ell + E22)A) - [ 0 0:| [ * x| 0 ol

Let us now prove that f is additive. For a,b € F we have

fla+b)E; = p((a+b)E1) = p((aEy; + bEw) (B + Ey)) =

_ f(a)Engf(b)Em S} [Ell‘(f]'Em ;]:[(f(a)Jr({(b))En S}

so fla+b) = f(a)+ f(b), and thus f is multiplicative. O
The second possibility is that only almost full rank matrices map to non-

zero matrices.
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Proposition 5.5 Assume that n > 3 and m > n. Let ¢ : M, (F) — M,,(F)
be a semigroup homomorphism, which is non-degenerate and sends 0 to 0 and

identity to identity. Suppose that rank A < n — 1 implies p(A) = 0 and that
rank A =n — 1 implies rank p(A) = 1. Then

A

oty = [FCTD) <] 5

*

where f:F — F is a homomorphism of the multiplicative semigroup (F,-) and

S € M, (F) is an invertible matriz.

Proof. Denote by E;; the matrix which has 1 in the i-th row and the j-th
column, and 0 elsewhere. Introduce P; = I — E; € M, (F), and let I; be the
identity matrix in M;(F). Further, let IV; be the matrix in M,;(F), defined
by N; = Fig+ ...+ E;_1;. Denote P;; = [;_; @ NjT_i+1 ® I,—; ifi < j, and
Pj=L oy ®Ni 1 ® I if i > j.

The matrices Py, Py, ..., Py, € M, (F) are disjoint commuting idempo-
tents of rank n — 1, so @(F11), p(Fa2), ..., o(Enn) € Mpu(F) are disjoint
commuting idempotents of rank 1. So they are simultaneously similar to
Eyi, B, ..., By € M (F). Without loss of generality we may thus assume
that

©(Py) = By

Observe that P;; = PPy and PP has rank less than n — 1 if & # [. We

now have
Oribj1p(Pyj) = ¢(0idj1Pij) = (P PijPu) = Ewe(Pij) En,

SO
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The matrix ¢(F;;) has rank 1, so ¢;; # 0 and * = 0. This implies
p(Pij) = tij Eij.
We may now apply a simultaneous similarity with a diagonal matrix
diag(1, 12, .oy tin, 1, .oy 1)
to obtain p(Py;) = Ey;. Now
Eyj = p(Py;) = o(Pubyj) = EuitijEij = tij Enj,

so t;; = 1 for all ¢, and
p(Pyj) = Eij.

Let A € M,,_1(F) be arbitrary matrix and A’ = 0; & A € M, (F). Then
QD(A,) = ‘P(PMA/PM) = E11<,0(A/)E11,

so the only non-zero entry of p(A’) is at the (1,1) position. Thus we have a
multiplicative mapping ¢’ : M,,_1(F) — F. By Proposition 2.1 there exists a
multiplicative mapping f : F — [F such that

¢'(A) = f(detA)

and

()D(A/) = f(detA)E11 = f(detA'H)En

Now let B € M,,(F). We have
Eiip(B)Ej; = ¢(PuBPj;) = (P PuBPj Pyj) = Enp(P1BPj) Eyj.
The matrix Py; BPj; has the form of A’, so ¢(P;BP;j;) = f(detB;;)Eq; and
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Thus the ij-th entry of ¢(A) is f(detA;;) and
_ [f(Cot(a))
p(A) = [ . N
This ends the proof. O
We will now give the proof of the Theorem 2.2.
Proof. (of the Theorem 2.2) Let n = 2. Since ¢ is non-degenerate, also

m = 2 and ¢ maps matrices of rank 1 to matrices of rank 1. By Proposition

5.4 we obtain the asserted form. Assume now that n > 3 and let
k = min{rankA4; ¢(A) # 0}.

Then (Z) < m by Proposition 5.1. Suppose that m < n. Then k = 0, which is
impossible or k = n, which gives us a degenerate homomorphism. Thus m is
equal to n. By Proposition 5.3 we have two possibilities:

(a) rank A =1 implies rank p(A) =1 and rank A = 2 implies rank ¢(A) = 2
or

(b) rank A < n—1 implies ¢(A) = 0 and rank A = n—1 implies rank p(A) = 1.

