
U P O R A B N A I N F O R M A T I K A 552020 - πtevilka 2 - letnik XXVIII

zNANStVENI prISpEVkI

Jaka Stavanja, Matej Klemen, Lovro Šubelj
University	of	Ljubljana,	Faculty	of	Computer	and	Information	Science,	Večna	pot	113,	1000	Ljubljana
js8927@student.uni-lj.si,	mk3141@student.uni-lj.si,	lovro.subelj@fri.uni-lj.si

 Napovedovanje umorov v seriji Igra
prestolov	z	uporabo	analize	omrežij

Izvleček
Serija	Igra	prestolov	ima	veliko	oboževalcev	prav	zaradi	dramatičnih	smrtih	pomembnih	likov.		V	našem	delu	želimo	na	podlagi	po-
datkov	o	preteklih	umorih	in	ubojih	v	seriji	ter	dodatnih	metapodatkih	o	likih	napovedati	kdo	ubije	koga.		Iz	podatkov	o	umorih	v	seri-
ji	zgradimo	omrežje,	kjer	vozlišča	predstavljajo	like	v	seriji,	usmerjene	povezave	pa	predstavljajo	umore.		Na	zgrajenem	omrežju	
preizkusimo	različne	metode	za	napovedovanje	povezav	 in	preverimo	njihovo	uspešnost.	Poleg	 tega	 iz	družbenega	omrežja	 likov	
pridobimo	dodatne	značilke	in	jih	uporabimo	za	napovedovanje	umorov	s	tehnikami	podatkovnega	rudarjenja.	Ugotovimo,	da	zaradi	
majhne	velikosti	podatkovne	množice	in	nestrukturiranosti	umorov,	z	osnovnimi	metodami	napovedovanja	povezav	umorov	ne	more-
mo	napovedati.	Dodajanje	novih	značilk	in	uporaba	tehnik	podatkovnega	rudarjenja	izboljša	dosežene	rezultate.	Pokažemo,	da	obsta-
ja	način,	ki	na	zgrajenem	omrežju	umorov	doseže	najboljše	rezultate,	vendar	ni	praktično	uporaben.		Ta	način	doseže	najboljšo	povr-
šino	pod	ROC	krivuljo,	t.j.	0.875.
Ključne	besede: ekstrakcija	značilk,	Igra	prestolov,	napovedovanje	povezav,	analiza	omrežij.

Abstract	
TV	series	such	as	HBO’s	Game	of	Thrones	have	a	high	number	of	dedicated	followers,	mostly	due	to	the	dramatic	murders	of	the	
most	important	characters.	In	our	work,	we	try	to	predict	killer	and	victim	pairs	using	data	on	previous	kills	as	well	as	additional	
metadata.	We	construct	a	network	where	two	character	nodes	are	linked	if	one	killed	the	other,	then	use	a	link	prediction	framework	
to	evaluate	different	techniques	for	kill	predictions.	Lastly,	we	compute	various	network	properties	on	a	social	network	of	characters	
and	use	them	as	features	in	conjunction	with	classic	data	mining	techniques.	Due	to	the	small	size	of	the	dataset	and	the	somewhat	
random	kill	distribution,	we	cannot	make	accurate	predictions	with	standard	indices	alone,	although	using	them	in	conjunction	with	
additional	rules	based	on	degrees	has	yielded	results	that	are	more	reliable.	The	features	we	compute	on	the	social	network	help	
the	classic	machine	learning	approaches;	however,	they	do	not	yield	very	accurate	predictions.	The	best	results	overall	are	achieved	
using	indices	that	use	simple	degree	information,	the	best	of	which	result	in	the	Area	Under	the	ROC	Curve	of	0.875.
Keywords: Feature	extraction,	Game	of	Thrones,	link	prediction,	network	analysis.

1 INTRODUCTION
With the ever increasing popularity of the TV series
Game of Thrones, coming mostly from it’s incredible
plot twists and deaths of main characters, the questi-
on arises whether we can predict those deaths from a
network analysis point of view. If we are able to pre-
dict the deaths from the data, collected from previo-
us episodes, that means that the author is very pre-
dictable, which might not be the best thing in terms

of the show being entertaining. To predict the deaths,
we construct a network illustrated in Figure 1, where
nodes are characters in the show (along with other
entities that are able to kill another character, such
as a horse or a dragon) and connect two if one has
murdered the other. We then try to predict whether
a certain link between two nodes in the network ha-
ppened (removing the link from the network before-
hand). Because we are dealing with temporal data,

