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ABSTRACT

This paper discusses various estimators for the nearest neighbour distance distribution fDnofi@n
stationary point process and for the quadratic contact distribution funidtioof a stationary random closed

set. It recommends the use of Hanisch's estimatd,ofrhich is of Horvitz-Thompson type, and the minus-
sampling estimator dfly. This recommendation is based on simulations for Poisson processes and Boolean
models.
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INTRODUCTION structures. They are sometimes considered in second-
order stereology though they are not second-order

Random sets are successful models for variougharacteristics in the classical use of the term ‘second-
spatial structures such as porous media, phases f{der’ in probability and statistics.
two- or multi-phase materials or biological tissues.  For the statistical estimation 8fand of cdf’s there
They are studied in many stereological studies. Irexist various methods, see Stoyan, Kendall and Mecke
their statistical analysis, contact distributions play an1995). The classical estimators are minus-sampling or
important role, see Serra (1982), Stoyan, Kendalborder estimators. Following Hanisch (1984) and Chiu
and Mecke (1995), and Ohser ancudklich (2000). and Stoyan (1998), the approach of Horvitz-Thompson
Of particular interest are the linear, spherical andsee Overton and Strehman, 1995) can be used, what
quadratic contact distribution function (cdfj,,Hs leads to refined estimators. Finally Kaplan-Meier-like
andHq. For a stationary random closed sét the  estimation is possible, see Baddeley and Gill (1997).

spherical cdfHs is the distribution function of the All these estimators are ratio estimators, which
random distance from an arbitrary point outsideXof ontain in the denominator an unbiased estimator
to its nearest neighbour iK. The quadratic cdHg  of area fractionp or intensity A. In the classical

is the distribution function of an analogous distanceastimation procedurep and A is estimated from the
but measured in a Minkowski metric where the unityhole window of observation, while the numerator
Sphere is the unit cube. It is of partiCUIar value in the|s obtained 0n|y from a subwindow or by some
statistical analysis of pixel images, where the squareform of edge correction. Consequently, numerator
based metric is natural. The cdf's characterize inand denominator may show little correlation and are
some sense the size of the complem¥fitof X, as  estimated with different precision. Thus it seems to
introduced by Delfiner (1972). If, in the case of abe natural to ask for estimators where numerator and
porous mediumX is a model for the matrix, theK®  denumerator are (more) positively correlated and their
is the union of all pores and the cdf’s characterize therecision is closer, even if this leads to a loss of
size of the pores. precision of the denominator. A possible approachisto
use adapted estimatorspéndA . Such a modification

L . %f classical ratio estimators has been shown to be
statistics, see Diggle (1983), where often the charact§fery syccessful in the estimation of second-order
F is used. Perhaps still more important for pointcnaracteristics such as the pair correlation function of
processes is the nearest neighbour distance distributi¢gngom sets (Mattfeldt and Stoyan, 2000) and of point

functionD (or G is Diggle’s notation), which does not processes (Landy and Szalay, 1993, and Stoyan and
have a counterpart for general random closed sets.  stoyan, 2000).

The cdf's andD play an important role in It is an open question which effect is possible
the characterization of the variablity of spatialif adapted estimators op and A are used in the
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estimation oD and cdf’s. The present paper discussestructure of this estimator may be clarified by writing
such estimators foD and Hy and compares their the denominator as

behaviour with that of the classical minus-sampling

estimators. Since it is obviously very complicated z 1Web(o,r)(x)‘
to do rigorous calculations, which are very difficult s

even in the particular case of a Poisson process, th4|ah
behaviour of these estimators is investigated by Montg
Carlo simulations.

e estimatoD,, is frequently used and yields for

amples not too small acceptable or good results, see

also below. As a function af Dy (r) is not necessarily
Simulations for Poisson processes, a clustemonotonous, see Fig. 4.14 in Stoyan, Kendall &

process and Boolean models lead to a clear resulMecke (1995) and Fig. 9 in Baddeley et al. (1993).

For D the Horvitz-Thompson estimator introduced by

. . F la (1 itt
Hanisch (1984) should be used, while dy all the ormula (1) can be rewritten as

more sophisticated estimators are not better than the
classical minus-sampling estimator if the criterion is

5 Dim(r)

the mean squared error.