In case (a) we obtain by Proposition 5.4 a form
p(A) = Sf(4)S7,

where f : F — F is a field homomorphism and S € M,,(F) is an invertible

matrix. In case (b) we obtain by Proposition 5.5 a form
p(A) = Sf(Cof(4))s,

where f : F — F is a semigroup homomorphism and S € M,,(F) is an
invertible matrix. It remains to prove that f is additive. To show this, we

observe that

"5 o= ([ oo (b o))
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so that
b 0

o 8o 2o
= (f(b)Ea1 + f(a)Exn)(Ers + Ex) = (f(a) + f(b))Eas.

Thus we have f(a +b) = f(a) + f(b) for all a,b € F and this ends the
proof. O

5.3 Casem=n-+1

We will now prove the main theorem of this chapter. We will assume that
m = n + 1 and show that in this case either of the two possibilities of the

previous section gives us reducibility.

Theorem 5.6 Assume that n > 3. Fvery non-degenerate semigroup homo-

morphism ¢ : My, (F) — M,1(F) is reducible.

Proof. Suppose ¢ : M, (F) — M,;1(F) is an irreducible non-degenerate
semigroup homomorphism. An irreducible semigroup homomorphism maps 0
to 0, I to I and invertible matrices to invertible matrices. By Proposition 5.3
we have two possibilities:

(a) rank A = 1 implies rank ¢(A) = 1 and rank A = 2 implies rank p(A) = 2
or

(b) rank A < n—1 implies ¢(A) = 0 and rank A = n—1 implies rank p(A) = 1.

In case (a)

o) =s[ /A s

*
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where f : F — F is a field homomorphism and S € M,,.(F) is an invertible
matrix. So for arbitrary A € M,,(F) we now have
f (A)  p2(4) }
A) = :
<p( ) [9021(14) 9022(A)
If also B € M,,(F), then

A~

_ f(AB) @12(143 _ f(A) 9012(14) f(B) <P12(B)
QP(AB) B [9021(143) @22(143 } B [@21(14) @22(14)} [

_ {f(A)f(B) + 019(A) oo (B) *} |

* *

~— —

So v12(A)p21(B) = 0 for all A,B € M, (F). If p13(A) # 0 for some A €
M., (F), we have a nonzero linear functional, which is zero on the image of .
So ¢ is reducible Proposition 4.1. If ¢12(A) = 0 for every A € M, (F), ¢ is
reducible by the same argument.

In case (b) A
QO(A) =S [f(COf(A)) i:| S_l,

*
where f : F — F is a semigroup homomorphism and S € M, 1(F) is an
invertible matrix.

We consider the images under ¢ of the permutation matrices. Denote by
R; the transposition matrix I;_1 @ (Ea + Eo1) ® I,—;— fori =1,2,...,n — 1.
If j <iorj>i+1, wehave Pj;R, = P;;R;Pj;, so E;jp(R;) = Ej;0(R;)E;;,
thus the only non-zero element in the j-th row of ¢(R;) is in the j-th position.
The same holds for the j-th column. On the other hand, P;R; = P11, so
Eiio(R;) = Ej(i41, thus the only non-zero element in the i-th row of ¢(R;) is
in the (7 + 1)-st position and vice versa. The same holds for the i-th and the
(i + 1)-st column. We have thus seen that

~

o(R) = S [f (Cof(Ry) S] .
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The entry in the last row and column must be +1, since R; is an involution.
Since the matrices R; generate the whole group of permutation matrices, we

have for every permutation matrix P

A

(,D(P) =9 {f(COS(P)) :81:| S_l.

Now let A = A’ ® I,,_5, where

A= [‘CL Z} € My (F).

p(4) =9 [f (15 e]) © f(ad =0 j -

Multiplying A by Pss, ...P,, on the left or on the right side we obtain
©(A)pt1,, =0 and p(A)jpp =0
for i = 3,...,n Thus

p(A) =5 fqgo SD f(ad—ObC)Ing Z 57

* 0 *

Let C1,(n+1) be a compression to the first, second and last rows and columns

of a matrix. Define

Y(A) = Clant1) (571<P(A/ D [n72)S> .