U P O R A B N A I N F O R M A T I K A56 2020 - πtevilka 2 - letnik XXVIII

Jaka Stavanja, Matej Klemen, Lovro Šubelj: Napovedovanje umorov v seriji Igra prestolov z uporabo analize omrežij

we also remove links that appear in the network after
the link currently being predicted. We use different
approaches to assign scores to the pairs, for example
different link prediction indices such as the preferen-
tial attachment index (Liben-Nowell & Kleinberg,
2007) or the Adamic-Adar index

evolving around trying to either generate synthetic
networks or infer missing data for network-like data
structures. Later on, that evolved into more of a re-
commendation type of approach (for example, trying
to recommend friendships on social networks), ba-
sed on the same principles as we use to calculate
probabilities of new links. One of the most important
articles on the network properties that we can use to
infer new links is written by Barabási & Albert and
features exploring the phenomenon of preferential
attachment (Barabási & Albert, 1999). The work on
this property and other founding principles for link
prediction is then briefly described inside the article
by the same authors (Albert & Barabási, 2002). The
next explored thing is missing data (Kossinets, 2006)
along with further studies on missing links and spu-
rious networks (Guimerà & Sales-Pardo, 2009). An
extensive survey on link prediction is written by
Lü & Zhou (Lü & Zhou, 2011) where the whole fie-
ld along with all the better-known indices to date
is presented and the authors show how the classic
problems in link prediction didn’t use enough net-
work properties or community structure, which was
explored by Girvan & Newman (Girvan & Newman,
2002). We use some of their findings in our research.
One of the most well known indices to calculate the
likelihood of new links appearing in a network is the
common neighbors index (Newman, 2001) (Kossi-
nets, 2006), implying that the more common neigh-
bors nodes have, the more likely they are to form a
link. Some other popular choices include the cosine
distance index (also named the Salton index) (McGill
& Salton, 1983), the Jaccard index (Jaccard, 1901), the
preferential attachment index (Barabási & Albert,
1999) and the Adamic-Adar index (Adamic & Adar,
2003). For our experiments, we pick some of the most
used indices.

For Game of Thrones specifically, some research
has already been done in terms of finding which
aspects of the show resonate with the viewer count
the most and how real the characters’ interactions are
done by modeling the show’s houses with a network
and exploring structural balance (Liu & Albergante,
2017). Further studies determined who has the best
strategic position in the show’s world (Beveridge &
Shan, 2016), but the only article touching on death
prediction studies (Angraal et al., 2018) for the show
used Cox’s proportional hazard model (Cox, 1972),
which didn’t explore any network structure properti-

Figure	1:	Game	of	Thrones	kills	network.

(Adamic & Adar, 2003). We also construct additio-
nal features based on various network properties and
additional metadata and see how this influences the
results. The network properties for the features used
in machine learning approaches are then computed
on a different social network of the Game of Thrones
characters, where nodes representing characters are
connected if the characters appear somewhat close in
the original books’ story.

The rest of the paper is structured as follows. In
Section 2 we provide an overview of existing litera-
ture on our studied topic. In Section 3 we describe
the methods that we use in our work. In Section 4
we provide the results of our work, which we then
discuss in Section 5. In Section 6 we summarize the
work that was done and provide some possible futu-
re improvements.

2 RELATED WORK
We use link prediction as a way to infer new links be-
tween nodes in a graph using different network pro-
perties. The field of link prediction research started

U P O R A B N A I N F O R M A T I K A 572020 - πtevilka 2 - letnik XXVIII

es, but rather used a regression approach to determi-
ne which factors introduce a higher risk of mortality
through time. But the killers were not taken into con-
sideration here, we just know how likely a character
is to die, thus we cannot really compare this appro-
ach with ours. This gives us a unique opportunity to
try and use network properties along with metadata
to better predict kills in the mythical world of the
series, but instead of only predicting how likely so-
meone is to die, we can also predict both the killers
and victims, on which there has not yet been much
research.

3	 METHODS	AND	NETWORK	PROPERTIES
In this section, we describe the framework used to
test our link prediction methods. We also provide
descriptions of some classic link prediction methods
based on well-known properties of networks. Then,
we introduce a new social network, described in Sub-
section 3.2.5, which connects characters if they appe-
ar close in the original story from the books. We com-
pute various network properties from that network
and use an automatic node embedding technique to
compute features for use in traditional machine lear-
ning approach for classification.

3.1	 Link	prediction	using	the	kills	network
The network of kills is constructed of directed links
between pairs of nodes i and j, where node i repre-
sents a character that killed the character represented
by node j. The network is very small and also very
sparse. It has 353 nodes and 194 links. By looking
at the visualization of the network in Figure 1, we
can see that most kills appear outside somewhat bi-
gger connected components and do not seem to be
attributed to hubs (i.e. high degree nodes). We can
still observe a few hubs and connected components
around them, where a lot of kills seem to occur, but
in the majority of cases there are just two nodes in-
volved in the kill, which on their own form a small
two-node connected component. That gives us a clue
as to which methods might predict kills better than
others. We can construct an index that predicts links
based on nodes’ out degrees. Since the in-degrees in
the networks could be either zero or one (meaning
alive or dead) we cannot get any additional informa-
tion from that besides whether a person can still kill
someone or not (when they are already dead). The
out-degree of a node can potentially be of use, sin-

ce people that kill a lot of people might also tend to
kill more people, and those who never killed anyone
might not be inclined to murder or kill. A plot of the
out-degree distribution (using a logarithmic scale for
the fractions of nodes) is shown in Figure 2.

In this subsection, we propose an evaluation fra-
mework and different indices that we use for the link
prediction.