ESTIMATORS OF THE NEAREST
NEIGHBOUR DISTANCE
DISTRIBUTION FUNCTION D

VARIOUS D ESTIMATORS
The functionD is the distribution function of the

Dim(r) = A1) )
with
[X% Lwvenor) ¥ Lo (S)
P == Webon)
and
Am(r) = d(Web(o,r))

~ vy(Web(o,r))’

distance from a typical point of the analysed pointwherevy(Web(o,r)) is the volume oW & b(o,r).

processb in RY to its nearest neighbour, see Stoyan
Kendall and Mecke (1995). ® is assumed to be
stationary and to have intensify. It is observed in
a sampling windowV, which is a compact convex set
of positive volumev,(W). In the case of a Poisson
process of intensity, D(r) has the form

D(r) = 1—exp(—Abyr?)

for r>0,

whereb, denotes the volume of the unit spherer.

~

' Obviously, Ay(r) is an unbiased estimator df,

which could be called the minus-weighted estimator
of intensity A, andDy,(r) is an unbiased estimator of
AD(r). Thus,Dn(r) is a ratio-unbiased estimator of
D(r) of the type described in the introduction, with
adapted intensity estimator. One can expect positive
correlation, betweeD,(r) andAny(r), i.e., large values

of Dm(r) are connected with large values &f(r).
This relationship reduces fluctuations bf,(r) and

Before starting with the explanation of estimators ofexplains the good experience with the border-method

D, it is helpful to give all points ofd in W two real-
valued marks andc. For a fixed poink, s(x) denotes
the distance fronx to its nearest neighbour W and
c(x) is the distance from to the edge oW.

estimator. Note that it does not help if the true value
of A would be known; replacindn(r) by A leads to
much larger squared deviations in the estimation of
D(r).

The classical and perhaps most natural estimator of  TheHanisch estimator of D(r) uses all points i
D is the minus-sampling or border-method estimatokvith nearest neighbour W and is defined as

Dm,
B = T Lyepion XL (/PWEb(0,1) (1)

[xs]
forr >0,

®3)

with
Lwven(o, X o5 (S)

where the sum in the numerator yields the number of
points in the reduced windoW © b(o,r) with nearest
neighbour closer thanand the denominator is the total

o or
number of points iW & b(o,r).

The summation goes here and elsewhere in this
section over all marked point paifg;s] of ®. The
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and window) with growing intensityA or point number
1, ) probably in proportionality to MV/A. The estimation
A= ©b(os) _ standard deviations fdb,, are similar. The form of

H KXZSI vy(Web(o,s)) the s(r)-curve shown in Fig. 1 is quite natural: For

r =0, whereD(r) and all its estimators vanish, and for

()]H is pracically the same aB,(R) on page 140 larger, whereD(r) and its estimators are close to one,
of Stoyan, Kendall & Mecke, 1995).D(r) is an there is no much room for fluctuations, which appear

unbiased estimator oiD(r), and A, is an adapted O medium values of.

unbiased estimator of. Dy (r) counts all pointsx For Dy, quite large biases appear. The maximum
with s(x) < c(x) weighted by the volume/y(W &  values are 0.068\(= 50), 0.044 4 = 100) and 0.027
b(o,s(x))); it is so organized that it can be really (x = 200) in the planar case & 2) and 0.159% = 50),

determined using _the information in the samplingy 124 g = 100) and 0.100X = 200) in the spatial case
windowW. While Dy, (r) appeared in Hanisch (1984) (d=3).

as arad hoc estimator, Baddeley (1998) showed that it
is a Horvitz-Thompson estimator. As an example of a non-Poisson point process, a

, , _ ~ . planarGauss-Poisson process (as in Stoyan, Kendall

_The intensity espmato_ﬂH is mdepend_ent of. g Mecke, 1995, p. 161) with parameters, =
This guarantees thd2y (r) is monotonous irr. The A,pL = P, = ps = 1/3 and inter-pair distance 0.15
authors do not know whether there is an estimatar of a5 analysed. This process belongs to the few number
which is better adapted ©y,(r) and produces better ot hrocesses which are not Poisson processes but for
estimates oD(r). which there are known formulas fdd(r). It is a

Unfortunately, Hanisch (1984) had presentedNeyman-Scott cluster process with empty clusters,
(perhaps following a wrong recommendation by the'clusters’ consisting of a single point and two-point
first author D.S.) together with,, (r) (his formula (4)) ~ clusters with constant distance between the points.

also otheD-estimators, for example For this process, the biases turned out to be a bit