It is obvious that v is multiplicative and we have just seen that
cfld ¢
=[G -
(2= ) ]

By Theorem 3.4 we have two possibilities:
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LD

and f is additive. In this case we have

pA) =5 f({zo fLD f(ad—ObC)In_g 2 5=
0 0 5
s o],

for A= A" & I,_». The same holds for permutation matrices. Since matrices
of the form A = A’ & I,,_, and permutation matrices generate the complete

M., (F), we obtain

) — S V(Goof(A)) ]

for all A € M,,(F), and consequently ¢ is reducible.

(ii)
? 2 de

(-5 2 5])
2db 2ca da+ cb

where f(x) = g(z?) and g is additive. In this case we have

&z A 0 de
. V¥ a? 0 ba 1
PA =Sl 0 (@d—bo?l, 0 5
2db  2ca 0 da + cb

for A= A" @I, 5. Now let

A=

=}
—_
)

EB [n73

and B = Ry AR5, so

B=10 1 0|®I,s,



94 5. HOMOMORPHISMS TO ONE DIMENSION HIGHER

We have

11
AB=BA= 10 1 0|aI,,
0 0

but on the other hand

1 0 0 0 O
1 1.0 O 1
e(A)=5S[0 0 1 0 oS
0 0 0 I,.3 0
2 0 0 O 1
(1 00 0 O0][1 00 0 O]
0 0 1 0 0 1 1.0 O 1
e(B)=S|0 1 0 0 0 0O 01 0 O
0 00 I,3 0 0 00 I,3 O
000 0 £1]]2 0 0 O 1
1 0 0 O 0 1 0 0 0 0
0 0 1 0 0 0O 1 0 0 0
010 0 O0|S*'=s|1 01 0 Z£1|85
0 00 I,.3 0 0O 0 0 I,.5 O
0O 00 0 41 +2 0 0 0 1
SO
1 0 0 O 0
1£2 1 0 0 1
e(Mp(B)=S| 1 01 0 1|5
0 0 0 I,35 O
2+2 0 0 0 1
and _ .
1 00 0 0
1 1 0 0 1
o(B)p(A)=S|1+2 0 1 0 £1|Sh
0 0 0 I,3 O
[2+2 0 0 O I
This is a contradiction, so that the possibility (ii) cannot occur. ]
Remark: Case (a) in the proof is general: If n > 3, m > n and ¢ :

M, (F) — M,,(F) ia a non-degenerate semigroup homomorphism such that
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rank A = 1 implies rank ¢(A) = 1 and rank A = 2 implies rank p(A4) = 2,
then ¢ is reducible.

54 Casen=3and m=4,5

We will now explore the case n = 3 a little further.

Theorem 5.7 Assume that m = 4 or m = 5. FEvery non-degenerate semi-

group homomorphism ¢ : M3(F) — M,,(F) is reducible.

Proof. If m = 4, this is a special case of Theorem 5.6, so let m = 5.
Suppose ¢ : M3(F) — M;5(F) is an irreducible non-degenerate semigroup
homomorphism. Again we have two possibilities:
(a) rank A = 1 implies rank ¢(A) = 1 and rank A = 2 implies rank p(A) = 2
or
(b) rank A = 1 implies ¢(A) = 0 and rank A = 2 implies rank ¢(A) = 1.

In case (a) the same proof as in Theorem 5.6 works.

In case (b)

~

oy = s [FEH =T

*
where f : F — F is a semigroup homomorphism and S € M;(F) is an invertible
matrix. Similarly as in Theorem 5.6 we prove, that if P is a permutation

matrix, then

p(P)=5 {f(COOf(P)) 2} S, (5.1)

and if

I

Il
S0 9
O QS
—_ o O
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then y
A) =S f<{b a}) ! ' g1
p(A) = 0 flad —bc) 0 '
* 0 *