3.1.1	 Evaluation	framework	for	link	prediction
To test how well our link prediction techniques work
on our network, we construct a framework and pro-
vide a brief description of it here. It takes our pre-
diction index function and the network as the input
and outputs the Area Under the ROC Curve (AUC)
value. The prediction index function assigns a score
sij to every link between two nodes i and j that is be-
ing tested. A high score implies a high likelihood that
the link exists in the network and a low score implies
a small likelihood of the link’s existence.

The core of the testing framework is the logic,
which removes links from the network and then tries
to predict how likely the links we have removed are
to form as the network evolves through time. To use
as much information as we can, we choose an episo-
de and remove links from that episode (e.g. episode
30) and onwards from the graph. Then, we predict
the links (i.e. kills) at that time using the information
about kills from the previous episodes. We can then
clone the original graph, remove links from the next
episode in the chronology (i.e. episode 31) and pre-
dict links for that episode using the information from
all the episodes before (including information from
episode 30 in this example). By predicting links in
this way, we are not using the data from the futu-
re to predict past links and we are using a lot more
information than if we were to remove links from a
certain episode onwards and just try to predict links
for multiple episodes in one single iteration.

Jaka Stavanja, Matej Klemen, Lovro Šubelj: Napovedovanje umorov v seriji Igra prestolov z uporabo analize omrežij

U P O R A B N A I N F O R M A T I K A58 2020 - πtevilka 2 - letnik XXVIII

The idea of the framework’s core implementation is
as follows:
1. Iterate through every episode in the range from

30 to 60, and at each step do:
 (a) LP R remove node links (i, j)  L after the cur-

rent episode.
 (b) Compute sij for (i, j)LP at the current episode

time.
 (c) Save the scores to SP.
2. LN R randomly sample |LP| unlinked nodes (i, j)

 L.
3. Compute sij for (i, j)  LN and save scores to SN.
4. Compute AUC by comparing the scores assigned

to positive samples SP and scores assigned to ne-
gative samples SN. When comparing scores, we
assign to b the amount of times when the score
from SP is bigger than the one from SN, and assign
to e the number of times when the two scores are
equal. This is counted across a random sample
of |LP| pairs. Then, we compute the AUC as
b + e/2

|LP|
.

3.1.2	 Alive	index
We create a type of a baseline index by looking at the
network’s high level properties. We check if the killer
has an in-degree of zero and the target has an in-de-
gree of zero (i.e. killer is alive and target has not been
killed yet). If the endpoints of a link satisfy these con-
ditions, the value of the index is 1, otherwise it is 0.

3.1.3	 Preferential	attachment	index
Real world networks tend to have a scale-free de-
gree distribution due to a phenomenon known as
preferential attachment (Barabási & Albert, 1999).
The preferential attachment index (Liben-Nowell &
Kleinberg, 2007) is defined as sij = kikj, where ki is the
degree of node i. For our problem, we use out-de-
grees only, as only they provide useful information.
The idea behind the index is in the preferential atta-
chment process — nodes are more likely to connect
with nodes that have a high degree, thus a link be-
tween two nodes with high degrees should be assi-
gned a high score sij. We modify this definition sli-
ghtly and define a modified preferential attachment
index as sij = ki

(out)kj
(out), where ki

(out) is the out-degree
of node i. The logic behind that is that the more kills
one has to their record, the more they are inclined
to murder and vice-versa. Additionally, we include
the in-degree information in a modified version of
the preferential attachment index: if the source node
or the target node has an in-degree larger than zero
(either the killer or the victim is already dead), a very
negative score (−∞) is returned. Otherwise, the regu-
lar version of the index gets computed.

3.1.4	 Adamic-Adar	similarity	index
In real world networks, links tend to appear between
nodes that have a lot of common neighbors (Watts &
Strogatz, 1998). But due to preferential attachment,
nodes tend to connect to higher degree nodes more

Figure	2:	Out-degree	distribution	for	the	kills	network.

Jaka Stavanja, Matej Klemen, Lovro Šubelj: Napovedovanje umorov v seriji Igra prestolov z uporabo analize omrežij

U P O R A B N A I N F O R M A T I K A 592020 - πtevilka 2 - letnik XXVIII

likely, thus making that neighbor less useful for pre-
dicting new links between two nodes. The Adamic-
-Adar similarity index (Adamic & Adar, 2003) takes
the high degree neighbors into account and is defi-
ned as

sij = ∑x  Γi ∩ Γj
1

log kx
 ,

where Γi is the neighborhood of node i and kx is the
degree of node x. Similarly, as for the preferential at-
tachment index, we also include a modified version
of the Adamic-Adar index, where we take into con-
sideration whether the killer or the victim is already
dead.