)1 (s larger than for the Poisson process, but the standard
A _ [ZS] ]Web(qs)( ) [07”( ) deviationss(r) for the Hanisch estimator are quite
n(r) = Y Lyopoo® similar to those for the planar Poisson process of equal
hoy Vob(es) intensity. The star in Fig. 1 marks the maximunsgf)

for D,,(r) in the Gauss-Poisson process case and

Just this estimator appeared later in Cressie (199190- Also here the biases far are much larger than
p. 638, and was also used in Baddeley et al. (1993for Dy andD,,.
It is not an unbiased estimator and also not a ratio-
unbiased estimator. As simulations showed (see
below), it has a large squared deviation and it should”” | ) I
be forgotten. 0.10 L

1 1 1 1

0.08 L

COMPARISON OF D ESTIMATORS 0

In order to compare and to evaluate the various
estimatorgDp,, Dy andDy, ), they were applied to each
1000 simulated point patterns in the unit square and.: - -
cube ofR? andR3, respectively.

0.06 r

0.04 r

0.0 T T T T
0.0 0.05 0.10 0.15 0.20

For Poisson processes of intensitiess 50, 100
and 200 the following results were obtained. The
biases 0Dy, andD,, in the planar and spatial cases areFig. 1: Estimation standard deviation s(r) for the
small, typically negative, usually in the order of 0.001Hanisch estimator Dy, in the case of a Poisson process
...0.005. They are smaller for= 2 than ford =3 and independenceonr for A = 50. Star: maximum of s(r)

r

smaller forD,; than forDy, for Gauss-Poisson.
Fig. 1 shows the estimation standard deviatgn) Concluding, we recommend the use of the
for the Hanisch estimatdp,, in dependenceonfor A Hanisch estimatorD(r) in the form (3). It

= 50. The behaviour foh = 100 andA = 200 and for produces monotonous estimates with small biases and
the spatial case is similar, the values decrease (for fixegstimation variances. It is easy to implement, see
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Stoyan & Stoyan (1994), p. 296 (replaBethere by The estimatqu(r) will be compared with another

B). estimator oHq(r), namelyH2(r). It differs fromHg(r)
by different handling with volume fractiop: I—igj‘(r)
uses an adapted estimatorgfnamely

ESTIMATORS OF CONTACT

DISTRIBUTION FUNCTIONS p(r) = vg(Wear)nX)/vgWeq(r)),

VARIOUS CONTACT DISTRIBUTION which is of the same nature a&m(r) above and

ESTIMATORS intensity estimators used in the context of second-order
characteristics.

Contact distribution functions (cdf’'s) are o
frequently used in the statistical analysis of point ~Consequently, itis
processes as well as random closed sets. In this section ~
we concentrate on the case of random closed sets with Hg(r) = 1—A%(r) (7)
positive volume fraction. As a practically important
particular case the quadratic céfy is considered, with
which is of special interest in statistical analyses of

pixel images. AR(r) = Va(Weq(r)n(Xeq(r))®) ()
Let X be a stationary random closed setif. Va(WEg(r) N XE)
Its volume fractionp satisfiesp = P(o € X), where
o denotes the origin. It is assumed that> 0. The Furthermore, two estimators are considered which
quadratic cdf is defined as follow the Horvitz-Thompson idea, see Stoyan,
Kendall and Mecke (1995), p. 215, and Chiu and

= 1-PlogXeq(r)/(1-p)
(d
where q(r) is the cube of side length with one |-A|(;*T /]W W (0'] (X))dx/(l_f)HT)
vy( eq

vertex ino and sides emanating malong the positive d(x)))
coordinate axes; it ig(f) = —q(r).

For the case of a Boolean model the formulas invhere
Stoyan, Kendall and Mecke (1995), p 79-81, lead to X)1
explicit expressions foHq(r). In particular, if in the /]Weq X)1xe(X)
planar case the primary grains are isotropic squares of vg(Weq(d(x)))
side lengtha (for this case the simulations were carried
out), then

andHiTa(r) is defined agiiT(r) but with the term
8a ) p(r) from above. Hered(x) denotes the distance from
Hq(r) = 1—exp(—)\ (F”rr )) for r>0 (4) yto X measured in the metric corresponding to the

unit cube. For a given pixel image, the integrals are
whereA denotes the intensity of the germ process.  replaced by sums in a natural way.