Let C4 245 be a compression to the first, second and fourth and fifth rows and

columns of a matrix. Define ¢ : My(F) — M y(F)
Y(A') = Crous (S'p(A' @ L)S).
It is obvious that v is multiplicative and we have just seen that
~(d ¢
a b f *
o[-0 D) o
c d N N
The map v may be irreducible or reducible. If it is irreducible it has one of the
forms (a) or (b) of Theorem 4.4. If it is reducible, its image has an irreducible
invariant subspace of dimension at least two, so this irreducible subspace is of
dimension two or three. Thus we have four possibilities to explore:
(i)
a3 c2d cd?
o] b1\ . v ad a’b ab?
c d|) 9| [32d 3a%c a2d+2abc 2abd+ b3 | |
3bd* 3ac® 2acd + bc*  ad® + 2bed

where f(z) = g(2?) and g is additive. In this case we have

[ &3 3 0 2d cd?
b3 a? 0 a?b ab?
©0(A) = Sg 0 0 (ad —bc)? 0 0 St
3b%°d  3a’c 0 a’d + 2abc  2abd + b*c
| 3bd*  3ac? 0 2acd + bc*  ad® + 2bed |
for A= A" @ I,. Furthermore, we have
(01 0 0 0]
1 0 0 0 O
o(R)=S|0 0 -1 0 0| S,
00 0 01
00 0 1 0]
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and, using (5.1), it follows that

-1 00 0 0
0 01 0 0
o(R)=S|0 1 0 0 0|85
0 0 0 €1 €9
0 0 0 e3 ey

€1

where the lower-right corner £ = l
€3 €4

and ey + ez # 0, so that e; + ex + €3+ e4 # 0. Now let

1 1 0
A=1{0 1 0
0 0 1
and
1 0 1
B=R,AR, = |0 1 0
0 0 1

The matrices A and B commute, but

1 00 00
1 1011
e(A)=S[{0 0 1 0 0|5,
3001 2
(30 0 0 1]
[ [1 0 0 0 0] ]
0 1 0 0 0|F
o(B) =S -1 0 1 11 :
-3 0 0 1 2
500 sl e

so the upper-left 3-by-3 corner of S~1p(A)p(B)S is equal to
1
1
—1

0 0 0
1 0|l+1{1 —3 00
0 1 0

o = O

—1

€9 . . . .
is an involution similar to

1
E1|:_3 0 0:|: 1—3(€1+€2—|—€3+€4)

97

0 1
1 0

and the product [(1) (1)} E is of order three or one. In particular, e; + e, =0

0
1
0

_ o O
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and the upper-left 3-by-3 corner of S~'¢(B)p(A)S is equal to

1 0 0 0 0 1 0 0
1 1 0[+1]0 O E[g 8 8} = 1 1 0
-1 0 1 1 1 —1+3(e1+es+e3+eq) 0 1

This is a contradiction, possibility (i) cannot occur.

(i)

g(d)h(d) g(c)h(c) g(c)h(d) g(d)h(c)
w([a bD: g(0)n(b) - g(a)h(a) g(a)h(b) g(b)h(a) | o
¢ d g()h(d)  gla)h(c) g(a)h(d) g(b)h(c) ’
g(d)h(b) g(c)h(a) g(c)h(b) g(d)h(a)

p(A) =
g(d)h(d) g(c)h(c) 0 g(e)h(d) g(d)h(c)
g(b)h(b)  g(a)h(a) 0 g(a)h(b)  g(b)h(a)
S 0 0 g(ad — be)h(ad — be) 0 0 St
g(b)h(d)  g(a)h(c) 0 g(a)h(d) g(b)h(c)
g9(d)h(b)  g(c)h(a) 0 g(e)h(b)  g(d)h(a)
for A=A"&® I[,. Again
1 0 0 0 O
0 01 0 0
o(R))=S|0 1 0 0 0S5
0O 0 O €1 €9
0 0 0 e3 ey
er e 0 1

1 0}, and

2 . . . ..
] is involution similar to [
€4

1 1 0
0 1 0
0 0 1

where lower-right corner £ = [e
3

e1+ ey +e3+ ey #0. For

A:

and

B = R,AR,

I
oo~
o~ o

—_ O
| I — |
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we have
10 0 0 0
1 1 0 1 1
pA)=S{0 0 1 0 0[S
1 00 10
1 00 01
and
1 00 0 0
0 1 0 0 0| F
oB)=5| |1 0 1 11
1 00 10
E [1 0 O} E [O 1} E
so the upper-left 3-by-3 corner of S~1p(A)p(B)S is equal to
1 0 0
1+61+€2+63+€4 1 0
1 0 1

and the upper-left 3-by-3 corner of S~ (B)p(A)S is equal to

1 0 O
1 10
1‘|—€1+€2—|—€3+€4 0 1

Since A and B commute, this is a contradiction, possibility (ii) cannot occur.