3.1.5	 Community	index
New links in e.g. social networks tend to appear be-
tween members that are inside of the same commu-
nity and only rarely between members of different
communities (Girvan & Newman, 2002). We can find
densely linked communities where people are killing
each other the most and treat the new links in those
communities as more likely to occur than the ones
outside communities. So that we do not ignore links
between communities, we can also count the amo-
unt of links that occur between two communities and
model the inter-community densities. Let {C} be the
set of communities output by the Leiden modularity
optimization algorithm (Traag, Waltman, & van Eck,
2019), and ci the community of node i. Then,

sij =
mi/(ni

2), when ci = cj

mij/(ni · nj), when ci ≠ cj
,

where ni is the number of nodes in the community of
node i, mi the number of links within community of
node i and mij is the number of links between com-
munities of nodes i and j. As is the case for previo-
us two indices, we include a modified version of the
community index as well, returning a very negative
score when the killer or victim are already dead.

3.2	 	Feature	extraction	for	machine	learning	
approaches

Besides using the classic index-based link prediction
techniques, we also make use of a machine learning-
based approach, in which we construct features from
network properties and additional metadata, and
use them to train a classifier. The data used for train-
ing the classifier includes properties of the kills net-

work such as PageRank scores for all characters and
the basic kills from the original dataset. Computing
a score like PageRank (Brin & Page, 1998) on the kills
network would be pointless as the nodes have an in-
-degree of at most one, so the scores would be high
for those who already died. We can take a different
network of characters into account for this particu-
lar case. An online repository of sample networks,
found at https://github.com/melaniewalsh/sample-
-social-network-datasets, contains a sample of the
Game of Thrones social network, which creates an
edge between two character nodes if they appear wi-
thin a 15-word distance in the original books. Since
the shows are vastly influenced by the books (at least
very strongly up to episode 60 to which our kills data
is collected) we can use properties from that network
as well to gather some additional information. This
network has 107 nodes and 352 edges, and is shown
in Figure 3.

3.2.1	 Standard	machine	learning	framework
The framework we use for predicting links using
machine learning is similar to the framework that is
described in Section 3.1.1. We split the procedure for
getting scores for test links into two parts — first we
obtain the scores for positive examples and then the
negative examples.

To obtain the scores for positive examples, we
first choose some episode, whose kills we are curren-
tly trying to predict. These links make up our current
test set. Links that appear in the episodes after the
selected one are ignored, as we must not predict the
past based on future events. The kills that happened
prior to the selected episode make up our current
training set. In addition to that, we sample the same
amount of negative examples in order to make the
training set balanced. The classifier is then trained on
the training set and used to predict scores for chosen
test examples. This is repeated for multiple chosen
episodes and at the end we obtain scores for P positi-
ve examples, where P contains all the kills that have
happened in the chosen episodes.

Jaka Stavanja, Matej Klemen, Lovro Šubelj: Napovedovanje umorov v seriji Igra prestolov z uporabo analize omrežij

U P O R A B N A I N F O R M A T I K A60 2020 - πtevilka 2 - letnik XXVIII

For negative examples, we take all the kills from
our dataset and sample the same amount of non-kills
to form a training set. The test set consists of P rando-
mly sampled non-kills from the entire dataset. These
test examples are sampled in a way that they do not
overlap with negative examples in the training set.
For obtaining the scores, we use three different mo-
dels: K-nearest neighbors (KNN), logistic regression
and support vector machine (SVM) (Hastie, Tibshira-
ni, & Friedman, 2009). The rest of the framework re-
mains the same as the one described in Section 3.1.1.

3.2.2	 PageRank
The first feature we use is the PageRank score (Brin &
Page, 1998). We can calculate it to find the most im-
portant characters as they will hopefully have the hi-
ghest scores. Being more important could mean two
things — either you are very important and thus have
a lot of security by guards and other helpers, so you
are very unlikely to die, or the exact opposite. The
opposite would imply that since this series is oriented
around taking the power from others, you are more
likely to die if you are very important, which seems
more plausible since the show thrives on the sudden
deaths of the more popular characters. A very low
PageRank score of some character would then also
mean that they are very unlikely to have their death
portrayed, since the viewers and readers don’t care or

have forgotten about the least important people in the
story. We use two PageRank-based features, the first
being killer_pagerank and the second victim_pagerank,
since we are trying to predict killer and victim pairs.
The top 5 scoring characters after PageRank calcula-
tions are Tyrion (0.055), Jon (0.045), Daenerys (0.041),
Jaime (0.037) and Sansa (0.036). From our knowledge
of the show, we can safely claim that these are some of
the most, if not the most important characters, so we
can then be sure that these scores make sense in terms
of importance. We assign a mean of all the PageRank
scores for each character that is found in the kills da-
taset, but is not present in the social network.

3.2.3	 Betweenness	centrality
Another measure that we extract from the social net-
work as a feature is the betweenness centrality (Free-
man, 1977). This score measures how many shortest
paths from two different nodes go through a certain
other node. That means that the higher the score, the
more control over a big portion of the network a node
has (i.e. is one of the nodes that can make the network
split quickly). That should also yield a measure of im-
portance — if one character wants to reduce the power
of a part of a network, they can disconnect it from the
biggest component by eliminating nodes with high
betweenness centrality. Again, we observe that the
five top scoring people are also the most important

Figure	3:	Game	of	Thrones	social	network.