The classical minus-sampling or border-method

. . Four of the estimators introduced above were
estimator ofHy(r) is

compared for a long series of simulated stationary and
A isotropic planar Boolean models. For each case the

Ha(r) =1-A() ®) primary grains were isotropic congruent rectangles;

with the same rectangular primary grain was combined with
a series of germ process intensities see Mattfeldt

A(r) = va((Weq(r)Nn(Xed(r))°) ©) and Stoyan (2000) for more details. In total, 200 series
- vgWnxe) with each 100 replications were simulated in a 542

v, (W r . . .
(W o) vg(W) 512 square. The statistical analysis was then carried

Note that formula (6.3.6) in Stoyan, Kendall and Ut for the central 12& 128 square.

Mecke (1995) is corrected here. The teup(W N
X /v4(W) is the usual estimator of-4 p.
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COMPARISON OF THE CONTACT REFERENCES
DISTRIBUTION FUNCTIONS Baddeley AJ, Moyeed RA, Howard CV, Boyde A (1993).
ESTIMATORS Analysis of a three-dimensional point pattern with

replication. Appl. Statist. 42:641-68.

The results for all simulations were similar: Baddeley AJ, Gill RD (1997). Kaplan-Meier estimators of
There are no significant differences between the four distance distribution for spatial point processes. Ann.
estimators, the simple minus-sampling estimator is  Statist. 25:263-92.
even a little better than the competitors if the mseBaddeley AJ (1998). Spatial sampling and censoring.
(mean squared deviation of estimator from true value) Chapter 2 of Current Trends in Stochastic Geometry and
is used as quality measure. its Applications (ed. Kendall WS, van Lieshout MNM,

Barndorff-Nielsen OE), Chapman and Hall, London,

We give here details for the particular case of  New York.

square primary grains of side length 20. In Table 1, th&€hiu SN, Stoyan D (1998). Estimators of distance

square roots of the mse’s Bltq(r) are given for various distributions for spatial patterns. Statist. Neerl. 52:239—

values ofA and in comparison to the best competitor ~ 46-

under the other estimators. Cressie N (1991). Statistics of Spatial Data. J. Wiley & Sons,
New York.

The values of were chosen as integers and suchDelfiner P (1972). A generalization of the concept of size. J.
that Hy(r) takes small, medium and large (close to 1)  Microsc. 95:203-16.
values. As a function af the mse behaves similarly as piggle PJ (1983). Statistical Analysis of Statistial Point
s(r) in Fig. 1, in particular it has small values for small ~ Patterns. Academic Press, London.
and large. Hanisch K-H (1984). Some remarks on estimators of the
_ _ _ _ . distribution function of nearest-neighbour distance in
Obviously, the simple minus-sampling estimator  stationary spatial point patterns. Statistics 15:409-12.

is preferable because of its quality and conceptionalangy si, Szalay AS (1993). Bias and variance of angular

simplicity. correlation function. Astrophys. J. 412:64-71.
Table 1: Square roots of mean squared deviations of ~ Mattfeldt T, Stoyan D (2000). Improved estimation of the
estimators from true values (mse) pair correlation function of random sets. J. Microsc.
200:158-73.
A r Hq(r) competitor Ohser J, Micklich F (2000). Statistical Analysis of
0.0005 2 0.0055 0.0046 Microstructures in Materials Science. J. Wiley & Sons,
4 0.0108 0.0092 Chichester.
20 0.0401  0.0380 Overton WS, Stehman SV (1995). The Horvitz-Thompson
47 0.0328  0.0344 theorem as a unifying perspective for probability
56 0.0231  0.0253 sampling; with examples from natural resource
0.003 1 0.0069 0.0069 sampling. Amer. Statist. 49:261-68.
4 0.0196 0.0197 Serra J (1982). Image Analysis and Mathematical
12 0.0195 0.0192 Morphology. Academic Press, London, New York.

15 0.0146  0.0148
0.006 1 0.0132 0.0136
0.0209 0.0215

Stoyan D, Kendall WS, Mecke J (1995). Stochastic
Geometry and its Applications. Chichester: John Wiley

2

7 00221 0.0227 & Sons.

9 0.0167 0.0171 Stoyan D, Stoyan H (1994). Fractals, Random Shapes and
0.01 1 0.0259 0.0259 Point Fields. J. Wiley & Sons, Chichester.

2 0.0355 0.0357 Stoyan D, Stoyan H (2000). Improving ratio estimators of

4 0.0331 0.0334 second order point process characteristics. Scand. J.

6 0.0229 0.0232 Statist. 27:641-56.
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