(iii)
~(ld ¢
b f *
w([a D = [ ({b D ]
¢ d 0 ! *
and f is additive. In this case we have

A~

oty = [FCTA 2] 5

for A= A" @ I;. The same holds for permutation matrices. Since matrices of
the form A = A’ ® I; and permutation matrices generate complete M3(F), we

obtain

o) — S [f(coof(A)) s
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for all A € M;3(F), and consequently ¢ is reducible.

(iv)
2 A de

2db  2ca da -+ cb
0 0 0

<
VR
| — |
o
Qo
—_
~
Il
@
(e
%)
=
(V)
o
IS
¥ ¥ ¥ ¥

where f(z) = g(2?) and g is additive. In this case we have

a2 A2 0 dc <
b a? 0 ba s
©0(A) = Sg 0 0 (ad— bc)? 0 0] |S!
2db  2ca 0 da 4+ cb *
0 0 0 0 *
for A= A"® I,. Now
01 00 O
1 0 0 0 O
o(R)=S|0 0 1. 0 0 |S!
0 00 1 a
0 0 0 0 =1

If the last entry in the last row is equal to 1, then a = 0 and the lower-right
2-by-2 corner of every permutation matrix is equal to I, and consequently ¢
is reducible. So the last entry in the last row is equal to —1. We may now
apply a simultaneous similarity with a matrix of the form I 4+ aFy5 to obtain

a = 0 and without disturbing the first four columns. Further,

100 0 0
001 0 0
o(R)=S|0 1 0 0 0SS
0O 0 O €1 €9
0 0 0 e3 ey

where the lower-right corner
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. . . o 1 0 1 0 .
is an involution similar to [ 0 _J and the product [ 0 _J E is of order

three or one. So either F = {(1) _01] or it has the form

_1
-7 4
Wb 2

where b # 0. In the first case again ¢ is reducible, in the second case we may
apply a simultaneous similarity with a diagonal matrix of the form I, & [(] to

obtain b = % So

1 0 0 0 0O
0O 01 0 0
p(R))=S|0 1 0 0 0]|sS!
0 0 0 —3% %
000 5 3
For
1 1 0
A=1(0 1 0
0 0 1
and
1 0 1
B=RAR, =10 1 0
0 0 1
we now have
1 0 0 0 =«
1 1 0 1 y
e(A)=S|0 0 1 0 0|8
2 0 01 =z
00 0 0 1
and ] 3 _
1 0 O 7“*‘ %
0 1 0 0 0
3 _
PB)=S| 1 0 1 —3+3 j+4|87
-1 0 0 1;2 _Zgz
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Since A and B commute, ¢(A) and ¢(B) must also commute. Thus we obtain

:c:O,y:%andz:O. Now let

1 00
C=RRRARRR; = [0 1 0
0 1 1
The matrices A and C' commute, but
1 0 0 0 O
1101 3
0(A)=S]10 0 1 0 0|95
2 0 010
0 00 0 1
and
10 0 0 O
01 1 -1 —3
e(C)=S|0 0 1 0 0 |S
0 0 -1 1 0
00 -3 0 1
do not commute. Again we get a contradiction and this ends the proof. O

5.5 Case m =06

In this concluding section we will give three examples of irreducible non-
degenerate homomorphisms, which go to the dimension 6. We have seen in
previous section that every non-degenerate homomorphism from dimension 3
to dimension 5 is reducible. But there exist an irreducible non-degenerate ho-
momorphism from dimension 4 to dimension 6, and two different irreducible
non-degenerate homomorphisms from dimension 3 to dimension 6.
Example:  There exist two essentially different irreducible non-degenerate
semigroup homomorphisms ¢ : M3(F) — Mg(F):