Jaka Stavanja, Matej Klemen, Lovro Šubelj: Napovedovanje umorov v seriji Igra prestolov z uporabo analize omrežij

U P O R A B N A I N F O R M A T I K A 612020 - πtevilka 2 - letnik XXVIII

characters in the story: Jon (0.230), Robert (0.209),
Tyrion (0.198), Daenerys (0.157) and Robb (0.127). For
every character from the kills dataset that is not in the
social network, we use a mean of betweenness centra-
lity scores, similarly to the PageRank scores.

3.2.4	 Community	detection
Simply using the house that a character belongs to
as a feature could perhaps help. The intuition be-
hind this is that there might be more kills occuring
between members of different houses than between
members of the same house. Since our dataset has
a lot of undefined values for the houses, we can
find communities in the social network using an al-
gorithm such as the Leiden modularity optimizati-
on (Traag et al., 2019). We can assign a label of the
community to each character and see if that helps us
with the prediction by creating some sort of indicator
between which groups the kills occur. After running
the community detection algorithm on the social
network, we can see that we obtain meaningful re-
sults (meaningful to people who watch the show) in
terms of alliances. The network gets partitioned into
five big communities. For example, we can see that
Khal Drogo, Daenerys Targaryen, Aegon Targaryen
and Jorah Mormont all fall into the same community,
even though they do not originate from the same ho-
uses, but as we know from watching the show, they
are allies. Every character from the kills dataset that
is not included in the social network gets assigned to
a dummy community.

3.2.5	 Automatic	feature	extraction	for	machine	learning	
approaches
In addition to handcrafting features we also try an
approach using automated feature extraction, speci-
fically node2vec (Grover & Leskovec, 2016) to obtain
node and link features. We use these in place of pre-
viously handcrafted features.

For a given node, node2vec constructs a feature
representation (embedding) that aims to preserve the
network neighbourhood properties in a vector space
of fixed dimensionality. Depending on parameters
p (return parameter) and q (in-out parameter), the al-
gorithm performs different types of biased random
walks in order to represent the node’s neighbour-
hood. Setting p to a low value encourages a search
that is local to the given node, while setting q to a
low value encourages a more explorative search. The

sampled neighbourhoods are then used to estimate a
feature representation that maximizes the probabili-
ty of observing these neighbourhoods for the given
node. We obtain a link embedding by concatenating
together the embeddings of source and target node.
If a node has no embedding, a generic embedding
for an unknown node is assigned to it. We train the
embeddings on the social network, capturing cha-
racter co- ocurrences. Because we are dealing with
a very small dataset, we cannot afford to tune the
hyperparameters reliably. Following the findings of
authors of the method, we set the parameters to p = 2
and q = 0.5 since these settings are shown to bias the
embeddings to capture homophily. We fix the node
embedding size to 16.

4	 RESULTS
For our experiments we select and remove links that
are associated with kills that happened in seasons
four to six. There are 114 of those, to which we add
114 randomly selected unlinked nodes and compute
the AUC based on these examples. We repeat this
process five times to account for the randomness
in selection of negative examples and provide the
mean AUC and its standard deviation. We support
the AUC scores with precision and recall scores as
well, since AUC only measures how well a rando-
mly selected positive example can be distinguished
from a randomly selected negative example. For the
classic link prediction techniques, we classify exam-
ples with scores strictly higher than zero as positive
and the others as negative. For the machine learning
approach, every example with a score greater than or
equal to 0.5 is classified as positive and the others as
negative. We then calculate the precision as

precision =
#true positives

#true positives + #false positives

and recall as

recall =
#true positives

#true positives + #false positives .

The obtained results are shown in Table 1.
Results show that the community index achieves

the best result in terms of AUC, 0.875. The best pre-
cision and recall scores are obtained using the alive
index, which are 0.822 and 0.930. Other indices using
the death info achieve similar results, however their
precision and recall scores are different.

Jaka Stavanja, Matej Klemen, Lovro Šubelj: Napovedovanje umorov v seriji Igra prestolov z uporabo analize omrežij

U P O R A B N A I N F O R M A T I K A62 2020 - πtevilka 2 - letnik XXVIII

and the handcrafted features. The features created by
node2vec yield worse AUC and precision scores and
higher recall scores than the handcrafted features.
All the final results for the machine learning approa-
ches are shown in Table 3.Method AUC Precision Recall

preferential	
attachment

0,503	(0,020) 0,522	(0,113) 0,087	(0,000)

preferential	
attachment	†

0,862	(0,015) 0,654	(0,123) 0,070	(0,000)

Adamic-Adar 0,500	(0,000) 0,000	(0,000) 0,000	(0,000)

Adamic-Adar	† 0,872	(0,028) 0,000	(0,000) 0,000	(0,000)

community	
index

0,500	(0,000) 0,000	(0,000) 0,000	(0,000)

community	
index	†

0,875	(0,018) 0,000	(0,000) 0,000	(0,000)

alyve	index 0,863 (0,032) 0,822	(0,000) 0,930	(0,000)

Tabela 1:	Results	for	four	link	prediction	methods:	preferential	
attachment	index,	Adamic-Adar	index,	community	index	and	alive	index.	
The	table	shows	the	mean	AUC,	precision	and	recall	and	their	standard	
deviation	over	five	runs.	The	symbol	marks	the	versions	of	indices	where	
a	check	is	first	performed	if	the	killer	or	the	victim	is	already	dead.