(a) Symmetric square:

¢(A) = Sym®4;
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explicitly
a b c
el |d e f||=
g h 1
[ a2 B ab ac be ]
a? e f? de df ef
g>  h* 2 gh gt hi

2ad  2be 2cf ae+bd af+cd bf +ce
2ag 2bh  2ci ah+bg at+4cg bi+ch

| 2dg  2eh 2fi dh+eg di+ fg ei+ fh]

(b) Symmetric square of exterior power:
p(A) = Sym?(A A A);

explicitly, we give it column by column:

a b c
¥ d e f =[b1 by by by bs bg]
g h 1
where
b2d? — 2abde + a?e?
b%2g® — 2abgh + a*h?
e2g? — 2degh + d*h?
2b%dg — 2abeg — 2abdh + 2aeh |’
2bdeg — 2ae%g — 2bd*h + 2adeh
i 2beg? — 2bdgh — 2aegh + 2adh? ]

cAd? — 2acdf + a®f?
c2g® — 2acqgi + a*i®
2g% — 2df gi + d?*
2c2dg — 2acfqg — 2acdi + 2a%fi |’
2cdfg — 2af?g — 2cd?i + 2adfi
| 2¢fg* — 2cdgi — 2afgi + 2adi* |

[ c?e? — 2bcef + b2 f2
c2h? — 2bchi + b**
f2h? — 2efhi + e2?

2c2eh — 2befh — 2bcei + 2b%fi |’
2cefh — 2bf*h — 2ce?i + 2befi

i 2cfh? — 2cehi — 2bfhi + 2beq? ]

by

by

>
w
I

103
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by =
bs =
bg =
Example:
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bed? — acde — abdf + a’ef

beg? — acgh — abgi + ahi

efg® — dfgh — degi + d*hi
2bedg — aceg — abfg — acdh + a®fh — abdi + a®ei
cdeg + bdfg — 2aefg — cd*h + adfh — bd?i + adei
| ceg® +bfg* — cdgh — afgh — bdgi — aegi + 2adhi |

bede — ace? — b2 df + abe f

begh — ach? — b?gi + abhi

efgh — dfh? — e*gi + dehi
beceg — b2 fg + bedh — 2aceh + abfh — b*di + abei
ce’g — befg — cdeh + 2bdfh — aefh — bdei + ae*i

| cegh + bfgh — cdh® — afh* — 2begi + bdhi + achi |

c2de — bedf — acef + abf?

c2gh — begi — achi + abi®

f?gh — efgi — df hi + dei®
c?eqg — befg + c2dh — acfh — bedi — acei + 2abfi
cefg—bf2g+ cdfh — af?h — 2cdei + bdfi + aefi
| 2¢fgh — cegi — bf gi — cdhi — afhi + bdi® + aei® |

There exists an irreducible non-degenerate semigroup homomor-

phism ¢ : My(F) — Mqg(F), an exterior power:

P(A) = ANA;

explicitly, we give it column by column:

@11 a2 13 diq
Q21 Q22 A23 A4 .
@ —[01 Co C3 C4 Cy 06]
31 A4z 33 dA34
Qg1 Q42 Q43 Q44
where -~ .
a11G22 — A12Q21 A11G23 — A13421
a11a32 — 1231 Q11033 — Q13431
_ | 11042 — Q12041  A11043 — G13041
[e1 ] =

A210A32 — A2203]1
21042 — A22041
| 431042 — A3204

21a33 — Q23031
21043 — A23041

31043 — 33041 |
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[c3

o

11024
11034
a11044
21034
21044
| 31044

12024
12034
A12044
A22034
A22044

| 32044

14021
a14G31
A14G41
a24G31
Q24041
a34Q41

14022
14032
A14042
A24032
A24042
A34G42

12023
A12a33
A12a43
(22033
22043
32043

13024
13034
13044
23034
23044
33044

13022
13032
13042
23032
23042
33042 |

14023
14033
14043
A240G33
A24Q43

34043 |
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Izjava

Izjavljam, da je to delo rezultat lastnega raziskovalnega dela.

Damgjana Kokol Bukovsek
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