Table 2:	Results	for	three	classic	machine	learning	methods	(using	the	
basic	dataset):	K-nearest	neighbors,	logistic	regression	and	support	
vector	machine	(SVM).	The	table	shows	the	mean	AUC,	precision	and	
recall	and	their	standard	deviation	over	five	runs.

Method AUC Precision Recall

KNN 0,632 (0,048) 0,641	(0,024) 0,453	(0,020)

Logistic	
regression

0,596	(0,036) 0,797	(0,010) 0,400	(0,013)

SVM 0,556	(0,066) 0,688	(0,024) 0,523	(0,007)

The Adamic-Adar and community index achieve
0 precision and recall because no links get classified
as positive. For the community index, this is due to
the network components being very disconnected,
while for the Adamic-Adar this is due to the fact that
nodes cannot have common neighbors as kills are
only attributed to one person, meaning two killers
cannot kill the same victim.

Other indices that don’t use information about
deaths achieve AUC scores around 0.5. This implies
that they perform no better than if links were classi-
fied randomly.

The standard machine learning approaches came
out to be a little bit better than random when using
the base kills dataset using only the out-degrees of
characters as a feature, with AUC scores ranging
from 0.556 to 0.650 as shown in Table 2.

By adding network features (PageRank, between-
ness and community identifier for each character) we
improve the general performance of all the classifiers
and obtain a better top score of 0.686 by using SVM

5	 DISCUSSION
We see that the sparsity of the network and its size
(less that 400 nodes) make link prediction on such a
small network very inaccurate in most cases.
Since the original network of kills does not seem to
have any community-like structure, it is very hard
to predict kills based on community-based link pre-
diction methods, such as the community index. The
modularity optimization algorithm finds more than
100 communities with no links between them, which
means that the modeling of densities between com-
munities does not give us any information, since the
probability of a link occurring between communities
is zero. That is a solid foundation for the claim that
the authors have done a good job by not creating a
very obvious structure of the kills, where someone
would kill a lot of people from e.g. their opposing
house, making it easy to predict that there will be
another similar kill occurring in the following episo-
des which the viewers have not yet seen.
We cannot achieve good results by constructing in-
dices that try to predict kills using out-degrees only,
since the majority of nodes have a very low out-de-
gree (as can be observed on Figure 2).
When we add the death information, we observe that
the modified Adamic-Adar index performs as good

Method AUC Precision Recall

KNN 0,659	(0,035) 0,725	(0,016) 0,453	(0,004)

Logistic	
regression

0,658	(0,033) 0,816	(0,016) 0,418	(0,013)

SVM 0,686	(0,058) 0,719	(0,058) 0,456	(0,056)

KNN	
(node2vec)

0,650	(0,044) 0,595	(0,052) 0,702	(0,036)

Logistic	
regression	
(node2vec)

0,640	(0,025) 0,600	(0,051) 0,684	(0,028)

SVM	
(node2vec)

0,605	(0,091) 0,642	(0,062) 0,632	(0,022)

Table	3:	Results	for	three	classic	machine	learning	methods	(using	
the	augmented	dataset):	K-Nearest-	Neighbors,	Logistic	regression	
and	Support	Vector	Machine	(SVM).	The	table	shows	the	mean	AUC,	
precision	and	recall	and	their	standard	deviation	over	five	runs.

Jaka Stavanja, Matej Klemen, Lovro Šubelj: Napovedovanje umorov v seriji Igra prestolov z uporabo analize omrežij

U P O R A B N A I N F O R M A T I K A 632020 - πtevilka 2 - letnik XXVIII

as the alive index, since it represents the same idea.
We know that two nodes cannot have a common
successor, since a character can only die once. They
can only have one common predecessor, however
that implies that both the killer and victim are alre-
ady dead. By taking the death information into con-
sideration, we automatically decide that when one
character is already dead, there will be no link. That
makes the common neighborhood factor in the index
irrelevant, making it decide the outcome based only
on whether a character is alive or not.
The indices that use the death information achieve
the best results because of the way the network is
constructed. Nodes either have an in-degree of zero
or one (depending on whether they were already
killed or not). When sampling positive examples in
our framework, we remove the edge for that positive
example, decreasing the in-degree of the target node
from one to zero. When sampling negative examples,
we do not remove any edges. However, because our
original network is constructed from deaths in the se-
ries, most of the characters in our network have died
at some point. Therefore, the target node of a nega-
tive example is quite likely to have an in-degree of
one. These death information indices make use of the
fact that when we sample a positive example, we are
going to decrease the in-degree of the target to zero,
and when we sample a negative example, the in-de-
gree of the target is likely to still be one (i.e. that the
target was killed by somebody else at some point).
We try to account for this by adding some additional
isolated nodes (corresponding to characters that did
not kill anyone and did not die), but the index still
performs best on the expanded network. So although
the baseline index and the other indices which use
death information achieve good results, they do not
do so by using any structural properties of the net-
work but rather just by abusing the way our network
is constructed. The key takeaway here is that achie-
ving an AUC score around
0.85 is not that hard. The hardest part is achieving a
noticeable increase in performance over the baseline
classifier. The results from the standard machine le-
arning approaches are bad, since we only use the out
degree as the basic feature from the original dataset
to predict kills. When we augment it with different
centrality measures and community identifiers, the
performance is improved, mostly because of the
fact that we do not only have one feature anymore

and because these features are not equally weighted
anymore. However, there should be some added va-
lue to the features due to what the features represent,
which is explained for each index in Section 3.
Among the approaches using node2vec features, the
approach using KNN achieves the best results. Vi-
sualization of the link embeddings reveals why the
approach performs well. Figure 4 shows embedded
positive and negative links, projected onto a two-
-dimensional plane using t-distributed Stochastic
Neighbor Embedding (t-SNE) (Maaten & Hinton,
2008). We can observe that the links are often surro-
unded by links of the same class in their neighbour-
hood, allowing KNN to correctly predict many links.
The visualization also reveals one of the reasons the
approaches using node2vec do not perform better:
the links where at least one of the nodes does not
have a “proper” embedding are embedded closely.
The circle-shaped cluster in the visualization repre-
sents the links where at least one of the nodes were
assigned a generic embedding for unknown nodes
(due to some character being present in the social ne-
twork but not in the kills network). The cluster conta-
ins very mixed classes, rendering KNN less useful. In
additional experiments using node2vec features, we
found that using a link embedding technique whe-
re node embeddings are averaged instead of conca-
tenated together (i.e. ignoring direction of the link)
results in a significant performance drop. The mo-
dified embeddings in combination with KNN result
in a mean AUC reduced by 0.068, a mean precision
reduced by 0.028 and mean recall reduced by 0.127.
This aligns well with intuition since, for example, a
notorious killer is more likely to kill an innocent vic-
tim than vice versa.

Jaka Stavanja, Matej Klemen, Lovro Šubelj: Napovedovanje umorov v seriji Igra prestolov z uporabo analize omrežij

U P O R A B N A I N F O R M A T I K A64 2020 - πtevilka 2 - letnik XXVIII

6 CONCLUSION
Throughout our work we have acknowledged that
the Game of Thrones kills do not have a particular-
ly detectable pattern, since all the kills appear bet-
ween two nodes that have not yet killed anyone be-
fore in most cases. But since our network is small,
our test samples are even smaller and that can give
deceivingly high AUC scores for indices that would
potentially fail on bigger networks and in different
scenarios. By using classic machine learning and link
prediction techniques, we have found that, on this
dataset, no index or feature works better than a sim-
ple baseline index (the alive index), which does not
model some useful property, but rather abuses the
way the network is formed. Most of the techniques
used to predict kills in Game of Thrones gave us a
fairly good AUC score, but the predictions that our
approaches get right do not have a high “shock fac-
tor“. For example, our classifiers might be able to
predict that Jon Snow will kill a wight, but likely fails
on less obvious kills. For future work, our approa-
ches could be tested on different TV shows, books
or even movies to see how predictable the kills are.
Our death information indices could potentially fail
on bigger networks with a bit more diverse structu-
re (e.g. having more bigger connected components)

Figure	4:	Node2vec	embeddings	for	positive	and	negative	links	in	the	kills	network,	projected	onto	two	dimensions	using	t-SNE.

and that would give other more basic indices higher
accuracy. We could also construct edges using some
other information besides kills, e.g. who had a rela-
tionship with whom in some show or who scammed
whom in a criminal series.

Source code

The source code to reproduce results presented in
this paper is available at
https://github.com/matejklemen/got-link-prediction.

REFERENCES
[1] Adamic, L. A., & Adar, E. (2003). Friends and neighbors on the

web. Social Networks, 25(3), 211–230. Albert, R., & Barabási,
A.-L. (2002). Statistical mechanics of complex networks. Re-
views of modern physics, 74(1), 47.

[2] Angraal, S., Bhatnagar, A., Verma, S., Shergill, S., Gupta, A.,
& Khera, R. (2018). Risk Factors Associated with Mortality in
Game of Thrones: A Longitudinal Cohort Study. arXiv preprint
arXiv:1802.04161.

[3] Barabási, A.-L., & Albert, R. (1999). Emergence of Scaling in
Random Networks. Science, 286(5439), 509–512.

[4] Beveridge, A., & Shan, J. (2016). Network of thrones. Math
Horizons, 23(4), 18–22.

[5] Brin, S., & Page, L. (1998). The Anatomy of a Large-Scale
Hypertextual Web Search Engine. In Seventh international
world-wide web conference.

[6] Cox, D. R. (1972). Regression models and life-tables. Jour-
nal of the Royal Statistical Society: Series B (Methodological),
34(2), 187–202.

Jaka Stavanja, Matej Klemen, Lovro Šubelj: Napovedovanje umorov v seriji Igra prestolov z uporabo analize omrežij

U P O R A B N A I N F O R M A T I K A 652020 - πtevilka 2 - letnik XXVIII

[7] Freeman, L. C. (1977). A set of measures of centrality based
on betweenness. Sociometry, 35–41.

[8] Girvan, M., & Newman, M. E. (2002). Community structure in
social and biological networks. Proceedings of the National
Academy of Sciences, 99(12), 7821–7826.

[9] Grover, A., & Leskovec, J. (2016). node2vec: Scalable feature
learning for networks. In Proceedings of the 22nd acm sigkdd
international conference on knowledge discovery and data
mining (pp. 855–864).

[10] Guimerà, R., & Sales-Pardo, M. (2009). Missing and spurio-
us interactions and the reconstruction of complex networks.
Proceedings of the National Academy of Sciences, 106(52),
22073–22078.

[11] Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements
of Statistical Learning: Data Mining, Inference, and Prediction
(2nd ed.). Springer.

[12] Jaccard, P. (1901). Étude comparative de la distribution flora-
le dans une portion des alpes et des jura. Bull Soc Vaudoise
Sci Nat , 37 , 547–579.

[13] Kossinets, G. (2006). Effects of missing data in social net-
works. Social networks, 28(3), 247–268.

[14] Liben-Nowell, D., & Kleinberg, J. (2007). The link-prediction
problem for social networks. Journal of the American society
for Information Science and Technology , 58(7), 1019–1031.

[15] Liu, D., & Albergante, L. (2017). Balance of thrones: a network
study on “Game of Thrones” that unveils predictable popula-
rity of the story. arXiv preprint arXiv:1707.05213.

[16] Lü, L., & Zhou, T. (2011). Link prediction in complex net-
works: A survey. Physica A: statistical mechanics and its ap-
plications, 390(6), 1150–1170.

[17] Maaten, L. v. d., & Hinton, G. (2008). Visualizing data using t-
-sne. Journal of machine learning research, 9(Nov), 2579–2605.

[18] McGill, M., & Salton, G. (1983). Introduction to modern infor-
mation retrieval. 1983. McGraw-Hil, New York . Newman, M.
E. (2001). Clustering and preferential attachment in growing
networks. Physical review E, 64(2), 025102.

[19] Traag, V. A., Waltman, L., & van Eck, N. J. (2019). From Lo-
uvain to Leiden: guaranteeing well-connected communities.
Scientific Reports, 9(1), 5233. doi: 10.1038/s41598-019-
41695-z

[20] Watts, D. J., & Strogatz, S. H. (1998, June 04). Collective dyna-
mics of ’small-world’ networks. Nature, 393(6684), 440–442.



Jaka Stavanja	je	študent	drugega	letnika	magistrskega	programa	Računalništvo	in	informatika	na	Fakulteti	za	računalništvo	in	informatiko	Uni-
verze	v	Ljubljani.	Zanimajo	ga	različne	metode	strojnega	učenja,	umetne	inteligence,	uporaba	analize	omrežij	na	še	na	tak	način	neraziskanih	
problemih,	primarno	pa	se	ukvarja	z	razvojem	različnih	spletnih	rešitev.



Matej	Klemen	je	študent	drugega	letnika	magistrskega	programa	Računalništvo	in	informatika	na	Fakulteti	za	računalništvo	in	informatiko	Uni-
verze	v	Ljubljani.		Zanimajo	ga	različna	področja	umetne	inteligence,	predvsem	uporaba	strojnega	učenja	v	povezavi	z	obdelavo	jezika.		Na	tem	
področju	trenutno	raziskuje	uporabo	vložitev	v	povezavi	z	različnimi	nalogami	obdelave	jezika.		V	prostem	času	pomaga	pri	razvoju	odprtokodnih	
knjižnic	za	podporo	strojnemu	učenju,	kot	je	na	primer	Orange.



Lovro Šubelj	je	docent	na	Fakulteti	za	računalništvo	in	informatiko	Univerze	v	Ljubljani.	Diplomiral	je	leta	2008	na	Fakulteti	za	matematiko	in	
fiziko	in	Fakulteti	za	računalništvo	in	informatiko	ter	doktoriral	leta	2013	na	temo	analize	velikih	omrežij.	Je	avtor	ali	soavtor	več	kot	petdeset	
znanstvenih	prispevkov	in	patentov	ter	urednik	prestižnih	mednarodnih	znanstvenih	revij.	Njegovo	preteklo	delo	je	bilo	izbrano	kot	izjemen	znan-
stveni	dosežek	v	Sloveniji	ter	predstavljeno	na	uglednih	mednarodnih	univerzah	kot	sta	Stanford	in	UCSD.	Sodeloval	je	že	pri	številnih	uspešno	
zaključenih	raziskovalnih	in	razvojnih	projektih	v	sodelovanju	s	podjetji	Petrol,	Celtra,	Optilab,	Iskratel	in	drugimi.

Jaka Stavanja, Matej Klemen, Lovro Šubelj: Napovedovanje umorov v seriji Igra prestolov z uporabo analize omrežij

